A method and apparatus for detecting the presence of a co-channel interference signal and, in response to detecting such an interference signal, utilizing a co-channel interference rejection filter. Specifically, the present invention monitors the status information generated by the error detecting/correcting circuitry of a signal receiver such as a high definition television (HDTV) receiver. A counter is used to determine an error rate. While this first error rate is being determined, the filter is not used within the signal path of the receiver. The filter is then switched into the signal path of the receiver and a second error rate is determined. The first and second error rates are then compared and if the first error rate is the same or lower than the second error rate, the co-channel interference rejection filter is not utilized. Otherwise, the co-channel interference rejection filter is used in signal path of the receiver to remove an interference signal that is interfering with the proper demodulation of the received signal.
|
1. A co-channel interference detector comprising:
counter circuit for determining a first error rate and a second error rate, where said first error rate is determined when a co-channel interference filter is not in a signal path and said second error rate is determined when a co-channel interference filter is in a signal path; and a comparator for comparing the first error rate to the second error rate to determine whether the co-channel interference filter is to subsequently be used or not in the signal path.
12. A method for determining whether a co-channel interference filter should be used in a signal receiver comprising the steps of:
measuring a first error rate without the co-channel interference filter in a signal path of the signal receiver; measuring a second error rate with the co-channel interference filter in the signal path of the signal receiver; comparing the first error rate to the second error rate; and if the first error rate is greater than the second error rate, placing the co-channel interference filter in the signal path of the signal receiver, otherwise, not using the co-channel interference filter.
15. A digital storage medium containing a program that, when executed by a computer, causes the computer to perform a method comprising the steps of:
measuring a first error rate without a co-channel interference filter in a signal path of a signal receiver; measuring a second error rate with the co-channel interference filter in the signal path of the signal receiver; comparing the first error rate to the second error rate; and if the first error rate is greater than the second error rate, placing the co-channel interference filter in the signal path of the signal receiver, otherwise, not using the co-channel interference filter.
7. An high definition television for receiving and decoding a vestigial sideband (vsb) comprising:
a tuner for selecting a vsb signal from a plurality of vsb signals; a co-channel interference rejection filter for suppressing a co-channel interference signal within a channel with the selected vsb signal; a multiplexer for selectively inserting or removing the co-channel interference filter from a signal path for the selected vsb signal; signal processing circuits for equalizing and decoding the selected vsb signal; a error detecting circuit for identifying decoding errors produced by the signal processing circuits while decoding the selected vsb signal; an error counting circuit for counting the number of errors detected by said error detecting circuit to determine a first error rate and a second error rate, where said first error rate is determined when a co-channel interference filter is not in the signal path and said second error rate is determined when a co-channel interference filter is in the signal path; and a comparator for comparing the first error rate to the second error rate to determine whether the co-channel interference filter is to subsequently be used or not in the signal path, where the comparator controls the multiplexer.
2. The co-channel interference detector of
3. The co-channel interference detector of
a combiner have a first input that receives an error signal; a delay that couples the combiner output to a second input of the combiner; a register for accumulating a count of errors responsive to the error signal; a modulo N counter for establishing a time period over which the count of errors is accumulated.
4. The co-channel interference detector of
5. The apparatus of
8. The high definition television of
9. The high definition television of
a combiner have a first input that receives an error signal; a delay that couples the combiner output to a second input of the combiner; a register for accumulating a count of errors responsive to the error signal; a modulo N counter for establishing a time period over which the count of errors is accumulated.
10. The high definition television of
11. The high definition television of
13. The method of
14. The method of
|
This patent application claims benefit of U.S. provisional patent application serial No. 60/085,864, filed May 18, 1998, the disclosure of which is incorporated herein reference.
The invention generally relates to high definition television signal receivers and, more particularly, to a method and apparatus for detecting co-channel interference within a vestigial sideband signal used to transmit high definition television information and selectively filtering the interference when detected.
High definition television (HDTV) receivers receive signals,. vestigial sideband (VSB) signals, from a portion of the radio frequency spectrum that is also occupied by conventional television signals. These conventional television signals are generally referred to as the National Television Standards Committee (NTSC) signals. To accurately demodulate a VSB signal, HDTV receivers require an NTSC signal rejection filter to be used in the demodulator of the receiver. The rejection filter is intended to suppress the NTSC signals such that reception and demodulation of the VSB signal is not affected by the presence of an NTSC signal. The use of an NTSC rejection filter is specified in the "Guide To The Use Of The ATSC Digital Television Standard" Document A/54, Advanced Television Systems Committee, Apr. 12, 1995 and incorporated herein by reference. However, it is well known in the art that the NTSC rejection filter suppresses the VSB signal by approximately 3 dB. To avoid the VSB signal suppression caused by the NTSC rejection filter, the ATSC standard recommends switching the NTSC rejection filter into the signal path of the HDTV receiver only when necessary, i.e., only when an NTSC signal is detected in the VSB channel.
The ATSC standard recommends using a pair of energy detectors, where one detector is located before the NTSC rejection filter and one detector is located after the NTSC rejection filter. These detectors measure the signal-to-interference plus noise ratio of the received signal. The signal energy is measured by each detector and compared such that the signal path with the largest signal-to-noise ratio (lowest interference energy) is selected, i.e., either the path with the NTSC rejection filter or no filter is selected.
When the NTSC signal level is near to the noise level of the received signal, the standard detection technique may erroneously decide to include (or not include) the NTSC rejection filter into the signal path. Whenever the NTSC rejection filter is incorrectly utilized, the VSB signal is not optimally processed by the HDTV receiver and errors result in the decoded VSB signal data.
Therefore, a need exists in the art for an HDTV receiver that accurately detects the presence of a co-channel interference signal by directly measuring the error rate of the HDTV receiver with and without the co-channel interference rejection filter and selectively utilizes the co-channel interference rejection filter depending upon the measured error rate.
The disadvantages heretofore associated with the prior art high definition television (HDTV) receivers are overcome by the present invention of a method and apparatus for detecting the presence of a co-channel interference signal (e.g., an NTSC signal) and, in response to detecting such an interference signal, utilizing a co-channel interference rejection filter. Specifically, the present invention monitors the status information generated by the error detecting/correcting circuitry of a signal receiver such as an HDTV receiver. A counter is used to determine an error rate. While this first error rate is being determined, the co-channel interference rejection filter is not used within the signal path of the receiver. The filter is then switched into the signal path of the receiver and a second error rate is determined. The first and second error rates are then compared and if the first error rate is the same or lower than the second error rate, the co-channel interference rejection filter is not utilized. Otherwise, the co-channel interference rejection filter is used in signal path of the receiver to remove an interference signal that is interfering with the proper demodulation of the received signal.
More specifically, in an HDTV receiver application, a counter is used to count the number of errors that have been detected/corrected by a Reed-Solomon decoder over a predefined period of time. While this first count is being accumulated, an NTSC rejection filter is not used within the signal path of the HDTV receiver, i.e., a mulitplexer switches the NTSC rejection filter out of the signal path. The first count (first error rate) is stored in memory. The NTSC rejection filter is then switched into the signal path such that the received signal is filtered by the NTSC rejection filter. The status information of the Reed-Solomon decoder is again monitored and a second error rate is accumulated. The first and second error rates are then compared and if the first error rate is the same or lower than the second error rate, then the NTSC rejection filter should not be utilized. If the second error rate is lower than the first error rate, then the NTSC rejection filter should be used by the receiver to remove an NTSC signal that is interfering with the proper demodulation of the received signal. In this manner, the NTSC rejection filter is selectively utilized such that the operation of the HDTV receiver is optimized. Additionally, at a time in the future when all NTSC broadcast stations no longer are transmitting NTSC signals, the HDTV receiver will optimally demodulate HDTV signals without interference by the NTSC rejection filter.
The present invention provides a number of advantages of the prior art. First, the present invention bases its decision to utilize the NTSC rejection filter or not upon the actual error rates of received signals. As such, when the NTSC signal level is near the noise level, the error rate should not be impacted and the present invention correctly decides whether to use the NTSC rejection filter. Another advantage of the present invention is its substantial cost savings. The prior art decision circuitry uses a complex measurement and computation technique requiring many costly multiply and divide operations that require a substantial amount of silicon area when the circuit is implemented in hardware. By relying upon the error indicator output of the Reed-Solomon decoder, the present invention uses a minimal amount of additional hardware to accomplish the error rate computation and comparison processes. As such, the silicon area needed to implement the invention and its power requirements are substantially less than that of the prior art circuitry.
The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
The co-channel interference detector 101 of the present invention is incorporated into a substantially conventional HDTV receiver 100. The receiver 100 has as its input a band carrying a plurality of VSB signals that are compliant with the high definition television transmission standard. This band may also contain one or more co-channel interference signals such as NTSC television signals. One of the plurality of VSB signals is selected for demodulation by a conventional tuner 104. The output of the tuner 104 is generally a VSB signal at a passband IF frequency. The selected VSB signal is then preprocessed by an IF filter and synchronous detector 106 that performs carrier recovery of the pilot carrier within the VSB signal. The recovered pilot carrier is used by the tuner to downconvert the selected VSB signal to an IF frequency.
An NTSC rejection filter 108 is selectively inserted into the signal path using multiplexer 110. The NTSC rejection filter is a one tap linear feed-forward filter, a comb filter. The frequency response of the filter has a plurality of periodic nulls spaced (10.762 MHz/12), or 896.85 kHz apart. The nulls are arranged to suppress the NTSC visual carrier, the NTSC chrominance subcarrier and the NTSC aural carrier.
The output of the NTSC rejection filter is coupled to one input terminal of the multiplexer 110. Additionally, the input signal to the NTSC rejection filter is coupled to the multiplexer's second input terminal. The multiplexer 110 is controlled by the co-channel interference detection circuit 101 of the present invention such that either the NTSC rejection filtered signal, i.e., the filtered signal, or the unfiltered signal, is coupled through the multiplexer 110 to the remaining conventional circuits within the VSB signal receiver 100 that perform VSB signal demodulation.
The output signal of the multiplexer 110 is serially processed by an equalizer 112, a phase tracker 114, a trellis decoder 116, a data deinterleaver 118, a Reed-Solomon decoder 120 and a data derandomizer 122. The equalizer 112 adaptively equalizes the VSB signal to minimize intersymbol interference (ISI). The phase tracker 114 detects and tracks the phase error of the VSB signal to provide a stable data signal to the trellis decoder 116. The trellis decoder 116 and data interleaver 118 perform an inverse function to the coding and interleaving that was performed by the transmitter. Trellis coding and data interleaving is performed to allow the data transmission process to be robust in view of noise bursts and other signal interference.
The Reed-Solomon decoder 120 processes the trellis-decoded byte data. The Reed-Solomon decoder is a (207,187)t=10 type, where the decoder uses 20 parity bytes to perform the byte error correction on a segment-by-segment basis. The decoder 120 corrects up to ten byte errors per data segment. The error corrected data is then derandomized in data derandomizer 122 to produce the data that was sent using the selected VSB signal.
Although a Reed-Solomon error correction circuit is common to a HDTV receiver, other forms of forward error correcting (FEC) circuit may function to error correct the data. A second output of the Reed-Solomon decoder 120 is a status port containing status information regarding the number of errors that are generated within a specific period of time by the Reed-Solomon error correction circuit. Generally this is a digital signal that will toggle for each error that is detected in the decoded signal. The co-channel interference detector 101 of the present invention uses this status information to determine when the NTSC rejection filter is needed.
The co-channel interference detector 101 contains a combiner 124, a delay 126, a register 128, a modulo N counter 130, a memory 132 and a comparator 134. A counter 136 counts the number of toggles (errors) that occur during a fixed period of time. The fixed period of time is set by the modulo N counter 130 which is coupled to the register 128. The counter 136 is formed by combiner 124, delay 126, and register 128. For each toggle of the decoder status that is coupled to the combiner 124, the counter 136 adds 1 to the previous count value in the register 128. As such, the combiner 124, the delay 126, and the register 128 accumulates a count value until the modulo N counter 130 times out and resets the register 128. As such, the modulo N counter 130 establishes a specific period of time during which the errors are counted, i.e., an error rate is produced.
When the modulo N counter 130 reaches the end of its predefined time period, the contents of the register 128 (a first error rate) is shifted into the memory 132 for temporary storage. During this period, the NTSC rejection filter 108 would not be in the circuit so that the multiplexer output is coupled to the unfiltered input port A. Once the modulo counter reaches the end of its period, the multiplexer 110 is switched such that the filtered input port B is coupled to its output and the Reed-Solomon error correction circuit now generates errors based on the filtered signal. In a similar manner as discussed, the counter 136 will accumulate a number counts in the register 128 over a predefined period of time set by the modulo N counter 130 and when the modulo N counter 130 reaches the end of its period, the error count (a second error rate) will be shifted to the input of the comparator 134 to compare the first error rate to the second error rate. Based on the relative values of the error rates measured with and without the NTSC filter in the signal path, the detector 101 decides whether the receiver should use the NTSC rejection filter 108.
The co-channel interference detector of the present invention, as well as most components of the VSB receiver, may be implemented in hardware, software or a combination of both. As such, those skilled in the art will be able to program a general purpose computer or a specific purpose computer, such as an application specific integrated circuit (ASIC), to perform the functions of some or all of the blocks discussed above. As such, the invention may be embodied as a program stored on a digital storage medium whose program, when executed by a computer, causes the computer to perform the process steps of the present invention, i.e., the steps of FIG. 2.
Although various embodiments which incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.
Patent | Priority | Assignee | Title |
10039061, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of cooperative communication nodes |
10039117, | Feb 02 1999 | ISCO International, LLC | Method and device for maintaining the performance quality of a communication system in the presence of narrow band interference |
10063361, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10079667, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10097235, | Nov 11 2008 | ISCO International, LLC | Method and apparatus for an adaptive filter architecture |
10097301, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of communication nodes |
10178628, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication paths for communication nodes |
10225063, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for avoiding interference |
10231190, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of cooperative communication nodes |
10244483, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of a communication link of a communication node |
10278192, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10298279, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for increasing performance of communication paths for communication nodes |
10327255, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10396838, | Apr 05 2017 | ISCO International, LLC | Methods, systems and devices to improve channel utilization |
10419195, | Mar 15 2013 | ISCO International, LLC | Creating library of interferers |
10420114, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10425903, | May 05 2014 | ISCO International, LLC | Method and apparatus for mitigating interference |
10461802, | Nov 11 2008 | ISCO International, LLC | Method and apparatus for an adaptive filter architecture |
10491252, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for mitigating interference in CPRI uplink paths |
10506526, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of a communication link of a communication node |
10512044, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of communication nodes |
10517101, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for mitigating signal interference in a feedback system |
10523252, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for real-time monitoring and field adjustment |
10560952, | Mar 15 2013 | ISCO International, LLC | Creating library of interferers |
10575260, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of cooperative communication nodes |
10582510, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for avoiding interference |
10582511, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10594347, | Apr 05 2017 | ISCO International, LLC | Methods, systems and devices to improve channel utilization |
10609651, | May 05 2014 | ISCO International, LLC | Adjusting signal power to increase performance of communication links of communication nodes |
10652835, | Jun 01 2016 | ISCO International, LLC | Signal conditioning to mitigate interference impacting wireless communication links in radio access networks |
10652901, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10652903, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for interference mitigation utilizing antenna pattern adjustments |
10659093, | Apr 05 2017 | ISCO International, LLC | Managing interference in control channels and methods thereof |
10667275, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference avoidance |
10687284, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication paths for communication nodes |
10797740, | Apr 05 2017 | ISCO International, LLC | Virtualized methods, systems and devices to mitigate channel interference |
10798718, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for collecting and processing interference information |
10805937, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for avoiding interference |
10820282, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of a communication link of a communication node |
10833783, | Aug 09 2017 | ISCO International, LLC | Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system |
10834683, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of communication nodes |
10834684, | May 05 2014 | ISCO International, LLC | Adjusting signal power to increase performance of communication links of communication nodes |
10841928, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10879945, | Apr 05 2017 | ISCO International, LLC | Methods, systems and devices to improve channel utilization |
10880901, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for mitigating signal interference in a feedback system |
10880902, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10886957, | Apr 05 2017 | ISCO International, LLC | Correlating network and physical layer activities |
10892789, | Apr 05 2017 | ISCO International, LLC | Methods, systems, and devices for adjusting resource block schedules for user end devices to different frequency bands |
10904890, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
10945271, | Mar 15 2013 | ISCO International, LLC | Creating library of interferers |
10952155, | Jun 01 2016 | ISCO International, LLC | Method and apparatus for performing signal conditioning to mitigate interference detected in a communication system |
10959185, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of cooperative communication nodes |
10979092, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for mitigating interference in CPRI uplink paths |
10979093, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for real-time monitoring and field adjustment |
10992330, | Apr 05 2017 | ISCO International, LLC | Methods and apparatus for packet testing and isolation of interference in a multi-layered protocol |
11075660, | Apr 05 2017 | ISCO International, LLC | Managing interference in control channels and methods thereof |
11115988, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for avoiding interference |
11134502, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for interference mitigation utilizing antenna pattern adjustments |
11139846, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for increasing performance of communication paths for communication nodes |
11166288, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for collecting and processing interference information |
11184094, | Aug 09 2017 | ISCO International, LLC | Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system |
11191086, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for mitigating signal interference in a feedback system |
11197247, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication paths for communication nodes |
11277803, | Jun 01 2016 | ISCO International, LLC | Signal conditioning to mitigate interference |
11304204, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
11330531, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of communication nodes |
11362693, | Aug 09 2017 | ISCO International, LLC | Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system |
11375516, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference avoidance |
11411590, | Apr 05 2017 | ISCO International, LLC | Correlating network and physical layer activities |
11412457, | May 05 2014 | ISCO International, LLC | Adjusting signal power to increase performance of communication links of communication nodes |
11445517, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
11456766, | Apr 05 2017 | ISCO International, LLC | Virtualized methods, systems and devices to mitigate channel interference |
11502711, | Apr 05 2017 | ISCO International, LLC | Methods, systems and devices to improve channel utilization |
11570719, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of cooperative communication nodes |
11582763, | Mar 15 2013 | ISCO International, LLC | Creating library of interferers |
11601149, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for real-time monitoring and field adjustment |
11638268, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for interference mitigation utilizing antenna pattern adjustments |
11653374, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
11711839, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for avoiding interference |
11722164, | Apr 05 2017 | ISCO International, LLC | Correlating network and physical layer activities |
11728912, | Aug 09 2017 | ISCO International, LLC | Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system |
11770147, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for increasing performance of communication paths for communication nodes |
11855670, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for real-time monitoring and field adjustment |
11877247, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of cooperative communication nodes |
11950270, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for collecting and processing interference information |
12101133, | Aug 09 2017 | ISCO International, LLC | Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system |
12149272, | Apr 05 2017 | ISCO International, LLC | Method and apparatus for real-time monitoring and field adjustment |
12166517, | Apr 05 2017 | ISCO International, LLC | Methods, systems and devices to improve channel utilization |
7369155, | May 16 2005 | Mediatek Incorporation | Apparatus and method for rejecting co-channel interference signal |
7589758, | Jun 19 2003 | Samsung Electronics Co., Ltd. | Apparatus and method for detecting and selectively filtering co-channel interference |
7593651, | Mar 14 2002 | Ericsson AB | Control of avalanche photodiodes bias voltage |
7751996, | Dec 12 2006 | T-MOBILE INNOVATIONS LLC | Measurement system for determining desired/undesired ratio of wireless video signals |
8294612, | Oct 06 2009 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and system for RF interference mitigation using a blanking watchguard |
8938041, | Dec 18 2012 | Intel Corporation | Techniques for managing interference in multiple channel communications system |
9451495, | Apr 28 1999 | ISCO International, LLC | Method and device for maintaining the performance quality of a communication system in the presence of narrow band interference |
9634819, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
9647720, | Nov 11 2008 | ISCO International, LLC | Method and apparatus for an adaptive filter architecture |
9654170, | Nov 11 2008 | ISCO International, LLC | Method and apparatus for an adaptive filter architecture |
9668223, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of communication nodes |
9706559, | Feb 02 1999 | ISCO International, LLC | Method and device for maintaining the performance quality of a communication system in the presence of narrow band interference |
9729196, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for avoiding interference |
9729301, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for mitigating signal interference in a feedback system |
9775116, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of cooperative communication nodes |
9788331, | Feb 02 1999 | ISCO International, LLC | Method and device for maintaining the performance quality of a communication system in the presence of narrow band interference |
9794888, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of a communication link of a communication node |
9832000, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for signal interference processing |
9894662, | Apr 28 1999 | ISCO International, LLC | Method and device for maintaining the performance quality of a communication system in the presence of narrow band interference |
9912433, | May 05 2014 | ISCO International, LLC | Method and apparatus for increasing performance of communication links of communication nodes |
9961691, | Mar 15 2013 | ISCO International, LLC | Method and apparatus for avoiding interference |
9985671, | Jan 15 2016 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | System, device, and method for improving radio performance |
9986512, | May 05 2014 | ISCO International, LLC | Method and apparatus for mitigating interference |
9992008, | Mar 15 2013 | ISCO International, LLC | Creating library of interferers |
ER9736, |
Patent | Priority | Assignee | Title |
5745187, | Feb 10 1994 | Philips Electronics North America Corporation | Method and apparatus for combating co-channel NTSC interference for digital TV transmission using a bank of rejection filters |
5969751, | Jul 09 1997 | SAMSUNG ELECTRONICS CO , LTD | Method and apparatus for canceling co-channel interference |
6052158, | Apr 24 1998 | Zenith Electronics Corporation | Using equalized data for filter selection in HDTV receiver |
6226049, | Mar 25 1997 | SAMSUNG ELECTRONICS CO , LTD | NTSC rejection filter |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 15 1998 | Sarnoff Corporation | (assignment on the face of the patent) | / | |||
Jul 15 1998 | Motorola Inc. | (assignment on the face of the patent) | / | |||
Aug 31 1998 | REED, CHARLES JR | Motorola, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009933 | /0684 | |
Aug 31 1998 | REED, CHARLES JR | Sarnoff Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009933 | /0684 | |
Apr 04 2004 | Motorola, Inc | Freescale Semiconductor, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015698 | /0657 | |
Dec 01 2006 | Freescale Semiconductor, Inc | CITIBANK, N A AS COLLATERAL AGENT | SECURITY AGREEMENT | 018855 | /0129 | |
Dec 01 2006 | FREESCALE ACQUISITION CORPORATION | CITIBANK, N A AS COLLATERAL AGENT | SECURITY AGREEMENT | 018855 | /0129 | |
Dec 01 2006 | FREESCALE ACQUISITION HOLDINGS CORP | CITIBANK, N A AS COLLATERAL AGENT | SECURITY AGREEMENT | 018855 | /0129 | |
Dec 01 2006 | FREESCALE HOLDINGS BERMUDA III, LTD | CITIBANK, N A AS COLLATERAL AGENT | SECURITY AGREEMENT | 018855 | /0129 | |
Sep 17 2008 | Sarnoff Corporation | AMTRAN TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021679 | /0462 | |
Apr 13 2010 | Freescale Semiconductor, Inc | CITIBANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 024397 | /0001 | |
May 21 2013 | Freescale Semiconductor, Inc | CITIBANK, N A , AS NOTES COLLATERAL AGENT | SECURITY AGREEMENT | 030633 | /0424 | |
Nov 01 2013 | Freescale Semiconductor, Inc | CITIBANK, N A , AS NOTES COLLATERAL AGENT | SECURITY AGREEMENT | 031591 | /0266 | |
Dec 07 2015 | CITIBANK, N A | MORGAN STANLEY SENIOR FUNDING, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 037486 FRAME 0517 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS | 053547 | /0421 | |
Dec 07 2015 | CITIBANK, N A | MORGAN STANLEY SENIOR FUNDING, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE PATENTS 8108266 AND 8062324 AND REPLACE THEM WITH 6108266 AND 8060324 PREVIOUSLY RECORDED ON REEL 037518 FRAME 0292 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS | 041703 | /0536 | |
Dec 07 2015 | CITIBANK, N A | MORGAN STANLEY SENIOR FUNDING, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 037486 FRAME 0517 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS | 053547 | /0421 | |
Dec 07 2015 | CITIBANK, N A , AS COLLATERAL AGENT | Freescale Semiconductor, Inc | PATENT RELEASE | 037354 | /0225 | |
Dec 07 2015 | CITIBANK, N A | MORGAN STANLEY SENIOR FUNDING, INC | ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS | 037486 | /0517 | |
Jun 22 2016 | MORGAN STANLEY SENIOR FUNDING, INC | NXP B V | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 040928 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 052915 | /0001 | |
Jun 22 2016 | MORGAN STANLEY SENIOR FUNDING, INC | NXP B V | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 040928 | /0001 | |
Jun 22 2016 | MORGAN STANLEY SENIOR FUNDING, INC | NXP B V | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 040928 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 052915 | /0001 | |
Sep 12 2016 | MORGAN STANLEY SENIOR FUNDING, INC | NXP, B V F K A FREESCALE SEMICONDUCTOR, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 040925 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 052917 | /0001 | |
Sep 12 2016 | MORGAN STANLEY SENIOR FUNDING, INC | NXP, B V F K A FREESCALE SEMICONDUCTOR, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 11759915 AND REPLACE IT WITH APPLICATION 11759935 PREVIOUSLY RECORDED ON REEL 040925 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 052917 | /0001 | |
Sep 12 2016 | MORGAN STANLEY SENIOR FUNDING, INC | NXP, B V , F K A FREESCALE SEMICONDUCTOR, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 040925 | /0001 | |
Nov 07 2016 | Freescale Semiconductor, Inc | NXP USA, INC | MERGER SEE DOCUMENT FOR DETAILS | 040652 | /0241 | |
Nov 07 2016 | Freescale Semiconductor, Inc | NXP USA, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 040652 FRAME: 0241 ASSIGNOR S HEREBY CONFIRMS THE MERGER AND CHANGE OF NAME | 041260 | /0850 | |
Feb 17 2019 | MORGAN STANLEY SENIOR FUNDING, INC | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | CORRECTIVE ASSIGNMENT TO CORRECT THE TO CORRECT THE APPLICATION NO FROM 13,883,290 TO 13,833,290 PREVIOUSLY RECORDED ON REEL 041703 FRAME 0536 ASSIGNOR S HEREBY CONFIRMS THE THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS | 048734 | /0001 | |
Feb 17 2019 | MORGAN STANLEY SENIOR FUNDING, INC | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | CORRECTIVE ASSIGNMENT TO CORRECT THE TO CORRECT THE APPLICATION NO FROM 13,883,290 TO 13,833,290 PREVIOUSLY RECORDED ON REEL 041703 FRAME 0536 ASSIGNOR S HEREBY CONFIRMS THE THE ASSIGNMENT AND ASSUMPTION OF SECURITY INTEREST IN PATENTS | 048734 | /0001 |
Date | Maintenance Fee Events |
Jan 17 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 18 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 21 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 16 2005 | 4 years fee payment window open |
Jan 16 2006 | 6 months grace period start (w surcharge) |
Jul 16 2006 | patent expiry (for year 4) |
Jul 16 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 16 2009 | 8 years fee payment window open |
Jan 16 2010 | 6 months grace period start (w surcharge) |
Jul 16 2010 | patent expiry (for year 8) |
Jul 16 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 16 2013 | 12 years fee payment window open |
Jan 16 2014 | 6 months grace period start (w surcharge) |
Jul 16 2014 | patent expiry (for year 12) |
Jul 16 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |