A high performance magnetic write element incorporated in a read/write head having a lower pole including high Bsat back gap and write gap pedestals. The write element further including an upper pole connected with the lower pole to form a yoke and a coil disposed within the yoke and enclosed covered with a write gap material and surrounded by insulating material. The write gap material provides separation between the first and second poles at one end of the yoke to form a write gap therebetween. A method of forming the write element of the present invention includes forming the first pole and building thereupon a back gap pedestal and a write gap pedestal at back and front ends of the first pole respectively. A dielectric layer is deposited on top of the first pole and planarized to have an upper surface coplanar with the top of the first and second pedestals. Upon the dielectric layer the coil is formed on which is deposited the write gap material. The write gap material is deposited so as to cover both the back gap and write gap pedestals. An insulation layer is deposited over the write gap material and masked to avoid covering the pedestals. After curing the insulation layer, an etching process removes at the location of the back gap material. The upper pole can then be formed onto the structure to form the yoke. Covering back gap pedestal with write gap material until the insulation has been cured effectively prevents corrosion of the back gap pedestal which would otherwise be caused by the high temperatures necessary to cure the insulation layer.

Patent
   6381095
Priority
Aug 31 1999
Filed
Aug 31 1999
Issued
Apr 30 2002
Expiry
Aug 31 2019
Assg.orig
Entity
Large
154
13
EXPIRED
1. A write element for a thin film magnetic head, comprising:
a first pole including a front end having a substantially planar first top surface, and a back end;
a dielectric layer disposed over the first pole and including a second top surface that is substantially coplanar with the first top surfaces
a coil layer disposed over the dielectric layer and including multiple winds of a conductor and separations between adjacent winds;
a second pole disposed over the first pole and contacting the first pole at the back end; and
a write gap layer disposed between the first and second poles, over the front end of the first pole, and over the coil layer, and at least partially filling the separations between adjacent winds.
20. A thin film magnetic read/write head comprising:
a first pole including a back end and a front end;
a first pole pedestal disposed over the front end of the first pole and including a first top surface;
a first dielectric layer disposed over the first pole and including a second top surface that is substantially coplanar with the first top surface;
a coil layer disposed over the first dielectric layer and including multiple winds of a conductor and separations between adjacent winds;
a second pole disposed over the first pole and contacting the first pole at the back end;
a write gap layer disposed between the first and second poles over the front end of the first pole pedestal and over the coil layer, and at least partially filling the separations between adjacent winds;
a second dielectric layer disposed under the first pole;
a read element embedded within the second dielectric layer; and
a shield disposed under the second dielectric layer.
2. The write element of claim 1 wherein the first pole includes Ni80Fe20.
3. The write element of claim 2 wherein the second pole includes Ni80Fe20.
4. The write element of claim 1 wherein the first pole includes a high Bsat material.
5. The write element of claim 4 wherein the high Bsat material is Ni45Fe55.
6. The write element of claim 4 wherein the second pole includes a high Bsat material.
7. The write element of claim 6 wherein the high Bsat material in the second pole is Ni80Fe20.
8. The write element of claim 1 wherein the first pole further includes at the front end a first pole pedestal having the first top surface.
9. The write element of claim 8 wherein the first pole pedestal includes a high Bsat material.
10. The write element of claim 9 wherein the high Bsat material is Ni45Fe55.
11. The write element of claim 1 wherein the back end of the first pole has a third top surface that is substantially coplanar with the first top surfaces.
12. The write element of claim 11 wherein the first pole further includes at the back end a back gap pedestal having the third top surface.
13. The write element of claim 12 wherein the back gap pedestal includes a high Bsat material.
14. The write element of claim 13 wherein the high Bsat material is Ni45Fe55.
15. The write element of claim 1 further comprising an insulation layer disposed between the write gap layer and the second pole.
16. The write element of claim 15 wherein the insulation layer partially fills the separations between adjacent winds.
17. The write element of claim 15 wherein the insulation layer includes cured photoresist.
18. The write element of claim 15 wherein the insulation layer defines an apex angle of less than 50 degrees.
19. The write element of claim 1 wherein the dielectric layer includes Al2O3.
21. The read/write head of claim 20 wherein the first pole includes a high Bsat material.
22. The read/write head of claim 21 wherein the high Bsat material is Ni45Fe55.
23. The read/write head of claim 21 wherein the second pole includes a high Bsat material.
24. The read/write head of claim 23 wherein the high Bsat material in the second pole is Ni80Fe20.
25. The read/write head of claim 20 wherein the first pole pedestal includes a high Bsat material.
26. The read/write head of claim 25 wherein the high Bsat material is Ni44Fe55.
27. The read/write head of claim 20 wherein the back end of the first pole has a third top surface that is substantially coplanar with the first top surface.
28. The read/write head of claim 20 further comprising a back gap pedestal disposed over the back end of the first pole and including the third top surface.
29. The read/write head of claim 28 wherein the back gap pedestal includes a high Bsat material.
30. The read/write head of claim 29 wherein the high Bsat material is Ni45Fe55.
31. The read/write head of claim 20 further comprising an insulation layer disposed between the write gap layer and the second pole.
32. The read/write head of claim 31 wherein the insulation layer partially fills the separations between adjacent winds.
33. The read/write head of claim 31 wherein the insulation layer includes cured photoresist.
34. The read/write head of claim 31 wherein the insulation layer defines an apex angle of less than 50 degrees.

This invention relates generally to magnetic disk data storage systems, and more particularly to magnetic write transducers and methods of making same.

Magnetic disk drives are used to store and retrieve data for digital electronic apparatuses such as computers. In FIGS. 1A and 1B, a magnetic disk data storage systems 10 of the prior art includes a sealed enclosure 12, a disk drive motor 14, a magnetic disk 16, supported for rotation by a drive spindle S1 of motor 14, an actuator 18 and an arm 20 attached to an actuator spindle S2 of actuator 18. A suspension 22 is coupled at one end to the arm 20, and at its other end to a read/write head or transducer 24. The transducer 24 (which will be described in greater detail with reference to FIG. 2A) typically includes an inductive write element with a sensor read element. As the motor 14 rotates the magnetic disk 16, as indicated by the arrow R, an air bearing is formed under the transducer 24 causing it to lift slightly off of the surface of the magnetic disk 16, or, as it is termed in the art, to "fly" above the magnetic disk 16. Alternatively, some transducers, known as "contact heads," ride on the disk surface. Various magnetic "tracks" of information can be written to and/or read from the magnetic disk 16 as the actuator 18 causes the transducer 24 to pivot in a short arc as indicated by the arrows P. The design and manufacture of magnetic disk data storage systems is well known to those skilled in the art.

FIG. 2A depicts a magnetic read/write head 24 including a substrate 25 above which a read element 26 and a write element 28 are disposed. Edges of the read element 26 and write element 28 also define an air bearing surface ABS, in a plane 29, which can be aligned to face the surface of the magnetic disk 16 (see FIGS. 1A and 1B). The read element 26 includes a first shield 30, an intermediate layer 32, which functions as a second shield, and a read sensor 34 that is located within a dielectric medium 35 between the first shield 30 and the second shield 32. The most common type of read sensor 34 used in the read/write head 24 is the magnetoresistive (AMR or GMR) sensor which is used to detect magnetic field signals from a magnetic medium through changing resistance in the read sensor.

The write element 28 is typically an inductive write element which includes the intermediate layer 32, which functions as a first pole, and a second pole 38 disposed above the first pole 32. The first pole 32 and the second pole 38 are attached to each other by a backgap portion 40, with these three elements collectively forming a yoke 41. The combination of a first pole tip portion 43 and a second pole tip portion 45 near the ABS are sometimes referred to as the yoke tip portion 46. A write gap 36 is formed between the first and second poles 32, 38 in the yoke tip portion 46. The write gap 36 is filled with a non-magnetic electrically insulating material that forms a write gap material layer 37. This non-magnetic material can be either integral with (as is shown here) or separate from a first insulation layer 47 that lies below the second yoke 38 and extends from the yoke tip portion 46 to the backgap portion 40.

Also included in write element 28 is a conductive coil 48, formed of multiple winds 49 which each have a wind height Hw. The coil 48 can be characterized by a dimension sometimes referred to as the wind pitch P, which is the distance from one coil wind front edge to the next coil wind front edge, as shown in FIG. 2A. As is shown, the wind pitch P is defined by the sum of the wind thickness Tw and the separation between adjacent winds Sw. The conductive coil 48 is positioned within a coil insulation layer 50 that lies above the first insulation layer 47. The first insulation layer 47 thereby electrically insulates the coil layer from the first pole 32, while the coil insulation layer 50 electrically insulates the winds 49 from each other and from the second pole 38.

The configuration of the conductive coil 48 can be better understood with reference to a plan view of the read/write head 24 shown in FIG. 2B taken along line 2B--2B of FIG. 2A. Because the conductive coil extends beyond the first and second poles, insulation may be needed beneath, as well as above, the conductive coil to electrically insulate the conductive coil from other structures. For example, as shown in FIG. 2C, a view taken along line 2C--2C of FIG. 2A, a buildup insulation layer 52 can be formed adjacent the first pole, and under the conductive coil layer 48. As is well known to those skilled in the art, these elements operate to magnetically write data on a magnetic medium such as a magnetic disk 16 (see Figs. 1A and 1B).

More specifically, an inductive write head such as that shown in FIGS. 2A-2C operates by passing a writing current through the conductive coil layer 48. Because of the magnetic properties of the yoke 41, a magnetic flux is induced in the first and second poles 32, 38 by write currents passed through the coil layer 48. The write gap 36 allows the magnetic flux to fringe out from the yoke 41 (thus forming a fringing gap field) and to cross a magnetic recording medium that is placed near the ABS. A critical parameter of a magnetic write element is a track width of the write element, which defines track density. For example, a narrower track width can result in a higher magnetic recording density. The track width is defined by geometries in the yoke tip portion 46 (see FIG. 2A) at the ABS. These geometries can be better understood with reference to FIG. 2C. As can be seen from this view, the first and second poles 32, 38 can have different widths W1, W2 respectively in the yoke tip portion 46 (see FIG. 2A). In the shown configuration, the track width of the write element 28 is defined by the width W2 of the second pole 38. The gap field of the write element can be affected by the throat height TH, which is measured from the ABS to the zero throat ZT, as shown in FIG. 2A. Thus, accurate definition of the track width and throat height is critical during the fabrication of the write element.

Another parameter of the write element is the number of winds 49 in the coil layer 48, which determines magnetic motive force (MMF) of a write element. With increasing number of winds 49 between the first and second poles 32, 38, the fringing field is stronger and, thus, the write performance increases. The number of winds is limited by the yoke length YL, shown in FIG. 2A, and the pitch P between adjacent winds 49. However, to obtain faster recording speeds, and therefore higher data transfer rates, it may be desirable to have a shorter yoke length YL because this can shorten the flux rise time. This relationship can be seen in the graph of yoke length YL versus flux rise time shown in FIG. 2D. Therefore, to maximize the number of coil winds while maintaining fast write speeds, it is desirable to minimize the pitch P in design of write elements.

However, the control of track width, throat height, and coil pitch can be limited by typical fabrication processes, an example of which is shown in the process diagram of FIG. 3. The method 54 includes providing a first pole with first and second edges in operation 56. This operation can include, for example, forming a plating dam, plating, and then removing the dam. In operation 58, a write gap material layer is formed over the first pole. In particular, the write gap material layer is formed over an upper surface and the first and second edges of the first pole. Also, in operation 58, a via is formed through the write gap material layer to the first pole in the backgap portion 40 (see FIG. 2A). In the instance herein described, the write gap material layer extends above the first pole in the area between the yoke tip portion and the backgap portion, although in other cases the write gap material layer may not be above this area. A buildup insulation layer is also formed in operation 60, adjacent the first and second edges, with the write gap material layer between the first pole and the buildup insulation layer. The buildup insulation layer is typically formed by depositing (e.g., spinning) and patterning photoresistive material and then hard baking the remaining photoresistive material. Such processes often result in the height of the buildup insulation layer being non-uniform and different than the height of the write gap material layer, as is illustrated in FIGS. 2A and 2C.

The method 54 also includes forming a first coil layer above the write gap material layer and the buildup insulation layer in operation 62. This can include first depositing a seed layer above the first pole. Typically, photoresistive material can then be deposited and patterned. With the patterned photoresistive material in place, conductive material can be plated. With removal of the photoresistive material, the remaining conductive material thereby forms the first coil layer.

Unfortunately, when there is a difference in height between the write gap material layer and the buildup insulation layer, the patterning of the photoresistive material for the first coil layer can be complicated. In particular, it can be difficult to pattern the various heights to have consistent geometries. More specifically, winds of the resulting first coil layer can be wider at lower levels than at higher levels, such as between the first and second poles. Thus, for a given pitch, such greater width at the lower levels can result in smaller distances between winds. This can, in turn, result in electrical shorting between winds which can be detrimental to the write element performance. To avoid such electrical shorting, the minimum wind pitch can be set to a desired value that will result in adequate yield of non-shorting conductive coil layers. Because the coil winds are more narrow between the first and second poles, the resulting pitch there is typically greater than, and limited by this minimum. For example, typical wind pitches between the first and second poles may be limited to no less than about 3 microns. For a given number of winds and wind thickness, this in turn limits the minimum yoke length, and thereby limits the data transfer rate and data density as described above. For example, a pitch of about 3 microns may be adequate for recording densities on the order of about 2 Gb/sq.in., however, these typical pitches can be inadequate for larger recording densities, such as about 10 Gb/sq.in.

In operation 64, the method 54 further includes forming a coil insulation layer above the first coil layer that is formed in operation 62. In addition, a second pole is formed above the coil insulation layer of operation 64, in operation 66.

Still another parameter of the write element is the stack height SH, the distance between the top surface of the first pole 32 and the top of the second pole 38, as shown in FIG. 2A. Of course, this height is affected by the thickness of the first insulation layer 47, the thickness of the coil layer 48 and any other coil layers that might be included, and the height of the coil insulation layer 50 and any other coil insulation layers that might be included. The stack height can be an indicator of the apex angle α, which partially characterizes the topology over which the second pole must be formed near the yoke tip portion. Typically, the reliability of the write element decreases as the apex angle α increases. This is due, at least in part, to the corresponding increased difficulty, particularly in the yoke tip portion 46, of forming the second pole 38 over the higher topography of the stack. For example, the definition of the second pole width W, shown in FIG. 2C, including photoresist deposition and etching, can be decreasingly reliable and precise with increasing topography. When demand for higher density writing capabilities drives yoke tip portions to have smaller widths W, this aspect of fabrication becomes increasingly problematic.

Greater track width control can be attempted using other processes such as focused ion beam (FIB) milling, however such processes can be expensive. To support higher data transfer rate applications, the second pole can otherwise be formed by lamination, which can be more time consuming than without lamination. Alternatively, the track width can be defined by the first pole width W1. However, such processes can also be expensive, complex, and result in lower production yields.

Also, with higher topography, when the second pole is formed, for example by sputtering or plating, the material properties of the second pole in the sloped region, adjacent the second pole tip region 45, can be undesirable. Thus, this decreased reliability results in undesirable lower production yield.

As will be appreciated from the above, the performance of a write head is limited by manufacturing limitations such as minimum coil pitch and stack height limitations. Therefore, methods are needed to increase the magnetic performance of a write head in spite of these manufacturing limitations. One possible method of increasing the magnetic performance of a write head in spite of the manufacturing limitations described above is to use very highly magnetic materials such as Ni45Fe55 in the construction of the poles. However such materials, being highly corrosive present their own manufacturing challenges. For example, the high temperatures required to cure the insulation layer deposited on the coil causes such highly magnetic materials to corrode. Therefore there remains a need for a magnetic read write head which takes advantage of the magnetic performance properties of high Bsat materials while addressing the corrosion problems inherent in such materials.

The present invention is embodied in a write head having first and second poles which together join to form a yoke. The first pole has respective write gap and back gap pedestals extending from its top surface at its front and back ends. The pedestals are constructed of a high Bsat material such as Ni45Fe55 which greatly enhances the magnetic properties of the yoke by promoting efficient magnetic flux concentration in the write gap portion at the front of the yoke. The write head is produced by a process whereby the pedestals are covered with a write gap material during cure of a subsequently deposited insulation layer. The write gap material is then removed from the back gap pedestal, exposing a surface of the back gap pedestal for contact with the second pole. Covering the pedestals with the write gap material protects the pedestals from corrosion during the high temperature cure of the insulation layer.

More particularly, the space surrounding the pedestals on top of the first pole is covered with a dielectric layer which is planarized by a chemical mechanical polishing process to create a smooth flat surface across the top of the dielectric layer as well as the tops of the pedestals. Upon this planarized surface of the dielectric layer the coil is formed. First, a copper seed layer is deposited. Then a copper coil is deposited onto the seed by a photolithographic plating process. The coil is provided with a pair of contacts for supplying electrical current to the coil. After the coil has been deposited, the seed is removed by an etching process.

With the coil formed on the dielectric layer and the seed removed, the layer of write gap material in the form of SiO2 is deposited over the dielectric layer and coil as well as the top of both pedestals. By depositing the write gap material on top of the coil rather than beneath it, the thickness of the write gap material can be more closely controlled. This is because the write gap material will not be attacked by the etching process used to remove the seed layer which was deposited in order to form the coil.

The insulation layer is then deposited on top of the coil. In order to ensure that the insulation will adhere to the write gap material a very thin layer of HMDS is first deposited onto the write gap material. The insulation layer is then deposited as a photoresist which is spun onto the coil and masked to provide vias over the pedestals and coil contacts. The insulation is also masked to provide vias over the coil contacts. This is followed by a cure process which involves subjecting the insulation layer to high temperatures. Using SiO2 as the write gap material advantageously causes the cured insulation to have a smooth gradual slope at its front end adjacent the write gap pedestal.

After the insulation has been cured, the write gap material can be locally removed at the locations of the back gap pedestal and the contacts for coil and sensor leads. This is accomplished by an etching process such as a reactive ion etch or ion beam etch. Keeping the high Bsat pedestals covered with write gap material during the high temperature cure of the insulation layer prevents corrosion of the pedestals. The write gap material can then be locally removed to expose the back gap pedestal without significantly effecting the back gap pedestal. Thus the corrosion problem inherent in using high Bsat materials in the poles of a write head is efficiently overcome.

A second pole is then formed on top of the insulation layer and over the write gap material in the write gap portion at the front of the first pole. The second pole contacts the exposed top of the back gap pedestal, whereby the first and second poles together form the yoke. As will be appreciated by those skilled in the art, the smooth slope of the insulation layer will cause the second pole to define a low apex angle, contributing to the magnetic performance and reliability of the write head. The second pole can also be constructed of Ni80Fe20, which can be deposited by conventional plating processes, or alternatively can be constructed of high Bsat materials such as Ni45Fe55 deposited by a plating process. The use of sputter deposited high Bsat materials is made possible by the low apex angle provided by the present invention.

As will be appreciated the present invention provides a write head which can take advantage of the excellent magnetic properties of high Bsat materials while solving the corrosion problems inherent in such materials. Also, the present invention provides improved control of write gap thickness as well as reduced apex angle. These and other advantages of the present invention will become apparent to those skilled in the art upon a reading of the following descriptions of the invention and a study of the several figures of the drawings.

The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, with like references numerals designating like elements.

FIG. 1A is a partial cross-sectional front elevation view of a magnetic data storage system;

FIG. 1B is a top plan view taken along line 1B--1B of FIG. 1A;

FIG. 2A is a cross-sectional view of a prior art read/write head of the magnetic disk drive assembly of FIGS. 1A and 1B;

FIG. 2B is a plan view taken along line 2B--2B of FIG. 2A;

FIG. 2C is a plan view taken along line 2C--2C of FIG. 2A;

FIG. 2D is a representative graph of a relationship between yoke length and flux rise time;

FIG. 3 is a process diagram of a method for forming a write element of the prior art;

FIG. 4A is a cross-sectional side view of a write element, according to an embodiment of the present invention;

FIG. 4B is an ABS view taken along line 4B--4B of FIG. 4A;

FIG. 5 is a cross sectional view of a read/write head of the present invention;

FIG. 6 is a plan view taken along line 6--6 of FIG. 5; and

FIG. 7 is a process diagram of a method for forming a read/write head of the present invention.

With reference to FIG. 5, the present invention is embodied in a read/write head generally designated 500, including a read portion 502 and a write portion 504 both of which are supported upon a substrate 505. The read portion includes a read element 506 embedded within a dielectric material 508 between first and second shields 510 and 512 respectively. The second shield has a planar top surface 514 and also serves as a portion of a first pole 515 for the write portion 504 of the head 500. The dielectric material 508 extends beyond the edges of the shield/pole 512 to rise to a planar top surface 513 flush with the top surface 514 of the shield/pole 512.

The write portion 504 includes first and second poles 515 and 534 which join to form a yoke 517. The yoke contains a portion of a conducting coil 528 which is covered by a write gap material 530 which also separates the first and second pole at a write gap portion 519 at the front end of the yoke 517.

The first pole 515 includes a back gap pedestal 516 which extends from the planar upper surface 514 at a back end of the first pole 515. The back gap pedestal 516 of the first pole 515 has a smooth, planar upper surface 518 which defines a plane 519. In addition, the first pole 515 includes at its front end a write gap pedestal 520 extending upward from the planar sur face 514 of the first pole 515 at the front end of the first pole 515. The write gap pedestal 520 also has a smooth. planar upper surface 522 which is coplanar with the upper surface 518 of the back gap pedestal 516 and the plane 519. As can be seen more clearly with reference to FIG. 6, the write gap pedestal 520 has a much smaller upper surface area than the back gap pedestal 516. The width of the write gap pedestal 520 defines the track width (TW) of write element 504.

The pedestals 516 and 520 are constructed of a highly magnetic, high saturation moment (high Bsat) material. While several high Bsat materials could be used, such as for example: FeN, FeRhN, or FeTaN, the pedestals are preferably constructed of Ni45Fe55. Although the pole/shield 512 is constructed of a material having a lower saturation moment than that of the pedestals 516 and 520, the pole/shield has a larger cross sectional area. The magnetic properties of the high Bsat pedestals in conjunction with the larger area of the shield/pole 512 allow magnetic flux to efficiently flow through the yoke 517 and to concentrate at the pedestals. This provides a stronger magnetic fringing field at the write gap portion 519 of the write element 504. Alternatively, the entire first pole 515 could be constructed of such a high Bsat material, in which case the present invention would provide the same corrosion protection as with the previously described embodiment.

With continued reference to FIG. 5, a chemical mechanical polished (CMP) dielectric layer 524 surrounds the back gap and write gap portions 516 and 520 and fills the space there between. In the preferred embodiment the insulation 524 is constructed of A12O3, however other materials could be used as well. The CMP process smoothes and planarizes the upper surfaces 518 and 522 of the back gap and write gap pedestals 516 and 520 respectively and produces a smooth planar surface 526 on the dielectric layer which is flush with the surfaces 518 and 522 of the back gap and write gap pedestals 516 and 520 respectively.

Upon the dielectric layer 524 is formed a conductive coil 528. While the coil 528 could be constructed of many materials it is preferably made of copper. The smooth planar surface 526 of the dielectric layer 524 provides an excellent substrate on which to form the coil 528, allowing the coil 528 to be more precisely deposited. This allows the coil 528 to be formed with a smaller pitch than would otherwise be possible, increasing the performance of the write head 504 as described above. The coils 528 are provided with inner and outer contacts, 602 and 604 respectively (FIG. 6), which can be used to supply an electrical current to the coil 528 in the completed write head 504.

A layer of write gap material 530 covers the coil 528 as well as the dielectric layer 524 and write gap pedestal 520. The write gap material is removed to provide a via at the location of the back gap pedestal 516 by an etching process which will be described in more detail below. While various materials can be used as write gap material, in the preferred embodiment the write gap material 530 is SiO2.

An insulation layer 532 covers the write gap material 530 and is formed with vias at the write gap and back gap pedestals 520 and 516 respectively. The insulation is also provided with vias at the location of the contacts 602 and 604 of the coil 528. 30 While the insulation layer could be formed of many non-conducting materials, it is preferably formed of a cured photoresist. Using SiO2 as the write gap material 530 allows the insulation layer to be processed to have an advantageously smoothly sloped edge at the location of the write gap portion 519 of the yoke 517.

Formed over the insulation layer 532 is a second pole 534. The second pole is formed of a magnetic material and is plated onto the insulation layer 532 and on top of the back gap pedestal 516 of the first pole 512. The front end of the second pole 534 sits atop the write gap material 522 above the write gap pedestal 520.

FIG. 7 illustrates a process 700 for constructing a write head 504 of the present invention. In a step 702 the first pole/shield 512 is provided. The first pole/shield can be constructed of any suitable magnetic material, such as Ni80Fe20. The back gap and write gap pedestals 516 and 520 are then formed onto the first pole 512 in a step 704 to form the completed first pole 515. The pedestals can be formed of any magnetic material but are preferably a high saturation moment (high Bsat) material such as Ni45Fe55, and are formed by a photolithographic process as will be understood by those skilled in the art. Then in a step 706, the dielectric layer 514 is deposited onto the first pole 512 so as to cover and surround the pedestals 516 and 520. This dielectric layer 514 is then planarized by a chemical mechanical polishing (CMP) step 708. The chemical mechanical polish is performed until the tops 518 and 522 of the back gap and write gap pedestals 516 and 520 respectively are exposed and planarized. This will result in a smooth flat surface across the insulation layer 514 and the pedestals 518 and 520.

The smooth surface 526 of the dielectric layer provided by the CMP process is ideal for deposition of the conductive coil 528. Preparatory to forming the coil 528, a seed layer is deposited onto the dielectric layer 514 in a step 710. The coil is then deposited in a step 712 using photolithography and the seed layer subsequently removed by etching in a step 714. With the coil 528 formed and the seed layer removed the write gap material 530 can be deposited as a thin film in a step 716. The SiO2 write gap material can be deposited by plasma enhanced CVD, inductively coupled plasma CVD, RF sputtering, or ion beam deposition.

Prior to depositing the insulation layer 532, a thin HMDS layer is deposited in a step 718. The HMDS can be as thin as one atomic layer and acts as a glue to hold the insulation layer 532 to the write gap material 530. With the HMDS layer deposited, the insulation layer 532 is deposited in a step 720. The insulation layer 532 is spun on and masked to leave the pedestals 518 and 520 exposed and to leave vias at the locations of the contacts 602 and 604. The insulation layer is then cured in a step 722. Using HMDS coated SiO2 as the write gap material causes the cured insulation layer to take on a gradually sloped shape at the location of the write gap portion 519 of the yoke write head 504. After curing the insulation layer, the write gap material is removed in a step 724 using a photolithographic process and reactive ion etching to remove the write gap material only at the location of the back gap pedestal 516 and the coil contacts 602 and 604.

The highly magnetic (high Bsat) material of which the back gap pedestal is made is extremely corrosive at high temperatures. This property of high Bsat material has heretofore prevented their use in applications such as that of the present invention. By keeping the pedestals 516 and 520 covered by the write gap material 530 during the high temperature cure of the insulation layer 532, the pedestal 516 remains protected from corrosion. Once the high temperature cure of the insulation has been completed, the write gap material can be removed over the pedestal 516 without harming the pedestal.

After the write gap material 530 has been removed over the back gap pedestal 516, the second pole 534 is formed in a step 726. The second pole 534 is deposited by a photolithographic plating process and is formed so as to contact the back gap pedestal 516 and sit atop the write gap material at the write gap portion 519 and atop the insulation layer 532. The smooth slope of the insulation layer near the write gap portion of the write head 504 causes the plated second pole 534 to define a low apex angle α. As described above, this low apex angle improves the magnetic performance and reliability of the write head 504.

In an alternate embodiment of the invention the second pole 534 is formed by DC or RF sputtering rather than by plating. The low apex angle α of the present invention makes the use of sputtering possible. Whereas plating is restricted to material such as Ni45Fe55 or Ni80Fe20, sputtering allows the second pole to be constructed of other materials such as for example: FeN, FeRhN, or FeTaN. This can advantageously increase the magnetic flux from about 16 KGauss to about 20 KGauss. In yet another embodiment of the invention the entire pole, including the pole/shield 512, as well as the pedestals 518 and 520 are constructed of a high Bsat material such as Ni45Fe55.

In another embodiment of the invention, not shown, the entire first pole can be constructed of a high Bsat material. Such a write head would be constructed in essentially the same manner as the write head of the preferred embodiment in that the entire pole, including the pedestals would remain covered by the write gap material during curing of the subsequently applied insulation layer, the first pole will be protected from corrosion.

In yet another embodiment of the invention, also not shown, the first pole does not include pedestals at the back gap or write gap pedestals. The first pole is formed of a high Bsat material which is protected from corrosion during the high temperature cure of the subsequently applied insulation layer. As with the previously described preferred embodiment, the write gap material is etched after curing of the insulation layer in order to expose the back gap portion of the first pole.

From the above it can be appreciated that the present invention provides a write head, and a method of manufacturing same, which can effectively use high Bsat materials to increase magnetic performance while solving the corrosion problems inherent in the use of such high Bsat materials. By covering the back gap pedestal with the write gap material during the high temperature cure of the insulation layer, corrosion of the pedestal is prevented. Additionally, depositing the write gap material on top of the coil rather than beneath the coil eliminates the problem of write gap degradation during the removal of the coil seed. While the invention has been described herein in terms of several preferred embodiments, other embodiments of the invention, including alternatives, modifications, permutations and equivalents of the embodiments described herein, will be apparent to those skilled in the art from consideration of the specification, study of the drawings, and practice of the invention. For example, the write head could include multiple coils. The embodiments and preferred features described above should be considered exemplary, with the invention being defined by the appended claims, which therefore include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.

Sin, Kyusik, Barr, Ronald

Patent Priority Assignee Title
10037770, Nov 12 2015 Western Digital Technologies, INC Method for providing a magnetic recording write apparatus having a seamless pole
10074387, Dec 21 2014 Western Digital Technologies, INC Method and system for providing a read transducer having symmetric antiferromagnetically coupled shields
10121495, Nov 30 2015 Western Digital Technologies, INC Magnetic recording write apparatus having a stepped conformal trailing shield
10242700, Jun 26 2015 Western Digital Technologies, INC Magnetic reader having a nonmagnetic insertion layer for the pinning layer
10381029, Nov 10 2015 Western Digital Technologies, INC Method and system for providing a HAMR writer including a multi-mode interference device
10553241, Dec 17 2014 Western Digital Technologies, INC Near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
11302471, Jun 16 2014 STMICROELECTRONICS INTERNATIONAL N V Integrated transformer
6771463, May 10 2000 TDK Corporation Thin-film coil and thin-film magnetic head having two patterned conductor layers that are coil-shaped and stacked
6826012, Jul 08 1999 TDK Corporation Thin-film magnetic head and method of manufacturing same
6937436, Jul 08 1999 TDK Corporation Thin-film magnetic head and method of manufacturing same
7012784, Jul 08 1999 TDK Corporation Thin-film magnetic head and method of manufacturing same
7190553, Apr 04 2000 TDK Corporation Thin-film magnetic head having lower magnetic pole layer and insulator layer behind the lower magnetic pole layer in the direction of height of the pole layer, and method for manufacturing the thin-film magnetic head
8449948, Sep 10 2009 Western Digital Technologies, INC Method and system for corrosion protection of layers in a structure of a magnetic recording transducer
8830628, Feb 23 2009 Western Digital Technologies, INC Method and system for providing a perpendicular magnetic recording head
8879207, Dec 20 2011 Western Digital Technologies, INC Method for providing a side shield for a magnetic recording transducer using an air bridge
8883017, Mar 12 2013 Western Digital Technologies, INC Method and system for providing a read transducer having seamless interfaces
8917581, Dec 18 2013 Western Digital Technologies, INC Self-anneal process for a near field transducer and chimney in a hard disk drive assembly
8923102, Jul 16 2013 Western Digital Technologies, INC Optical grating coupling for interferometric waveguides in heat assisted magnetic recording heads
8947985, Jul 16 2013 Western Digital Technologies, INC Heat assisted magnetic recording transducers having a recessed pole
8953422, Jun 10 2014 Western Digital Technologies, INC Near field transducer using dielectric waveguide core with fine ridge feature
8958272, Jun 10 2014 Western Digital Technologies, INC Interfering near field transducer for energy assisted magnetic recording
8970988, Dec 31 2013 Western Digital Technologies, INC Electric gaps and method for making electric gaps for multiple sensor arrays
8971160, Dec 19 2013 Western Digital Technologies, INC Near field transducer with high refractive index pin for heat assisted magnetic recording
8976635, Jun 10 2014 Western Digital Technologies, INC Near field transducer driven by a transverse electric waveguide for energy assisted magnetic recording
8980109, Dec 11 2012 Western Digital Technologies, INC Method for providing a magnetic recording transducer using a combined main pole and side shield CMP for a wraparound shield scheme
8982508, Oct 31 2011 Western Digital Technologies, INC Method for providing a side shield for a magnetic recording transducer
8984740, Nov 30 2012 Western Digital Technologies, INC Process for providing a magnetic recording transducer having a smooth magnetic seed layer
8988812, Nov 27 2013 Western Digital Technologies, INC Multi-sensor array configuration for a two-dimensional magnetic recording (TDMR) operation
8988825, Feb 28 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer having half-side shields
8993217, Apr 04 2013 Western Digital Technologies, INC Double exposure technique for high resolution disk imaging
8995087, Nov 29 2006 Western Digital Technologies, INC Perpendicular magnetic recording write head having a wrap around shield
8997832, Nov 23 2010 Western Digital Technologies, INC Method of fabricating micrometer scale components
9001467, Mar 05 2014 Western Digital Technologies, INC Method for fabricating side shields in a magnetic writer
9001628, Dec 16 2013 Western Digital Technologies, INC Assistant waveguides for evaluating main waveguide coupling efficiency and diode laser alignment tolerances for hard disk
9007719, Oct 23 2013 Western Digital Technologies, INC Systems and methods for using double mask techniques to achieve very small features
9007725, Oct 07 2014 Western Digital Technologies, INC Sensor with positive coupling between dual ferromagnetic free layer laminates
9007879, Jun 10 2014 Western Digital Technologies, INC Interfering near field transducer having a wide metal bar feature for energy assisted magnetic recording
9013836, Apr 02 2013 Western Digital Technologies, INC Method and system for providing an antiferromagnetically coupled return pole
9042051, Aug 15 2013 Western Digital Technologies, INC Gradient write gap for perpendicular magnetic recording writer
9042052, Jun 23 2014 Western Digital Technologies, INC Magnetic writer having a partially shunted coil
9042057, Jan 09 2013 Western Digital Technologies, INC Methods for providing magnetic storage elements with high magneto-resistance using Heusler alloys
9042058, Oct 17 2013 Western Digital Technologies, INC Shield designed for middle shields in a multiple sensor array
9042208, Mar 11 2013 Western Digital Technologies, INC Disk drive measuring fly height by applying a bias voltage to an electrically insulated write component of a head
9053735, Jun 20 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer using a full-film metal planarization
9064507, Jul 31 2009 Western Digital Technologies, INC Magnetic etch-stop layer for magnetoresistive read heads
9064527, Apr 12 2013 Western Digital Technologies, INC High order tapered waveguide for use in a heat assisted magnetic recording head
9064528, May 17 2013 Western Digital Technologies, INC Interferometric waveguide usable in shingled heat assisted magnetic recording in the absence of a near-field transducer
9065043, Jun 29 2012 Western Digital Technologies, INC Tunnel magnetoresistance read head with narrow shield-to-shield spacing
9070381, Apr 12 2013 Western Digital Technologies, INC Magnetic recording read transducer having a laminated free layer
9082423, Dec 18 2013 Western Digital Technologies, INC Magnetic recording write transducer having an improved trailing surface profile
9087527, Oct 28 2014 Western Digital Technologies, INC Apparatus and method for middle shield connection in magnetic recording transducers
9087534, Dec 20 2011 Western Digital Technologies, INC Method and system for providing a read transducer having soft and hard magnetic bias structures
9093639, Feb 21 2012 Western Digital Technologies, INC Methods for manufacturing a magnetoresistive structure utilizing heating and cooling
9104107, Apr 03 2013 Western Digital Technologies, INC DUV photoresist process
9111550, Dec 04 2014 Western Digital Technologies, INC Write transducer having a magnetic buffer layer spaced between a side shield and a write pole by non-magnetic layers
9111558, Mar 14 2014 Western Digital Technologies, INC System and method of diffractive focusing of light in a waveguide
9111564, Apr 02 2013 Western Digital Technologies, INC Magnetic recording writer having a main pole with multiple flare angles
9123358, Jun 11 2012 Western Digital Technologies, INC Conformal high moment side shield seed layer for perpendicular magnetic recording writer
9123359, Dec 22 2010 Western Digital Technologies, INC Magnetic recording transducer with sputtered antiferromagnetic coupling trilayer between plated ferromagnetic shields and method of fabrication
9123362, Mar 22 2011 Western Digital Technologies, INC Methods for assembling an electrically assisted magnetic recording (EAMR) head
9123374, Feb 12 2015 Western Digital Technologies, INC Heat assisted magnetic recording writer having an integrated polarization rotation plate
9135930, Mar 06 2014 Western Digital Technologies, INC Method for fabricating a magnetic write pole using vacuum deposition
9135937, May 09 2014 Western Digital Technologies, INC Current modulation on laser diode for energy assisted magnetic recording transducer
9142233, Feb 28 2014 Western Digital Technologies, INC Heat assisted magnetic recording writer having a recessed pole
9147404, Mar 31 2015 Western Digital Technologies, INC Method and system for providing a read transducer having a dual free layer
9147406, May 13 2014 Seagate Technology LLC Write pole with corrosion barriers
9147408, Dec 19 2013 Western Digital Technologies, INC Heated AFM layer deposition and cooling process for TMR magnetic recording sensor with high pinning field
9153255, Mar 05 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer having an asymmetric gap and shields
9159345, Nov 23 2010 Western Digital Technologies, INC Micrometer scale components
9159346, Jun 10 2014 Western Digital Technologies, INC Near field transducer using dielectric waveguide core with fine ridge feature
9183854, Feb 24 2014 Western Digital Technologies, INC Method to make interferometric taper waveguide for HAMR light delivery
9190079, Sep 22 2014 Western Digital Technologies, INC Magnetic write pole having engineered radius of curvature and chisel angle profiles
9190085, Mar 12 2014 Western Digital Technologies, INC Waveguide with reflective grating for localized energy intensity
9194692, Dec 06 2013 Western Digital Technologies, INC Systems and methods for using white light interferometry to measure undercut of a bi-layer structure
9202480, Oct 14 2009 Western Digital Technologies, INC Double patterning hard mask for damascene perpendicular magnetic recording (PMR) writer
9202493, Feb 28 2014 Western Digital Technologies, INC Method of making an ultra-sharp tip mode converter for a HAMR head
9213322, Aug 16 2012 Western Digital Technologies, INC Methods for providing run to run process control using a dynamic tuner
9214165, Dec 18 2014 Western Digital Technologies, INC Magnetic writer having a gradient in saturation magnetization of the shields
9214169, Jun 20 2014 Western Digital Technologies, INC Magnetic recording read transducer having a laminated free layer
9214172, Oct 23 2013 Western Digital Technologies, INC Method of manufacturing a magnetic read head
9230565, Jun 24 2014 Western Digital Technologies, INC Magnetic shield for magnetic recording head
9236560, Dec 08 2014 Western Digital Technologies, INC Spin transfer torque tunneling magnetoresistive device having a laminated free layer with perpendicular magnetic anisotropy
9245543, Jun 25 2010 Western Digital Technologies, INC Method for providing an energy assisted magnetic recording head having a laser integrally mounted to the slider
9245545, Apr 12 2013 Western Digital Technologies, INC Short yoke length coils for magnetic heads in disk drives
9245562, Mar 30 2015 Western Digital Technologies, INC Magnetic recording writer with a composite main pole
9251813, Apr 19 2009 Western Digital Technologies, INC Method of making a magnetic recording head
9263067, May 29 2013 Western Digital Technologies, INC Process for making PMR writer with constant side wall angle
9263071, Mar 31 2015 Western Digital Technologies, INC Flat NFT for heat assisted magnetic recording
9269382, Jun 29 2012 Western Digital Technologies, INC Method and system for providing a read transducer having improved pinning of the pinned layer at higher recording densities
9275657, Aug 14 2013 Western Digital Technologies, INC Process for making PMR writer with non-conformal side gaps
9280990, Dec 11 2013 Western Digital Technologies, INC Method for fabricating a magnetic writer using multiple etches
9286919, Dec 17 2014 Western Digital Technologies, INC Magnetic writer having a dual side gap
9287494, Jun 28 2013 Western Digital Technologies, INC Magnetic tunnel junction (MTJ) with a magnesium oxide tunnel barrier
9305583, Feb 18 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer using multiple etches of damascene materials
9311952, Jun 10 2014 Western Digital Technologies, INC Interfering near field transducer for energy assisted magnetic recording
9312064, Mar 02 2015 Western Digital Technologies, INC Method to fabricate a magnetic head including ion milling of read gap using dual layer hard mask
9318130, Jul 02 2013 Western Digital Technologies, INC Method to fabricate tunneling magnetic recording heads with extended pinned layer
9336814, Mar 12 2013 Western Digital Technologies, INC Inverse tapered waveguide for use in a heat assisted magnetic recording head
9343086, Sep 11 2013 Western Digital Technologies, INC Magnetic recording write transducer having an improved sidewall angle profile
9343087, Dec 21 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer having half shields
9343098, Aug 23 2013 Western Digital Technologies, INC Method for providing a heat assisted magnetic recording transducer having protective pads
9349392, May 24 2012 Western Digital Technologies, INC Methods for improving adhesion on dielectric substrates
9349393, Mar 05 2014 Western Digital Technologies, INC Magnetic writer having an asymmetric gap and shields
9349394, Oct 18 2013 Western Digital Technologies, INC Method for fabricating a magnetic writer having a gradient side gap
9361913, Jun 03 2013 Western Digital Technologies, INC Recording read heads with a multi-layer AFM layer methods and apparatuses
9361914, Jun 18 2014 Western Digital Technologies, INC Magnetic sensor with thin capping layer
9368134, Dec 16 2010 Western Digital Technologies, INC Method and system for providing an antiferromagnetically coupled writer
9384763, Mar 26 2015 Western Digital Technologies, INC Dual free layer magnetic reader having a rear bias structure including a soft bias layer
9384765, Sep 24 2015 Western Digital Technologies, INC Method and system for providing a HAMR writer having improved optical efficiency
9396742, Nov 30 2012 Western Digital Technologies, INC Magnetoresistive sensor for a magnetic storage system read head, and fabrication method thereof
9396743, Feb 28 2014 Western Digital Technologies, INC Systems and methods for controlling soft bias thickness for tunnel magnetoresistance readers
9406331, Jun 17 2013 Western Digital Technologies, INC Method for making ultra-narrow read sensor and read transducer device resulting therefrom
9412400, Jun 29 2012 Western Digital Technologies, INC Tunnel magnetoresistance read head with narrow shield-to-shield spacing
9424866, Sep 24 2015 Western Digital Technologies, INC Heat assisted magnetic recording write apparatus having a dielectric gap
9431031, Mar 24 2015 Western Digital Technologies, INC System and method for magnetic transducers having multiple sensors and AFC shields
9431032, Aug 14 2013 Western Digital Technologies, INC Electrical connection arrangement for a multiple sensor array usable in two-dimensional magnetic recording
9431038, Jun 29 2015 Western Digital Technologies, INC Method for fabricating a magnetic write pole having an improved sidewall angle profile
9431039, May 21 2013 Western Digital Technologies, INC Multiple sensor array usable in two-dimensional magnetic recording
9431047, May 01 2013 Western Digital Technologies, INC Method for providing an improved AFM reader shield
9437251, Dec 22 2014 Western Digital Technologies, INC Apparatus and method having TDMR reader to reader shunts
9441938, Oct 08 2013 Western Digital Technologies, INC Test structures for measuring near field transducer disc length
9443541, Mar 24 2015 Western Digital Technologies, INC Magnetic writer having a gradient in saturation magnetization of the shields and return pole
9449621, Mar 26 2015 Western Digital Technologies, INC Dual free layer magnetic reader having a rear bias structure having a high aspect ratio
9449625, Dec 24 2014 Western Digital Technologies, INC Heat assisted magnetic recording head having a plurality of diffusion barrier layers
9472216, Sep 23 2015 Western Digital Technologies, INC Differential dual free layer magnetic reader
9484051, Nov 09 2015 Western Digital Technologies, INC Method and system for reducing undesirable reflections in a HAMR write apparatus
9495984, Mar 12 2014 Western Digital Technologies, INC Waveguide with reflective grating for localized energy intensity
9508363, Jun 17 2014 Western Digital Technologies, INC Method for fabricating a magnetic write pole having a leading edge bevel
9508365, Jun 24 2015 Western Digital Technologies, INC Magnetic reader having a crystal decoupling structure
9508372, Jun 03 2015 Western Digital Technologies, INC Shingle magnetic writer having a low sidewall angle pole
9530443, Jun 25 2015 Western Digital Technologies, INC Method for fabricating a magnetic recording device having a high aspect ratio structure
9564150, Nov 24 2015 Western Digital Technologies, INC Magnetic read apparatus having an improved read sensor isolation circuit
9595273, Sep 30 2015 Western Digital Technologies, INC Shingle magnetic writer having nonconformal shields
9646639, Jun 26 2015 Western Digital Technologies, INC Heat assisted magnetic recording writer having integrated polarization rotation waveguides
9666214, Sep 23 2015 Western Digital Technologies, INC Free layer magnetic reader that may have a reduced shield-to-shield spacing
9672847, Nov 23 2010 Western Digital Technologies, INC Micrometer scale components
9705072, Dec 08 2014 Western Digital Technologies, INC Spin transfer torque tunneling magnetoresistive device having a laminated free layer with perpendicular magnetic anisotropy
9721595, Dec 04 2014 Western Digital Technologies, INC Method for providing a storage device
9740805, Dec 01 2015 Western Digital Technologies, INC Method and system for detecting hotspots for photolithographically-defined devices
9741366, Dec 18 2014 Western Digital Technologies, INC Method for fabricating a magnetic writer having a gradient in saturation magnetization of the shields
9754611, Nov 30 2015 Western Digital Technologies, INC Magnetic recording write apparatus having a stepped conformal trailing shield
9767831, Dec 01 2015 Western Digital Technologies, INC Magnetic writer having convex trailing surface pole and conformal write gap
9786301, Dec 02 2014 Western Digital Technologies, INC Apparatuses and methods for providing thin shields in a multiple sensor array
9799351, Nov 30 2015 Western Digital Technologies, INC Short yoke length writer having assist coils
9812155, Nov 23 2015 Western Digital Technologies, INC Method and system for fabricating high junction angle read sensors
9830936, Oct 23 2013 Western Digital Technologies, INC Magnetic read head with antiferromagentic layer
9842615, Jun 26 2015 Western Digital Technologies, INC Magnetic reader having a nonmagnetic insertion layer for the pinning layer
9858951, Dec 01 2015 Western Digital Technologies, INC Method for providing a multilayer AFM layer in a read sensor
9881638, Dec 17 2014 Western Digital Technologies, INC Method for providing a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
9922672, Mar 26 2015 Western Digital Technologies, INC Dual free layer magnetic reader having a rear bias structure having a high aspect ratio
9934811, Mar 07 2014 Western Digital Technologies, INC Methods for controlling stray fields of magnetic features using magneto-elastic anisotropy
9940950, May 24 2012 Western Digital Technologies, INC Methods for improving adhesion on dielectric substrates
9953670, Nov 10 2015 Western Digital Technologies, INC Method and system for providing a HAMR writer including a multi-mode interference device
9997177, Dec 01 2015 Western Digital Technologies, INC Magnetic writer having convex trailing surface pole and conformal write gap
Patent Priority Assignee Title
4318148, Jul 04 1979 Matsushita Electric Industrial Co., Ltd. Thin-film magnetic head
4416056, Dec 13 1977 Fujitsu Limited Process for preparation of film coils
4943882, Feb 09 1987 Thin-film, perpendicular magnetic recording and reproducing head
5059278, Sep 28 1990 URI COHEN Selective chemical removal of coil seed-layer in thin film head magnetic transducer
5184394, Apr 26 1990 Seagate Technology LLC Method of making a thin film head on ferrite substrate with inclined top pole
5435053, Mar 02 1994 HGST NETHERLANDS B V Simplified method of making merged MR head
5473491, Apr 30 1993 JVC Kenwood Corporation Thin film magnetic head having an improved magnetic core
5691867, Jul 05 1995 PRATT & WHITNEY ROCKETDYNE, INC Complex type thin film magnetic head and production method thereof
5700380, Mar 02 1994 MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Simplified method of making vias for merged MR head
5779923, Mar 02 1994 Western Digital Technologies, INC Simplified method of making merged MR head
5793578, Nov 15 1996 MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V Thin film induction recording head having an inset first insulation layer that defines zero throat height and pole tip apex angle
6151193, May 27 1997 TDK Corporation Thin film magnetic head
6163436, Nov 19 1997 TDK Corporation Thin film magnet head with improved performance
///////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 17 1999SIN, KYUSIKRead-Rite CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0102190161 pdf
Aug 17 1999BARR, RONALDRead-Rite CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0102190161 pdf
Aug 31 1999Read-Rite Corporation(assignment on the face of the patent)
Dec 24 2002Read-Rite CorporationTENNENBAUM CAPITAL PARTNERS, LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0136160399 pdf
Jul 31 2003Read-Rite CorporationWESTERN DIGITAL FREMONT , INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0145060765 pdf
Jul 31 2003TENNENBAUM CAPITAL PARTNERS, LLCRead-Rite CorporationRELEASE OF SECURITY INTEREST0144990476 pdf
Sep 19 2003Western Digital Technologies, INCGENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0148300957 pdf
Sep 19 2003WESTERN DIGITAL FREMONT , INC GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0148300957 pdf
Aug 09 2007GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTWestern Digital Technologies, INCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0205990489 pdf
Aug 09 2007GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTWESTERN DIGITAL FREMONT , INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0205990489 pdf
May 08 2019WESTERN DIGITAL FREMONT , LLCWestern Digital Technologies, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0504500582 pdf
Date Maintenance Fee Events
Oct 04 2005M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 07 2009M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 06 2013REM: Maintenance Fee Reminder Mailed.
Apr 30 2014EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Apr 30 20054 years fee payment window open
Oct 30 20056 months grace period start (w surcharge)
Apr 30 2006patent expiry (for year 4)
Apr 30 20082 years to revive unintentionally abandoned end. (for year 4)
Apr 30 20098 years fee payment window open
Oct 30 20096 months grace period start (w surcharge)
Apr 30 2010patent expiry (for year 8)
Apr 30 20122 years to revive unintentionally abandoned end. (for year 8)
Apr 30 201312 years fee payment window open
Oct 30 20136 months grace period start (w surcharge)
Apr 30 2014patent expiry (for year 12)
Apr 30 20162 years to revive unintentionally abandoned end. (for year 12)