A caching system and method are disclosed that allow for the caching of web pages that have dynamic content. The caching system and method utilize a cacheability analyzer that analyzes responses based on time, content, user identification, and macro hierarchy. The caching system only caches those responses having dynamic content that are deemed cacheable. Further, the automatic caching system can be overridden by the information author, the page creator or the system designer.
|
8. For use in a system for receiving requests from requestors and serving responses to those requests, the system having a cache for holding previously served responses for serving to subsequent requests, at least some of the responses comprising dynamic content, a method for retrieving a cached response comprising the steps of:
(a) receiving a request; (b) determining whether the cache contains a candidate cached response appropriate for that request; (c) if so, analyzing a candidate cached response; (d) determining whether the candidate cached response is valid, wherein the validity of the candidate cached response is determined based on at least one of a user's identity and a location of dynamic content; (e) if so, serving the response to the request; (f) if not, determining whether the invalidity determination is overridden; (g) if so, serving the response to the request.
1. In a system for receiving requests from requestors and serving responses to those requests, the system having a cache for holding previously served responses for serving to subsequent requests, at least some of the responses comprising dynamic content, a cached response retrieval system for retrieving a cached response comprising:
a cache control unit having means for receiving a request and means for determining whether the cache contains a candidate cached response appropriate for that request; a cached response analyzer for analyzing the candidate cached response, the cached response analyzer determining the validity of the candidate cached response and for determining whether the validity determination is overridden, wherein the validity of the candidate cached response is determined based on at least one of a user's identity and a location of dynamic content; whereby the system serves the candidate cached response if the cached response analyzer determines that the candidate cached response is valid or if the validity determination is overridden.
15. A computer usable medium for use in a computer for receiving requests from requestors and serving responses to those requests, the computer having a cache for holding previously served responses for serving to subsequent requests, at least some of the responses comprising dynamic content, the computer usable medium having computer readable program code embodied in the medium for causing the computer to perform method steps for retrieving a cached response comprising the method steps of:
(a) receiving a request; (b) determining whether the cache contains a candidate cached response appropriate for that request; (c) analyzing a candidate cached response; (d) determining the validity of the candidate cached response, wherein the validity of the candidate cached response is determined based on at least one of a user's identity and a location of dynamic content; and (e) determining whether the validity determination is overridden whereby the computer serves the candidate cached response if, during step d, the candidate cached response is determined valid or the validity Determination is overridden.
22. A method for use in a system which receives a request from a requestor and serves a response to that request, the response comprising a composite of the one or more parts, at least one of the parts comprising dynamic content, the system having a cache for holding previously served cached responses, each of the cached responses having an address, the method comprising the steps of:
(a) receiving a request from a requestor; (b) comparing the request against the cached response and for identifying a candidate cached response; (c) determining whether the candidate cached response should be served to The request; (d) if so, determining whether the candidate cached response was valid, wherein the validity of the candidate cached response is determined based on at least one of a user's identity and a location of dynamic content; (e) if so, serving the candidate cached response; (f) if not, determining whether the validity determination is overridden; (g) if so, serving the candidate cached response; (h) if not, building a new response to the request; (i) analyzing the built response and determining its cacheability; (j) caching, in the cache, the response based upon that cacheability determination; and (k) serving the built response to the request.
26. A computer usable medium for use in a computer which receives a request from a requestor and serves a response to that request, the response comprising a composite of the one or more parts, at least one of the parts comprising dynamic content, the computer having a cache for holding previously served cached responses, each of the cached responses having an address, the computer usable medium having computer readable program code embodied in the medium for causing the computer to perform method steps of:
(a) receiving a request from a requestor; (b) comparing the request against the cached response and for identifying a candidate cached response; (c) determining whether the candidate cached response should be served to the request; (d) if so, determining whether the candidate cached response was valid, wherein the validity of the candidate cached response is determined based on at least one of a user's identity and a location of dynamic content; (e) if so, serving the candidate cached response; (f) if not, determining whether the validity determination is overridden; (g) if so, serving the candidate cached response; (h) if not, building a new response to the request; (i) analyzing the built response and determining its cacheability; (j) caching, in the cache, the response based upon that cacheability determination; and (k) serving the built response to the request.
2. The cached response analyzer of
3. The cached response analyzer of
4. The cached response analyzer of
5. The cached response analyzer of
6. The cached response analyzer of
7. The cached response analyzer of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
16. The computer usable medium of
17. The computer usable medium of
18. The computer usable medium of
19. The computer usable medium of
20. The computer usable medium of
21. The computer usable medium of
23. The method of
24. The method of
25. The method of
27. The computer usable medium of
28. The computer usable medium of
29. The computer usable medium of
|
This application is a application filed on an even date herewith and assigned U.S. patent application Ser. No. 09/237,135, entitled "METHOD AND SYSTEM FOR AUTOMATICALLY CACHING DYNAMIC CONTENT". The subject matter of the above-identified co-pending patent application is incorporated herein by reference.
The present invention relates generally to data caching of web content on a has network and, more specifically, to a system for overriding the automatic caching of dynamic content in web pages in a web server.
The Internet and the World Wide Web (WWW) provide intra-enterprise connectivity, inter-enterprise connectivity and application hosting on a larger scale than ever before. By exploiting the broadly available and deployed standards of the Internet and the WWW, system users and designers can leverage a single architecture to build client/server applications for internal use that can reach outside to customers, business partners and suppliers.
The WWW is a collection of servers on an IP (Internet Protocol) network, such as the Internet, an Intranet or an Extranet, that utilize the Hypertext Transfer Protocol (HTTP). Hereinafter, "Internet" will be used to refer to any IP network. HTTP is a known application protocol that provides users with access to files, which can be in different formats, such as text, graphics, images, sound, and video, using a standard page description language known as Hypertext Markup Language (HTML). Among a number of basic document formatting functions, HTML allows software developers to specify graphical pointers on displayed web pages, commonly referred to as "hyperlinks," that point to other web pages resident on remote servers. Hyperlinks commonly are displayed as highlighted text or other graphical image on the web page. Selection of a hyperlink with a pointing device, such as a computer mouse, causes the local computer to download the HTML associated with the web page from a remote server. The browser then renders the HTML into the displayed web page.
Web pages accessed over the Internet, whether by a hyperlink, opening directly via an "open" button in the browser, or some other means, are commonly downloaded into the volatile cache of a local computer system. In a computer system, for example, the volatile cache is a high-speed buffer that temporarily stores web pages from accessed remote web sites. The volatile cache thus enables a user to quickly review web pages that were already downloaded, thereby eliminating the need to repeat the relatively slow process of traversing the Internet to access previously viewed web pages. This is called local caching.
On the server side, the first web servers were merely HTTP servers that resolved universal resource locators (URLs) by extracting literally from the URL the path to a file that contained the needed page, and transmitting the page back to the browser. Such a server was very simple; it could only be used to access static pages.
A "static" page is a page which, each time it is requested and served to a requester, has the same byte content. That is, it does not depend upon which requester is requesting the page, when the requester is requesting the page, etc., the byte content of that page remains the same. By contrast, a "dynamic page" is a page which has byte content that may very well change depending upon the particular requestor, when the page is being requested, etc. This will be discussed further below. It is important that web pages be served as quickly as possible, both to reduce the response time to a single user, and to increase the number of users that can be served concurrently. To improve the response time, the Web server uses caches. Web server caches are used to store web page responses in a readily accessible memory location so that when the web page is requested by a user, a previously cached web page response can be retrieved from cache and served quickly to the user.
Caching web page responses by the web server works quite well for web page responses having static content, i.e., content that doesn't change frequently. An example of a static web page is one, at a company's web site, comprising a compilation of text and graphics objects describing that company's history.
In fact, classic web servers cache static pages quite effectively. Specifically, classic web servers serve web page responses, some of which are static, namely, responses comprising HTML from the file system. Each of the static responses has a last modified date associated with it that is maintained by the file system. The contents of the response and its associated last modified date are simply stored in the cache for possible future use by the web server. When a subsequent request is received by the server for that page, the server requests the latest modification date for that page from the file system and compares the latest modification date with the last modified date associated with the candidate cached response. If the latest modification date is the same as the last modified date associated with the candidate cached response, the candidate cached response is considered to be "fresh" and is served to the request (i.e., to the requesting user). If the latest modification date is later than the last modified date associated with the candidate cached response, the candidate cached response is considered "stale" and a "fresh" response is retrieved and built by the web server for serving to the requesting user. The fresh response, along with its associated last modified date, is cached to replace the stale response. This caching scheme saves the time and server processor cycles that otherwise would have been spent to build requested pages which otherwise could have been cached using this classic caching scheme.
However, newer web servers provide not only static web pages but also dynamic web pages, i.e., a page having byte content that may very well change depending upon the particular requester, when the page is being requested, etc. Examples of dynamic web pages are pages containing content from a number of different sources or pages having computed content. For example, a page may contain macros that compute content for the page, i.e., the page has "computable content". These macros may change the page content each time the page is accessed. This makes it difficult to cache that page using the classic caching method described above. (Macros, or formulas as they are named in Lotus Notes software, are expressions that perform a function, such as determining field values, defining which documents appear in a view, or calculating values for a column. Lotus Notes is available from Lotus Development Corporation in Cambridge, Mass.)
Alternatively, the page may contain information from a number of different sources, and that information may or may not have associated last modified dates making it difficult, if not impossible, to cache using the classic caching method. For example, the page may comprise a composite of a number of "parts" including: other documents, designs from databases, content from databases, the present user's identity, the current time, the current environment, etc. Some of these parts are actual entities in the system, e.g., documents, databases, etc. Some parts though are "virtual" and are used to model the effects of the execution of macros or scripts, e.g., the user's identity may be accessed via one of a number of @functions such as @UserName, @UserRoles, etc., in Lotus Notes software. ("@functions" are macros for performing specialized tasks in Lotus Notes formulas. They can be used to format text strings, generate dates and times, format dates and times, evaluate conditional statements, calculate numeric values, calculate values in a list, convert text to numbers or numbers to text, or activate agents, actions, buttons, or hotspots.) These various part types are computable parts and have correspondingly various types of attributes that can not be handled by the classic caching systems and methods of prior art.
Clearly, it is more difficult to use caching as a mechanism for improving user response time for pages with dynamic content. This problem for the server is twofold. First, after building a web page response, the server must determine whether the response that it is preparing to serve the requesting user is cacheable (i.e., determining its cacheability). Second, the server, upon receiving a request for a web page whose previous response has been cached, must determine whether the cached response is valid (i.e., determining its validity) and applicable (i.e., determining its applicability). For instance, web page responses containing macros that are time-dependent may not be cacheable at all. If a page includes a macro for providing the current time, then every access of the page is unique and the page cannot be cached in memory at all. Another example is where is a cached page is valid for serving to some users but not others. For instance, if the page includes a macro for the user's name, then the page can be cached for serving to that particular user, but not for serving to others. (HTML representing a document is specific to a user if macros are dependent on user name or user roles. Using this user data, some data may be made visible based on which user is requesting it.)
The term "Dynamic HTML" (DHTML) needs to be explained in the context of the method and system of the present invention. "Dynamic" as used in DHTML is referring primarily to the effect that the code has on the web page appearance at the browser. For instance, the dynamic HTML may comprise scripts that run on the browser to change the appearance of the web page such as by displaying a button that, if pushed, displays additional text or graphics. The key distinction is that "dynamic" in the DHTML sense refers to the browser, not the server. From the server's point of view, a DHTML page may still be "static" in that the byte content may be the same each time the page is requested, so for the purposes of this invention, a DHTML page may be "static" or "dynamic" in the sense of the invention. The content is not dependent on any thing, e.g., the properties of the request, such as the identity of the particular user, the time of day that the request is made, etc. "Dynamic" content, as used in the system and method of the present invention, refers to content that has such dependencies. Thus, "dynamic" in the DHTML sense is not related to "dynamic" in the sense of the invention.
As can be readily seen, using caching as a means for increasing server performance for responses which have dynamic content has a number of complications and difficulties which have not been overcome by any of the systems of the prior art. As such, HTML representing responses having dynamic content has not been cached in the past. Accordingly, system and method to cache content that can include dynamic content without suffering from the drawbacks discussed above is needed.
According to the present invention, a caching system and method utilized within a web server is disclosed that automatically caches web content, such as a web page, that has dynamic content. The caching system and method of the present invention is utilized within a web server which receives requests for web pages and, based upon those requests, serves web page responses that were previously cached or, if those cached responses are either inapplicable or invalid, the server builds a new response and serves it to the requester. The caching system performs two critical functions: first, it determines the cacheability of built responses and caches those responses it deems cacheable and second, if a cached response appears appropriate for a particular web page request, the caching system examines the cached response to determine whether the cached response is applicable for the particular request and whether the cached response is still valid. Each response is comprised of a plurality of parts, some of the parts being dynamic in nature. The parts have associated attributes that, either explicitly or implicitly, characterize the nature of the parts. The caching system comprises an attribute analyzer that creates a composite set of attributes, the composite representing the characteristics of the response. The caching system further comprises a cacheability analyzer that analyzes the attribute composite set and determines the cacheability of the response. The server then caches the response based upon that determination. Examples of attributes utilized for determining cacheability include the time variance setting of the dynamic content, the user's identity, or the location of the content.
The caching system further comprises a cached-response analyzer for analyzing the cached responses prior to serving to a requesting user. The cached-response analyzer comprises an applicability analyzer (for determining the applicability of the cached response to the particular request) and a validity analyzer (for determining the validity of the cached response). If the cached response passes the tests performed by these analyzers it is served to the requesting user.
The caching system of the present invention further comprises a system for overriding the automatic analysis performed by the system. The override system can be set by the document creator, the page designer or the system designer.
The method steps may also be implemented in program code for modifying a computer system to cache information that has dynamic content.
The foregoing and other objects and advantages of the invention will be appreciated more fully from the following further description thereof with reference to the accompanying drawings wherein:
The server 100 includes a central processing unit (CPU) 205, which may include a conventional microprocessor, random access memory (RAM) 210 for temporary storage of information, and read only memory (ROM) 215 for permanent storage of information. A memory controller 220 is provided for controlling system RAM 210. A bus controller 225 is provided for controlling bus 230, and an interrupt controller 235 is used for receiving and processing various interrupt signals from the other system components.
Diskette 242, CD-ROM 247, or hard disk 252 may provide mass storage. Data and software may be exchanged with server 100 via removable media, such as diskette 242 and CD-ROM 247. Diskette 242 is inserted into diskette drive 241, which is connected to bus 230 by controller 240. Similarly, CD-ROM 247 can be inserted into CD-ROM drive 246, which is connected to bus 230 by controller 245. CD-ROM 247 can also have digital versatile disc (DVD) playback capabilities as well. Finally, the hard disk 252 is part of a fixed disk drive 251, which is connected to bus 230 by controller 250.
User input to the server computer 100 may be provided by a number of devices. For example, a keyboard 256 and a mouse 257 may be connected to bus 230 by keyboard and mouse controller 255. An audio transducer 296, which may act as both a microphone and a speaker, is connected to bus 230 by audio controller 297. It should be obvious to those reasonably skilled in the art that other input devices, such as a pen and/or tablet and a microphone for voice input, may be connected to server computer 100 through bus 230 and an appropriate controller. DMA controller 260 is provided for performing direct memory access to system RAM 210. A visual display is generated by as a video controller 265. which controls video display 270.
Server computer 100 also includes a network adapter 290 that allows the server computer 100 to be interconnected to a network 295 via a bus 291. The network 295, which may be a local area network (LAN), a wide area network (WAN), or the Internet, may utilize general-purpose communication lines that interconnect a plurality of network devices.
The Web server 100 answers URL (Universal Resource Locator) requests by sending back pages of data encoded in HyperText Markup Language (HTML). It also handles URL requests and HTML forms that trigger executable programs according to the Common Gateway Interface (CGI) specification. The Web server 100 includes code that manages both inbound and outbound HTTP (HyperText Transfer Protocol) communications. In these respects, the Web server 100 performs like any other HTTP server, responding in the standard way to standard URL requests.
The preferred embodiment will be discussed primarily in terms of a Lotus Domino web server although the system and method of the present invention may be implemented in any web server.
As a matter of background, as can be seen in its most basic form in
Notes software, available from Lotus Development Corporation, works with Domino to provide a distributed client/server database application to let users organize, process, track, and use information to suit their individual needs. Notes/Domino consolidate the tools needed to effectively communicate and collaborate in an organization by providing, inter alia, email, group discussion, workflow, scheduling, document management and many other functions. Domino databases are built on three basic concepts: documents, views and forms. Documents are collections of data items which can be retrieved as a set. Views are the ways of accessing the indices or summaries of documents stored in a database while forms are templates for accessing and displaying documents.
When a Notes client 210 requests access to a Domino database 204 via the Notes network 212, the Domino database server task 202 provides access. When a web client 200 requests an HTML document, the HTTP server task 206 provides it. When a web client 200 requests a Notes document, the HTTP server task 206 passes the request through to the Domino database server task 202. If access is granted, the Domino database server 202 retrieves the requested document and passes it to an HTML converter 214 which converts the Notes views, documents, and forms from Notes format to HTML format, then delivers the resulting HTML pages to the HTTP server 206 for serving to the web client. If a web client submits a form or query, the HTTP server task 206 passes the form to the HTML Converter 214 which converts the form to Notes format and passes it to the Domino database server 202 for appropriate processing.
These units operate as follows: TCP/IP unit 301 and HTTP unit 302 act together as the interface to the Internet by implementing the TCP/IP and HTTP protocols for server 100. TCP/IP unit 301 utilizes the TCP/IP protocol for conveying and receiving information to and from the Internet. HTTP unit 302 implements HTTP, which is the standard on which the Web operates. These two units provide the full-service interface to the Web.
When server 100 receives a URL from a client, the HTTP server 206 passes the URL to the URL Parser 303, which breaks the URL into different parts. The parsed URL is passed to the cache control unit 311. With a Domino server, within the URL that is received from the requesting user is a Domino/Notes-specific command, which indicates what action is being requested. The following are examples of server specific commands within the URL that may be received by the Domino server:
?OpenDatabase--command for opening a database;
?OpenView--command for opening a view;
?OpenDocument--command for opening a document;
?OpenForm--command for opening a form;
?ReadForm--command for reading a form; and
?EditDocument--command for editing a document.
While, in this example, each of these commands has a "?" in front of the command as syntax that the server can use to identify the string as a command, the server can identify other syntaxes as well. These commands require a response to be sent to the requesting user. The requested response may have already been cached and it may be valid and applicable. For those URLs having commands requesting a possibly-cached response (i.e., ?OpenDatabase, ?OpenView, ?OpenDocument, ?OpenForm, and ?ReadForm), the cache control 311 examines the request against previously cached responses to determine whether any of the previously cached responses is appropriate for the request. This is done by comparing the parsed URL against the URLs of the previously cached responses in the cache 304. If there is not an exact match or if the URL doesn't have "cacheable" commands (e.g., ?EditDocument), the parsed URL is passed to the response builder 307. The response builder 307 uses the parsed URL to build the response by accessing the appropriate sources (via source access unit 308) and retrieving the appropriate "parts " to construct the response. The parts retrieved by the response builder 307 may comprise many different types, including data, forms, subforms, database design elements, calculations, etc. In other words, there is no theoretical restriction as to the type of parts comprising a web page response. These parts each have their own attributes. For instance, some parts may or may not have last modified dates associated with the part. This will be discussed in greater detail below. The attributes of all of the parts used to build the response are collected and analyzed by attribute analyzer 313. The attribute analyzer 313 builds a "composite" of the attributes, the attribute composite being representative of the entire response.
Once the web page response is built by the response builder 307, it is passed to the HTML unit 305 for conversion to HTML. This HTML response is then passed to the HTTP server 206 for serving to the requesting user.
At the same time, the attribute analyzer 313 passes the composite of the parts' attributes to the cacheability analyzer 309 for determining the cacheability of the built response. The cacheability analyzer 309 examines the attribute composite and, if it determines that the response cannot be cached, the response is not cached. If it determines that the response can be cached, it provides an indication to the cache control unit 311, along with the response and an associated set of cache strategy indicators generated by the cacheability analyzer 309. These indicators are used by the cached-response analyzer as discussed below. The cacheability analyzer 309 comprises a cacheability analyzer interface 320 and a caching strategy generator 322. The cacheability analyzer interface 320 acts as an interface for the cacheability analyzer 309 while the caching strategy generator 322 examines the attribute composite and creates a caching strategy.
If the cache control unit determines that there is an exact match between the parsed URL of the user request and the URLs corresponding to one of the cached responses in the cache 304, the candidate cached response along with its associated cache strategy indicators is passed to the cached response analyzer 306. The response analyzer 306 performs two series of tests. The first series of tests are response-specific and the second series of tests are request-specific. The response-specific tests are performed by the validity analyzer portion 315 while the request-specific tests are performed by the applicability analyzer portion 317. These tests will be discussed in greater detail below. If the candidate cached response and its associated attributes pass the two tests, the candidate cached response is simply served up to the user via the HTTP server 206.
Determining how to make an accurate and timely decision as to which Web pages are cacheable is important in any caching system. Prior caching systems considered the presence of macros, among others, too volatile, and thus, did not consider any pages with macros, for example, as candidates for caching. Unfortunately, this meant that many Web pages could not take advantage of caching and the performance gains that it provides. The caching system of the present invention improves performance in the server 100 by providing the ability to cache Web pages that contain macros and other dynamic content.
As mentioned above, each of the parts that comprise a response has attributes, which provide information about that particular part. These attributes can provide information about the part's identity and last modification date, as examples. This type of information is valuable to the caching system of the present invention because it can be used to determine the cacheability, the applicability and the validity of the response or subsequently cached response. During the response building process of the response builder 307, the attribute analyzer 313 collects the attributes of the parts used in building the response. The attribute analyzer 313 creates a composite of the attributes of the parts of the response so that the response has a composite of attributes representative of the entire response. The attribute composite set is passed to the cacheability analyzer 309. The cacheability analyzer 309 uses this to determine a caching strategy. Specifically, the cacheability analyzer 309 examines the attribute composite and creates caching strategy flags which are used by the system for caching as will be discussed in greater detail.
As was noted above, each "part" of the response may have one or more attributes. If the part is an @function, the following list corresponds each @function with its associated attribute(s) that are set at compute time. The attribute Depends means that the evaluation of the @function will determine the attribute. If the @function says "Fallback", that means that there is an evaluation that is Web server-specific and this is the non-Web version. Its converse is "Web."
@Accessed--OffDatabase, UsedDocld
@Certificate--OffDatabase
@Command-Web--Depends
@Command([Compose])--Depends, DbDesign, OffDatabase
@Command([FileSave])--HadEffect
@Created--UsedDocld
@DbColumn-Fallback--UserVariant, DbDesign, DbData, Unknown. Depends, OffDatabase
@DbCommand-Fallback--Unknown
@DbCommand-Web--Depends
@DbLookup-Fallback--Depends, Unknown, DbData, DbDesign, UserVariant, OffDatabase
@DbManager--DbDesign
@DbTitle--DbDesign
@DocumentUniquelD--UsedDocld
@Environment--HadEffect, UsedEnvironment
@GetDocField--DbData, UserVariant
@GetPortsList--UsedEnvironment
@GetProfileField--DbData, UserVariant
@InheritedDocumentUniqueID--UsedDocId
@MailEncryptSavedPreference-Fallback--UsedEnvironment
@MailEncryptSentPreference-Fallback--UsedEnvironment
@MailSavePreference-Fallback--UsedEnvironment
@MailSend-Failback--HadEffect
@MailSignPreference-Fallback--UsedEnvironment
@Modified--UsedDocld
@NoteID--UsedDocld
@Now--TimeVariant
@PostedCommand-Web--Depends
@Random--OffDatabase
@Responses--DbData
@SetDocField--HadEffect, UserVariant
@SetProfileField--HadEffect, UserVariant
@TextToTime--TimeVariant
@Today--TimeVariant
@Tomorrow--TimeVariant
@Unique--None, Depends, OffDatabase
@URLGetHeader-Fallback--OffDatabase
@URLOpen-Fallback--OffDatabase, HadEffect
@UserAccess-Web--OffDatabase, UserVariant, DbDesign
@UserName--UserVariant
@UserPrivileges--DbDesign, UserVariant
@UserRoles-Fallback--DbDesign,UserVariant
@UserRoles-Web--DbDesign,UserVariant
@V3UserName--UserVariant
@ViewTitle--DbDesign
@Yesterday--TimeVariant
@Zone--TimeVariant
The attribute composite used for characterizing the response for cacheability comprises the following attributes described below:
OffDb--The response uses data outside the current database. This includes the use of CGI variables.
TimeVariant (CacheUntil)--If the TimeVariant attribute bit is set, the response uses time-variant data (such as @Now which generates the current time and date). The CacheUntil parameter indicates the time/date after which the part is stale.
HadEffect--The response has an important side-effect (such as @SetDocField which modifies data in a Domino database).
UsedEnv--The response uses the server environment (as found in the NOTES.INI file). This does not include CGI variables.
UserVariant--The response is dependent on the user's identity. This includes using any data or design note that includes Read ACLs (Access Control Lists), Readers fields, Authors fields or controlled access sections.
DesignUserVariant--The response is from a database that has protected design elements.
DbData--The response uses data in the database other than the referenced document. This includes all views, embedded views in forms, and so on.
UsedDocld--The response uses the document's ID.
UsedNewDoc--The response uses a newly-created in-memory note.
Unknown--The response does something that couldn't be analyzed (such as executed in another programming language, such as LotusScript).
Error--The response generated an error of some sort.
This attribute composite is passed to the cacheability analyzer 309. It should be noted that this is the composite set of attributes for the response. The parts of the response contribute to this set by contributing to none, some or all of these attributes. The creation of the attribute composite set follows a conservative approach, i.e., if one part has an attribute indicating that the part cannot be cached, the composite will indicate that the response cannot be cached.
A number of caching strategy flags are generated by the cacheability analyzer 309 based upon the response attribute composite and are discussed below. It should be noted that this is a limited set of flags and other flags could be generated as well and the system of the present invention is not so limited. The flags are:
DontCache--Don't cache the response at all.
Document--Invalidate the cached response when the document changes.
DbDesign--Invalidate the cached response when the database design changes.
DbData--Invalidate the cached response when any of the data in the database changes.
OnlyAnonymous--Cache the response, but only serve it when the user is anonymous.
At "B" in
If USER_AUTHENTICATED bit is set, the DontCache strategy flag is set at 408 and the procedure continues to "A" as discussed above. If it is not set, the OnlyAnonymous strategy flag is set at 424. At 426 and at "C", the DbDesign strategy flag is set. At 428, the DbData attribute is examined. If it is not set, the procedure ends at 434. If it is set, the Document strategy flag is reset at 430. The DbData strategy flag is then set at 432. The procedure then ends at 434.
Another point is that the CacheUntil parameter was discussed only in terms of the TimeVariant attribute for an @function. The CacheUntil parameter could be used to characterize the part, irrespective if the part generated time/date data as the @functions having the TimeVariant attribute. It could be used to indicate a future time/date that the part was expected to change, after which the cached response having that part should be re-built.
The CacheUntil parameter can be a property of the part itself or, alternatively, may be set by the part creator as an override. An example of the former is the @Today function. At compute time, the CacheUntil parameter for the @Today function is set to the end of that particular day. For instance, if that day's calendar date is Jan. 15, 1999, the CacheUntil parameter is set to "Jan. 15, 1999, 23:59:59".
However, the creator of the part may know information about the part that is not determinable from an analysis of the part by the cacheability analyzer. For example, the part creator may know that the part is expected to change at the end of the calendar year. In that example, the part creator may override the automatic setting of the CacheUntil parameter (whatever that may be) by setting it to "12/31/99, 23:59:59". Prior to that point in time, the cached-response analyzer would perform its normal validity analysis. After that point, the cached-response analyzer would determine that the response is stale and a new response needs to be built.
The caching strategy flags that are generated by the caching strategy generator 322 are passed to the cacheability analyzer interface 320. The cacheability analyzer interface 320 examines the flags to determine whether the built response should be cached in cache 304. Concurrently, the built response is sent to the HTML unit 214 and to the HTTP server 206. The HTTP server 206 serves the built response in HTML format to the user (without the strategy flags). If the cacheability analyzer determines that the response should be cached, it sends the response in HTML format, along with the strategy flags and with some other parameters (such as last_modified _date, CacheUntil) etc.), to the cache 304 for caching. The response is also served back to the user.
After a response is cached, it remains in the cache until it is either removed or replaced. A cached response is normally replaced after it becomes known that one of the source parts has been modified at the source. This is sometimes known as the cached response becoming "stale". Normally, a cached response is identified as stale when its URL is requested by a user and the cache control unit compares the candidate cached response's last modified date against all of the source parts' last modified dates as discussed above.
A cached response may be removed for any number of reasons defined by the cache designer. Many times, the cache control unit 311 comprises a cache manager which utilizes a cache management utility for managing the cache. The cache manager may, for example, remove from cache those cached responses that have a predetermined life span which has expired (e.g., a response may have a CacheUntil parameter associated with it) or those cached responses that have least frequently been accessed (when the cache is getting full, for instance).
In any event, after a request is received, the request is examined by the cache control unit 311 and the previously-cached responses are analyzed to determine whether any of the cached responses are candidates for serving to the request. A cached response is a candidate is it is appropriate to the request. Specifically, the received URL is parsed, examined for a suitable command request, e.g., "?OpenDocument", and compared against the cached response URLS. A matching URL cached entry is analyzed by the cached-response analyzer 306 as discussed above. Specifically, the caching strategy flags which were stored along with the cached response are analyzed for applicability (via the applicability analyzer 317) and for validity (via the validity analyzer 315).
The validity analyzer 315 understands the cached response retrieval process and automatically invalidates pages based upon whether the candidate cached response is stale. However, the cacheability analyzer and attribute analyzer have shortcomings. Because of their conservative nature, they err on the side of indicating that the response is not cacheable in order to guarantee the freshness of the page returned. The cacheability analyzer configured to allow the page designer to decide that certain pages ought to be cached where the caching strategy generator, following the conventions discussed above, determines that they cannot be. The designer can utilize the following controls to override the cache behavior where appropriate. The following fields can control the use of the cache to some extent:
$CacheOptions--If the value of this field is the text string "0", then the response is not cached.
$CacheValid--The value of the numeric text string N will be evaluated and will protect the response from validity checks for N seconds.
Further, this setting can be made globally for the entire cache by setting "DominoDefaultCacheValid=N." The default for the cache is N=0. This will be discussed further below.
The $CacheValid field lets the designer to tell the cache that this response should be considered valid for a certain number of seconds regardless of what the caching strategy generator determines the cache strategy to be. Consider a simple home page that is being continually edited. The caching strategy generator would normally give this page the "Document" strategy, i.e., the Document strategy flag would be set, so that the cache entry would become invalid each time the page is edited. For example, if the homepage designer considered it acceptable that the home page not be continually updated for every request as a tradeoff for performance, the designer would then communicate this by creating a $CacheValid field on the response with a value of "N." If the designer considered it acceptable for the page to remain "fresh" for requests for, at a minimum, 3 minutes after the response was cached, the designer would set "N=180". This would cause the results of the page to be considered valid for at least 180 seconds. After that time, the normal validity checks will take place.
The applicability analysis portion of the cached-response analysis only examined, as an example, one strategy flag (OnlyAnonymous). However, there are other request-specific characteristics that could as easily be tested. Tests for appropriate browser type and version, and tests for the appropriate language are examples of other user-specific tests that may be run against a cached response to ensure that it is applicable to the request or the requesting user.
In
In
As noted above, the override parameters can be set as follows: the CacheUntil parameter (which is normally created at compute time in accordance with the part characteristics) can be overridden by the part creator; the $CacheValid can be set by the page designer on a per-page basis and, finally, the DominoDefaultCacheValid override parameter can set by the caching system designer as a default value for all responses stored in the cache.
Thus, it can be seen that the override system of the present invention allows maximum flexibility for web site design and implementation.
It should be understood, however, that use of the hypertext server may be practiced with other types of remote documents, such as word processor or spread sheet documents. Accordingly, maintenance of a database is discussed here for exemplary purposes and is not intended to limit its scope. It also should be noted that although many embodiments of the system have been discussed with reference to World Wide Web pages, the system may be practiced with various other types of documents. Moreover, although a Lotus Domino web server environment is disclosed as the preferred embodiment, it should be understood that the disclosed system may be utilized with any known web server. The above discussion of Domino and Notes was exemplary only and therefore should not be considered a limitation of the caching system.
In an alternative embodiment, the system may be implemented as a computer program product for use with a computer system. Such implementation may include a series of computer instructions fixed either on a tangible medium, such as a computer readable media (e.g., diskette 242, CD-ROM 247, ROM 215, or fixed disk 252 as shown in
Although various exemplary embodiments of the invention have been disclosed, it will be apparent to those skilled in the art that various changes and modifications can be made that will achieve some of the advantages of the invention without departing from the true scope of the invention. These and other obvious modifications are intended to be covered by the appended claims.
Chamberlain, John T., Dumont, Charles E., Batchelder, Edward M., Warton, Andrew J.
Patent | Priority | Assignee | Title |
10002032, | Aug 22 2001 | Open Text SA ULC | System and method for automatic generation of service-specific data conversion templates |
10015237, | Sep 28 2010 | Amazon Technologies, Inc. | Point of presence management in request routing |
10015241, | Sep 20 2012 | Amazon Technologies, Inc. | Automated profiling of resource usage |
10021179, | Feb 21 2012 | Amazon Technologies, Inc | Local resource delivery network |
10027582, | Nov 17 2008 | Amazon Technologies, Inc. | Updating routing information based on client location |
10033627, | Dec 18 2014 | Amazon Technologies, Inc | Routing mode and point-of-presence selection service |
10033691, | Aug 24 2016 | Amazon Technologies, Inc | Adaptive resolution of domain name requests in virtual private cloud network environments |
10049051, | Dec 11 2015 | Amazon Technologies, Inc | Reserved cache space in content delivery networks |
10075551, | Jun 06 2016 | Amazon Technologies, Inc. | Request management for hierarchical cache |
10079742, | Sep 28 2010 | Amazon Technologies, Inc. | Latency measurement in resource requests |
10091096, | Dec 18 2014 | Amazon Technologies, Inc | Routing mode and point-of-presence selection service |
10097398, | Sep 28 2010 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Point of presence management in request routing |
10097448, | Dec 18 2014 | Amazon Technologies, Inc | Routing mode and point-of-presence selection service |
10097566, | Jul 31 2015 | Amazon Technologies, Inc | Identifying targets of network attacks |
10110694, | Jun 29 2016 | Amazon Technologies, Inc | Adaptive transfer rate for retrieving content from a server |
10116584, | Nov 17 2008 | Amazon Technologies, Inc. | Managing content delivery network service providers |
10135620, | Sep 04 2009 | AMAZON TECHNOLOGIS, INC. | Managing secure content in a content delivery network |
10153969, | Mar 31 2008 | Amazon Technologies, Inc. | Request routing based on class |
10157135, | Mar 31 2008 | Amazon Technologies, Inc. | Cache optimization |
10158729, | Mar 31 2008 | Amazon Technologies, Inc. | Locality based content distribution |
10180993, | May 13 2015 | Amazon Technologies, Inc. | Routing based request correlation |
10200402, | Sep 24 2015 | Amazon Technologies, Inc. | Mitigating network attacks |
10205698, | Dec 19 2012 | Amazon Technologies, Inc | Source-dependent address resolution |
10212247, | Jun 30 2010 | Oracle International Corporation | Response header invalidation |
10218584, | Oct 02 2009 | Amazon Technologies, Inc. | Forward-based resource delivery network management techniques |
10223335, | Sep 16 2003 | Open Text SA ULC | Client-side web service provider |
10225322, | Sep 28 2010 | Amazon Technologies, Inc. | Point of presence management in request routing |
10225326, | Mar 23 2015 | Amazon Technologies, Inc | Point of presence based data uploading |
10225362, | Jun 11 2012 | Amazon Technologies, Inc. | Processing DNS queries to identify pre-processing information |
10230819, | Mar 27 2009 | Amazon Technologies, Inc. | Translation of resource identifiers using popularity information upon client request |
10257307, | Dec 11 2015 | Amazon Technologies, Inc | Reserved cache space in content delivery networks |
10264062, | Mar 27 2009 | Amazon Technologies, Inc. | Request routing using a popularity identifier to identify a cache component |
10270878, | Nov 10 2015 | Amazon Technologies, Inc | Routing for origin-facing points of presence |
10305797, | Mar 31 2008 | Amazon Technologies, Inc. | Request routing based on class |
10348639, | Dec 18 2015 | Amazon Technologies, Inc | Use of virtual endpoints to improve data transmission rates |
10372499, | Dec 27 2016 | Amazon Technologies, Inc | Efficient region selection system for executing request-driven code |
10374955, | Jun 04 2013 | Amazon Technologies, Inc. | Managing network computing components utilizing request routing |
10447648, | Jun 19 2017 | Amazon Technologies, Inc | Assignment of a POP to a DNS resolver based on volume of communications over a link between client devices and the POP |
10462251, | Jul 13 2001 | Open Text SA ULC | System, method and storage medium for managing items within file directory structure |
10469355, | Mar 30 2015 | Amazon Technologies, Inc. | Traffic surge management for points of presence |
10469442, | Aug 24 2016 | Amazon Technologies, Inc. | Adaptive resolution of domain name requests in virtual private cloud network environments |
10469513, | Oct 05 2016 | Amazon Technologies, Inc | Encrypted network addresses |
10491534, | Mar 27 2009 | Amazon Technologies, Inc. | Managing resources and entries in tracking information in resource cache components |
10503613, | Apr 21 2017 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Efficient serving of resources during server unavailability |
10505961, | Oct 05 2016 | Amazon Technologies, Inc | Digitally signed network address |
10506029, | Jan 28 2010 | Amazon Technologies, Inc. | Content distribution network |
10511567, | Mar 31 2008 | Amazon Technologies, Inc. | Network resource identification |
10516590, | Aug 23 2016 | Amazon Technologies, Inc. | External health checking of virtual private cloud network environments |
10521348, | Jun 16 2009 | Amazon Technologies, Inc. | Managing resources using resource expiration data |
10523783, | Nov 17 2008 | Amazon Technologies, Inc. | Request routing utilizing client location information |
10530874, | Mar 31 2008 | Amazon Technologies, Inc. | Locality based content distribution |
10542079, | Sep 20 2012 | Amazon Technologies, Inc. | Automated profiling of resource usage |
10554748, | Mar 31 2008 | Amazon Technologies, Inc. | Content management |
10574787, | Mar 27 2009 | Amazon Technologies, Inc. | Translation of resource identifiers using popularity information upon client request |
10592578, | Mar 07 2018 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Predictive content push-enabled content delivery network |
10601767, | Mar 27 2009 | Amazon Technologies, Inc. | DNS query processing based on application information |
10616179, | Jun 25 2015 | Amazon Technologies, Inc | Selective routing of domain name system (DNS) requests |
10616250, | Oct 05 2016 | Amazon Technologies, Inc | Network addresses with encoded DNS-level information |
10623408, | Apr 02 2012 | Amazon Technologies, Inc | Context sensitive object management |
10645056, | Dec 19 2012 | Amazon Technologies, Inc. | Source-dependent address resolution |
10645149, | Mar 31 2008 | Amazon Technologies, Inc. | Content delivery reconciliation |
10666756, | Jun 06 2016 | Amazon Technologies, Inc. | Request management for hierarchical cache |
10691752, | May 13 2015 | Amazon Technologies, Inc. | Routing based request correlation |
10728133, | Dec 18 2014 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
10742550, | Nov 17 2008 | Amazon Technologies, Inc. | Updating routing information based on client location |
10771552, | Mar 31 2008 | Amazon Technologies, Inc. | Content management |
10778554, | Sep 28 2010 | Amazon Technologies, Inc. | Latency measurement in resource requests |
10783077, | Jun 16 2009 | Amazon Technologies, Inc. | Managing resources using resource expiration data |
10785037, | Sep 04 2009 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
10797995, | Mar 31 2008 | Amazon Technologies, Inc. | Request routing based on class |
10831549, | Dec 27 2016 | Amazon Technologies, Inc | Multi-region request-driven code execution system |
10860391, | Aug 22 2001 | Open Text SA ULC | System and method for automatic generation of service-specific data conversion templates |
10862852, | Nov 16 2018 | Amazon Technologies, Inc | Resolution of domain name requests in heterogeneous network environments |
10931738, | Sep 28 2010 | Amazon Technologies, Inc. | Point of presence management in request routing |
10938884, | Jan 30 2017 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Origin server cloaking using virtual private cloud network environments |
10951725, | Nov 22 2010 | Amazon Technologies, Inc. | Request routing processing |
10958501, | Sep 28 2010 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Request routing information based on client IP groupings |
11025747, | Dec 12 2018 | Amazon Technologies, Inc | Content request pattern-based routing system |
11075987, | Jun 12 2017 | Amazon Technologies, Inc. | Load estimating content delivery network |
11108729, | Sep 28 2010 | Amazon Technologies, Inc. | Managing request routing information utilizing client identifiers |
11115500, | Nov 17 2008 | Amazon Technologies, Inc. | Request routing utilizing client location information |
11134134, | Nov 10 2015 | Amazon Technologies, Inc. | Routing for origin-facing points of presence |
11194719, | Mar 31 2008 | Amazon Technologies, Inc. | Cache optimization |
11205037, | Jan 28 2010 | Amazon Technologies, Inc. | Content distribution network |
11245770, | Mar 31 2008 | Amazon Technologies, Inc. | Locality based content distribution |
11283715, | Nov 17 2008 | Amazon Technologies, Inc. | Updating routing information based on client location |
11290418, | Sep 25 2017 | Amazon Technologies, Inc. | Hybrid content request routing system |
11297140, | Mar 23 2015 | Amazon Technologies, Inc. | Point of presence based data uploading |
11303717, | Jun 11 2012 | Amazon Technologies, Inc. | Processing DNS queries to identify pre-processing information |
11330008, | Oct 05 2016 | Amazon Technologies, Inc. | Network addresses with encoded DNS-level information |
11336712, | Sep 28 2010 | Amazon Technologies, Inc. | Point of presence management in request routing |
11362986, | Nov 16 2018 | Amazon Technologies, Inc. | Resolution of domain name requests in heterogeneous network environments |
11381487, | Dec 18 2014 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
11451472, | Mar 31 2008 | Amazon Technologies, Inc. | Request routing based on class |
11457088, | Jun 29 2016 | Amazon Technologies, Inc. | Adaptive transfer rate for retrieving content from a server |
11461402, | May 13 2015 | Amazon Technologies, Inc. | Routing based request correlation |
11463550, | Jun 06 2016 | Amazon Technologies, Inc. | Request management for hierarchical cache |
11604667, | Apr 27 2011 | Amazon Technologies, Inc. | Optimized deployment based upon customer locality |
11632420, | Sep 28 2010 | Amazon Technologies, Inc. | Point of presence management in request routing |
11729294, | Jun 11 2012 | Amazon Technologies, Inc. | Processing DNS queries to identify pre-processing information |
11762703, | Dec 27 2016 | Amazon Technologies, Inc. | Multi-region request-driven code execution system |
11811657, | Nov 17 2008 | Amazon Technologies, Inc. | Updating routing information based on client location |
11863417, | Dec 18 2014 | Amazon Technologies, Inc. | Routing mode and point-of-presence selection service |
11909639, | Mar 31 2008 | Amazon Technologies, Inc. | Request routing based on class |
6732148, | Dec 28 1999 | GOOGLE LLC | System and method for interconnecting secure rooms |
6735586, | Feb 08 2000 | SYBASE, INC | System and method for dynamic content retrieval |
6813633, | Jun 19 2001 | SALESFORCE COM, INC | Dynamic multi-level cache manager |
6826599, | Jun 15 2000 | Cisco Technology, Inc. | Method and apparatus for optimizing memory use in network caching |
6934720, | Aug 04 2001 | Oracle International Corporation | Automatic invalidation of cached data |
6954751, | Sep 06 2000 | Oracle International Corporation | Accessing data stored at an intermediary from a service |
7024452, | Jul 13 2001 | Open Text SA ULC | Method and system for file-system based caching |
7073027, | Jul 11 2003 | International Business Machines Corporation | Methods, systems and computer program products for controlling caching of distributed data |
7089295, | Sep 06 2000 | Oracle International Corporation | Customizing content provided by a service |
7096417, | Oct 22 1999 | International Business Machines Corporation | System, method and computer program product for publishing interactive web content as a statically linked web hierarchy |
7096418, | Feb 02 2000 | Progress Software Corporation | Dynamic web page cache |
7107321, | Jun 15 2000 | Cisco Technology, Inc. | Method and apparatus for optimizing memory use in network caching |
7127705, | Sep 06 2000 | Oracle International Corporation | Developing applications online |
7159014, | Jun 04 2001 | FINEGROUND NETWORKS, INC | Method and system for efficient and automated version management of embedded objects in web documents |
7188216, | Dec 13 2002 | Open Text SA ULC | Method and system for an extensible caching framework |
7194506, | Dec 21 2000 | Open Text SA ULC | Method and system for cache management of locale-sensitive content |
7240067, | Feb 08 2000 | SYBASE, Inc.; SYBASE, INC | System and methodology for extraction and aggregation of data from dynamic content |
7269633, | Dec 06 2002 | International Business Machines Corporation | Method and system for playback of dynamic HTTP transactions |
7343412, | Jun 24 1999 | GOOGLE LLC | Method for maintaining and managing dynamic web pages stored in a system cache and referenced objects cached in other data stores |
7349942, | Feb 13 2002 | Open Text SA ULC | Storage medium having a manageable file directory structure |
7360025, | Dec 13 2002 | Open Text SA ULC | Method and system for automatic cache management |
7389386, | Apr 21 2004 | International Business Machines Corporation | Recommendations for intelligent data caching |
7392348, | Aug 06 2003 | International Business Machines Corporation | Method for validating remotely cached dynamic content web pages |
7565378, | May 19 2003 | Canon Kabushiki Kaisha | Method and device for processing messages of the SOAP type |
7596564, | Sep 29 2000 | Open Text SA ULC | Method and system for cache management of a cache including dynamically-generated content |
7636770, | Oct 22 1999 | International Business Machines Corporation | System, method and computer program product for publishing interactive web content as a statically linked web hierarchy |
7672955, | Dec 21 2000 | Open Text SA ULC | Method and system for platform-independent file system interaction |
7716342, | Jul 13 2001 | Open Text SA ULC | Method and system for file-system based caching |
7752394, | Dec 13 2002 | Open Text SA ULC | Method and system for an extensible caching framework |
7761497, | Jul 13 2001 | Open Text SA ULC | Storage medium having a manageable file directory structure |
7784030, | Sep 06 2000 | Oracle International Corporation | Developing applications online |
7788681, | Sep 16 2003 | Open Text SA ULC | System and method for incorporating web services in a web site |
7818506, | Dec 13 2002 | Open Text SA ULC | Method and system for cache management |
7899991, | Jun 21 2010 | Open Text SA ULC | Method and system for an extensible caching framework |
7904662, | Aug 06 2003 | International Business Machines Corporation | System and program product for validating remotely cached dynamic content web pages |
8041893, | Sep 09 2008 | Open Text SA ULC | System and method for managing large filesystem-based caches |
8078802, | Jul 13 2001 | Open Text SA ULC | Method and system for file-system based caching |
8176484, | May 31 2001 | Oracle International Corporation | One click deployment |
8260844, | Aug 25 2003 | SYBASE, Inc. | Information messaging and collaboration system |
8307045, | Aug 22 2001 | Open Text SA ULC | System and method for creating target-specific data conversion templates using a master style template |
8312222, | Dec 13 2002 | Open Text SA ULC | Event-driven regeneration of pages for web-based applications |
8312480, | Sep 16 2003 | Open Text SA ULC | System and method for incorporating web services in a web site |
8352680, | Jul 13 2001 | Open Text SA ULC | Method and system for file-system based caching |
8380932, | Dec 13 2002 | Open Text SA ULC | Contextual regeneration of pages for web-based applications |
8438336, | Sep 09 2008 | Open Text SA ULC | System and method for managing large filesystem-based caches |
8438562, | May 31 2001 | Oracle International Corporation | One click deployment |
8452925, | Dec 13 2002 | Open Text SA ULC | System, method and computer program product for automatically updating content in a cache |
8463998, | Dec 13 2002 | Open Text SA ULC | System and method for managing page variations in a page delivery cache |
8477630, | Mar 01 2001 | Akamai Technologies, Inc. | Optimal route selection in a content delivery network |
8521841, | Oct 11 2007 | ServiceNow, Inc; International Business Machines Corporation | Efficient delivery of cross-linked reports with or without live access to a source data repository |
8712838, | Sep 30 1999 | International Business Machines Corporation | Dynamic web page construction based on determination of client device location |
8813067, | May 31 2001 | Oracle International Corporation | One click deployment |
8832387, | Dec 13 2002 | Open Text SA ULC | Event-driven regeneration of pages for web-based applications |
8850138, | Dec 13 2002 | Open Text SA ULC | System and method for managing page variations in a page delivery cache |
8856210, | Jul 13 2001 | Open Text SA ULC | System, method and storage medium for managing items within file directory structure |
8966509, | Sep 16 2003 | Open Text SA ULC | Client-side web service provider |
9081807, | Dec 13 2002 | Open Text SA ULC | Event-driven invalidation of pages for web-based applications |
9160709, | Dec 13 2002 | Open Text SA ULC | System and method for managing page variations in a page delivery cache |
9167051, | Sep 06 2000 | Oracle International Corporation | Transforming condition-independent output into condition-dependent output |
9323577, | Sep 20 2012 | Amazon Technologies, Inc | Automated profiling of resource usage |
9332078, | Mar 31 2008 | Amazon Technologies, Inc. | Locality based content distribution |
9361394, | Jun 30 2010 | Oracle International Corporation | Response header invalidation |
9380022, | Dec 13 2002 | Open Text SA ULC | System and method for managing content variations in a content deliver cache |
9391949, | Dec 03 2010 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Request routing processing |
9400851, | Jun 23 2011 | IMPERVA, INC | Dynamic content caching |
9407681, | Sep 28 2010 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Latency measurement in resource requests |
9407699, | Mar 31 2008 | Amazon Technologies, Inc. | Content management |
9444759, | Nov 17 2008 | Amazon Technologies, Inc. | Service provider registration by a content broker |
9451046, | Nov 17 2008 | Amazon Technologies, Inc. | Managing CDN registration by a storage provider |
9479476, | Mar 31 2008 | Amazon Technologies, Inc. | Processing of DNS queries |
9495338, | Jan 28 2010 | Amazon Technologies, Inc | Content distribution network |
9497259, | Sep 28 2010 | Amazon Technologies, Inc. | Point of presence management in request routing |
9515949, | Nov 17 2008 | Amazon Technologies, Inc. | Managing content delivery network service providers |
9525659, | Sep 04 2012 | Amazon Technologies, Inc | Request routing utilizing point of presence load information |
9544394, | Mar 31 2008 | Amazon Technologies, Inc. | Network resource identification |
9571389, | Mar 31 2008 | Amazon Technologies, Inc. | Request routing based on class |
9590946, | Nov 17 2008 | Amazon Technologies, Inc. | Managing content delivery network service providers |
9608957, | Jun 30 2008 | Amazon Technologies, Inc. | Request routing using network computing components |
9621660, | Mar 31 2008 | Amazon Technologies, Inc. | Locality based content distribution |
9628554, | Feb 10 2012 | Amazon Technologies, Inc. | Dynamic content delivery |
9639547, | Jul 13 2001 | Open Text SA ULC | Method and system for file-system based caching |
9703885, | Dec 13 2002 | Open Text SA ULC | Systems and methods for managing content variations in content delivery cache |
9712325, | Sep 04 2009 | Amazon Technologies, Inc. | Managing secure content in a content delivery network |
9712484, | Sep 28 2010 | Amazon Technologies, Inc.; Amazon Technologies, Inc | Managing request routing information utilizing client identifiers |
9716769, | Jul 13 2001 | Open Text SA ULC | System, method and storage medium for managing items within file directory structure |
9734472, | Nov 17 2008 | Amazon Technologies, Inc. | Request routing utilizing cost information |
9742795, | Sep 24 2015 | Amazon Technologies, Inc | Mitigating network attacks |
9774619, | Sep 24 2015 | Amazon Technologies, Inc | Mitigating network attacks |
9787599, | Nov 17 2008 | Amazon Technologies, Inc. | Managing content delivery network service providers |
9787775, | Sep 28 2010 | Amazon Technologies, Inc. | Point of presence management in request routing |
9792262, | Sep 16 2003 | Open Text SA ULC | Client-side web service provider |
9794216, | Sep 28 2010 | Amazon Technologies, Inc. | Request routing in a networked environment |
9794281, | Sep 24 2015 | Amazon Technologies, Inc | Identifying sources of network attacks |
9800539, | Sep 28 2010 | Amazon Technologies, Inc. | Request routing management based on network components |
9819567, | Mar 30 2015 | Amazon Technologies, Inc | Traffic surge management for points of presence |
9832141, | May 13 2015 | Amazon Technologies, Inc | Routing based request correlation |
9886390, | Nov 10 2015 | International Business Machines Corporation | Intelligent caching of responses in a cognitive system |
9887915, | Mar 31 2008 | Amazon Technologies, Inc. | Request routing based on class |
9887931, | Mar 30 2015 | Amazon Technologies, Inc | Traffic surge management for points of presence |
9887932, | Mar 30 2015 | Amazon Technologies, Inc | Traffic surge management for points of presence |
9888089, | Mar 31 2008 | Amazon Technologies, Inc. | Client side cache management |
9893957, | Oct 02 2009 | Amazon Technologies, Inc. | Forward-based resource delivery network management techniques |
9894168, | Mar 31 2008 | Amazon Technologies, Inc. | Locality based content distribution |
9912740, | Jun 30 2008 | Amazon Technologies, Inc. | Latency measurement in resource requests |
9929959, | Jun 04 2013 | Amazon Technologies, Inc. | Managing network computing components utilizing request routing |
9930131, | Nov 22 2010 | Amazon Technologies, Inc. | Request routing processing |
9954934, | Mar 31 2008 | Amazon Technologies, Inc. | Content delivery reconciliation |
9985927, | Nov 17 2008 | Amazon Technologies, Inc. | Managing content delivery network service providers by a content broker |
9992086, | Aug 23 2016 | Amazon Technologies, Inc | External health checking of virtual private cloud network environments |
9992303, | Nov 17 2008 | Amazon Technologies, Inc. | Request routing utilizing client location information |
Patent | Priority | Assignee | Title |
5787470, | Oct 18 1996 | AT&T Corp | Inter-cache protocol for improved WEB performance |
5933849, | Apr 10 1997 | AT&T Properties, LLC; AT&T INTELLECTUAL PROPERTY II, L P | Scalable distributed caching system and method |
6032182, | Jul 11 1997 | International Business Machines Corporation | Method, apparatus and computer program product for user selected refreshing of internet web pages |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 25 1999 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
May 04 1999 | BATCHELDER, EDWARD M | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010031 | /0333 | |
May 04 1999 | CHAMBERLAIN, JOHN T | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010031 | /0333 | |
May 04 1999 | WHARTON, ANDREW J | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010031 | /0333 | |
May 04 1999 | DUMONT, CHARLES M | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010031 | /0333 |
Date | Maintenance Fee Events |
Sep 14 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 25 2010 | REM: Maintenance Fee Reminder Mailed. |
Jun 18 2010 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 18 2005 | 4 years fee payment window open |
Dec 18 2005 | 6 months grace period start (w surcharge) |
Jun 18 2006 | patent expiry (for year 4) |
Jun 18 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 18 2009 | 8 years fee payment window open |
Dec 18 2009 | 6 months grace period start (w surcharge) |
Jun 18 2010 | patent expiry (for year 8) |
Jun 18 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 18 2013 | 12 years fee payment window open |
Dec 18 2013 | 6 months grace period start (w surcharge) |
Jun 18 2014 | patent expiry (for year 12) |
Jun 18 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |