Apparatus and methods for passing a focused laser beam through a thin ferrofluid cell creates a spatial distribution in the refractive index of the ferrofluid and generates a diffraction ring patterns. Using a pair of perpendicularly placed ferrofluid cells, two sets of diffraction ring patterns can be produced on two viewing screens. Deformations in the diffraction patterns due to an acceleration can be viewed on the screens, providing a ferrofluid accelerometer. By applying an electric or a magnetic field on a thin ferrofluid sample, the light passing through the sample can be modulated by the field, providing a light modulator. The apparatus and method has applications for detecting acceleration information within a gyroscope and for use in toys.
|
6. A gyroscope, comprising:
means for emitting an optical beam; ferrofluid for receiving the optical beam and for producing signals therethrough; and means for detecting gyroscope information from the signals.
1. An apparatus for detecting acceleration, comprising:
means for emitting an optical beam; and ferrofluid for receiving the optical beam and for producing signals; and means for detecting acceleration information from the signals.
12. A method for detecting information from signal patterns in ferrofluids, comprising the steps of:
emitting a first light beam; passing the first light beam through ferrofluid to produce signals; and detecting at least one of: acceleration information and gyroscope information from the signals.
3. The apparatus of
a laser beam source.
5. The apparatus of
glass plates on both sides of the ferrofluid; and a spacer adjacent to edges of the glass plates for allowing the ferrofluid to be sandwiched between the glass plates.
9. The apparatus of
a laser beam source.
11. The apparatus of
glass plates on both sides of the ferrofluid; and a spacer about edges of the glass plates for allowing the ferrofluid to be sandwiched between the glass plates.
13. The method of
14. The method of
15. The method of
modulating light passing through the ferrofluid.
16. The method of
|
This is a Divisional of application Ser. No. 09/454,473 filed Dec. 3, 1999 U.S. Pat. No. 6,266,146.
This invention relates to three-dimensional (3-D) acceleration detection and light modulation, and in specific to using two perpendicular laser beams focused on two ferrofluid cells to create two diffraction patterns whose deformations due to accelerations are used to visually display and detect the accelerations, and also using an electric or a magnetic field to modulate the intensity of light.
Laser produced interference fringes from mechanical type mediums have been previously detected in order to extrapolate movement detection. See for example, U.S. Pat. No. 3,354,311 to Vali et al.; U.S. Pat. No. 3,639,063 to Krogstad et al.; and U.S. Pat. No. 4,086,808 to Camac.
Laser produced interference fringe patterns have also been observed through ferrofluids by two of the co-inventors of the subject invention. See for example. Du et al. "Thermal Lens coupled magneto-optical Effect in a Ferrfluid", Applied Physics Letters 65(14). Oct. 3, 1994, pp 1844-1846; Du et al. "Dynamic Interference Patterns From Ferrofluids", Modern Physics Letters 3, Vol. 9, No. 25(1995), pp.1643-1647; Zhang et al. "Two Mechanisms and a Scaling Relation for Dynamics in Ferrofluids", Physical Review Letters Vol. 77, No. 2, July 1996, pp. 390-393: and Du et al. "Nonlinear Optical Effects in Ferrofluids Induced by Temperature and Concentration Cross-Coupling", Applied Phys. Letters 72(3), January 1998, pp 272-274.
Interference fringe rings have been created by passing laser beams through liquid crystals in order to measure the power density of the laser beam. See U.S. Pat. No. 5,621,525 to Vogeler et al., which is assigned to the University of Central Florida, the assignee of the subject invention.
However, the cited art are generally limited to detection of fringes along a single x and y axis. None of the cited prior art allows for the detection of fringe patterns along all three dimensions(x,y,z) to be useful as gyroscopes and accelerometers.
A first object of the invention is to provide a simplified, low-cost means of visually displaying accelerations using fringe patterns generated through ferrofluid samples.
A second object of the invention is to provide a method of modulating light intensity with two independent control fields.
The third objective of the invention is to provide a simple technique to display gravity visually through the diffraction patterns generated from the ferrofluids, which could be used by aerospace industries and NASA.
The fourth objective of the invention is to produce educational toys based on the principles discussed in this invention.
This invention relates to three-dimensional (3-D) acceleration detection and light modulation. In specific, the invention uses two perpendicular laser beams focused on two ferrofluid cells to create two diffraction patterns whose deformations due to accelerations are used to visually display and detect the accelerations. The invention also utilizes an electric or a magnetic field to modulate the intensity of light.
In the absence of accelerations, the subject invention demonstrates that a focused laser beam perpendicularly passing through a thin ferrofluid layer can generate concentric diffraction rings. The ferrofluid consists of magnetic particles suspended in kerosene. The strong light absorption of the particles causes nonuniform distributions in both temperature and particle concentration, yielding a spatial distribution in the index of refraction of the fluid around the beam and forming the observed rings. This diffraction pattern is visually observable by placing a viewing screen, which may simply comprise a piece of paper, a suitable distance away from the layer in the forward direction of the beam.
For a fluid with a nonuniform distribution in its mass density, an acceleration might cause a convective fluid flow within the fluid. If this fluid motion yields a measurable result, the result in turn can be used to determine the acceleration, providing a fluid-based accelerometer. The generated diffraction rings can be used to display the effect of an acceleration on the thin ferrofluid layer. The mass density of the fluid around the beam is nonuniform in the radial direction due to the inhomogeneous radial distributions in both temperature and concentration.
Accelerations perpendicular to the layer, do not cause convective motions within the fluid, and the concentric rings remain unchanged. However, an acceleration parallel to the layer causes a convective flow and deforms the rings. These deformed rings are easily visible to the eye, providing a qualitative and convenient means to visually display the acceleration. The measurement of the deformation in the rings can be used to determine the acceleration quantitatively, providing a method to measure accelerations when they are parallel to the layer. Since an acceleration can be decomposed into two accelerations perpendicular to each other and two perpendicularly placed ferrofluid cells can be used to display these two accelerations, an acceleration in any direction can be determined, providing a convenient 3-D ferrofluid accelerometer and gyroscope.
When an electric or a magnetic field is applied to a ferrofluid, the magnetic particles within the fluid have a strong interaction with the field, causing particles to move within the fluid. This interaction can be used to modulate the intensity of light passing through a ferrofluid sample.
Further objects and advantages of this invention will be apparent from the following detailed description of a presently preferred embodiment which is illustrated schematically in the accompanying drawings.
Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
A system for optically detecting accelerations is illustrated in FIG. 1. The system comprises a pair of ferrofluid cells 19 and 21 fabricated of a light-transmissive, fluid-impenetrable material, such as glass, plastic or the like.
Referring to
The viewing screen with calibrated scale is shown in FIG. 2. The viewing screen is specifically designed for visual-display purpose instead of using computers. As mentioned in the description of
Referring to
If there is no acceleration, the diffraction rings are perfect circles as shown in FIG. 3. If there is an acceleration the diffraction pattern will deform. The deformation will occur in the direction of acceleration. Specifically the upper part which is opposite to the direction of acceleration is compressed, and the lower part which is parallel to the direction of acceleration is elongated. Therefore we can determine the direction of acceleration by finding the elongation direction of the pattern. The magnitude of acceleration can be evaluated by observing the reference ring (compressed of outmost ring) which aligns the calibrated scale.
Referring to
The light modulator can be used to modulate a laser with a constant input power to output an ac power with certain frequency. It can use one of the two branches in FIG. 1. The output power can be modulated with a certain frequency, which is doubled from that of magnetic or electric field as shown in FIG. 6.
FIG. 8. shows the light modulator of
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
Huang, Jie, Luo, Weili, Du, Tengda
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3354311, | |||
3639063, | |||
3930729, | Jun 29 1973 | International Business Machines Corporation | Interferometer apparatus incorporating a spherical element of index of refraction of two |
4011044, | Jul 06 1976 | General Electric Company | Use of laser speckle patterns for measurement of electrophoretic mobilities |
4086808, | Jul 26 1976 | BAYBANK MIDDLESEX | Motion detection and measurement |
4656421, | Sep 24 1984 | GEC AVIONICS LIMITED, AIRPORT WORKS, ROCHESTER, KENT ME1 2XX, ENGLAND, A BRITISH COMPANY | Magnetic field sensors |
4706498, | Sep 23 1985 | Ferrotec, Inc. | Apparatus and method for measuring movement |
5064288, | Dec 07 1990 | The Charles Stark Draper Laboratory | Scattered light multi-Brillouin gyroscope |
5555086, | May 31 1991 | Northrop Grumman Systems Corporation | Coherence multiplexed interferometric signal processing system and method |
5621525, | Feb 06 1995 | CENTRAL FLORIDA, UNIVERSITY OF | Apparatus and method for measuring the power density of a laser beam with a liquid crystal |
5680213, | Feb 07 1997 | Western Digital Technologies, INC | Optics method and fixture for assembling and testing a magnetic head |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 18 2001 | University of Central Florida | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 02 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 11 2010 | REM: Maintenance Fee Reminder Mailed. |
Jun 04 2010 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 04 2005 | 4 years fee payment window open |
Dec 04 2005 | 6 months grace period start (w surcharge) |
Jun 04 2006 | patent expiry (for year 4) |
Jun 04 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 04 2009 | 8 years fee payment window open |
Dec 04 2009 | 6 months grace period start (w surcharge) |
Jun 04 2010 | patent expiry (for year 8) |
Jun 04 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 04 2013 | 12 years fee payment window open |
Dec 04 2013 | 6 months grace period start (w surcharge) |
Jun 04 2014 | patent expiry (for year 12) |
Jun 04 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |