A microphone mounting structure for mounting a microphone to a respiratory mask and/or bubble suit through a hole therein. The microphone mounting structure is thus able to convert a conventional respiratory mask and/or bubble suit into a sound amplifying mask and/or bubble suit. The microphone mounting structure comprises a tubular plug and a tubular locking mechanism. The tubular plug has a closed end, an open end and a central portion disposed therebetween. The closed end of the tubular plug has a larger outer diameter than an outer diameter of the central portion. The open end has a plurality of resilient fingers defined by slots in the open end, the resilient fingers having finger tips which project radially outwardly with respect to the tubular plug. The microphone is dimensioned so as to fit coaxially inside the is tubular plug, and preferably, a grommet is provided around the microphone. The tubular locking mechanism has an inner diameter substantially equal to the outer diameter of the central portion and a longitudinal length slightly shorter than a combination of the central portion and the open end. Accordingly, the tubular locking mechanism is slidable over the resilient fingers after the tubular plug is inserted through the hole in the mask. This forces the resilient fingers radially inwardly until the entire tubular locking mechanism has passed over the finger tips of the resilient fingers at which time the finger tips snap outwardly to thereby lock the microphone mounting structure to the respiratory mask/bubble suit. Amplification circuitry is also provided.
|
1. A mounting structure for electrically connecting a microphone located on a first side of a protective barrier to a communication device located on an opposite side of said protective barrier, through a hole in the protective barrier, said mounting structure comprising:
a tubular plug for receiving conductive means which are electrically connected to said microphone, said tubular plug having a closed end, an open end and a central portion disposed therebetween, said closed end having a larger outer diameter than an outer diameter of the central portion, said open end having a plurality of resilient fingers defined by slots in said open end of the tubular plug, said resilient fingers having finger tips which project radially outwardly with respect to the tubular plug, said tubular plug having electrical contact means for electrically connecting an interior of said tubular plug with an exterior of said tubular plug; and a tubular locking mechanism having an inner diameter substantially equal to the outer diameter of said central portion and a longitudinal length slightly shorter than a combination of said central portion and said open end, said tubular locking mechanism being slidable over said resilient fingers after said tubular plug is inserted through said hole to thereby force said resilient fingers radially inwardly until the entire tubular locking mechanism has passed over the finger tips of the resilient fingers at which time the finger tips snap radially outwardly to thereby lock said mounting structure to the protective barrier, the protective barrier being locked between a front end of said tubular locking mechanism and the closed end of the tubular plug.
2. The mounting structure of
3. The mounting structure of
4. The mounting structure of
a second tubular plug having a closed end, an open end and a central portion disposed therebetween, said closed end of the second tubular plug having a larger outer diameter than an outer diameter of the central portion of the second tubular plug, said open end of the second tubular plug also having a plurality of resilient fingers defined by slots in said open end of the second tubular plug, said resilient fingers of the second tubular plug having finger tips which project radially outwardly with respect to the second tubular plug, said second tubular plug having second electrical contact means for electrically connecting an interior of said second tubular plug with an exterior of said second tubular plug, said interior of the second tubular plug being configured so as to receive an audio signal from said communication device when electrically connected to said interior of the second tubular plug and so as to transmit said audio signal to the second electrical contact means; a second tubular locking mechanism having an inner diameter substantially equal to the outer diameter of said central portion of the second tubular plug and a longitudinal length slightly shorter than a combination of said central portion and said open end of the second tubular plug, said second tubular locking mechanism being slidable over said resilient fingers of the second tubular plug after said second tubular plug is inserted through a hole in said protective barrier to thereby force said resilient fingers radially inwardly until the entire second tubular locking mechanism has passed over the finger tips of the resilient fingers of said second tubular plug at which time the finger tips snap radially outwardly to thereby lock said second tubular plug and said second tubular locking mechanism to the protective barrier, the protective barrier being locked between a front end of said second tubular locking mechanism and the closed end of the second tubular plug; and an earphone electrically connected via an earphone cable and said closed end of the second tubular plug to said second electrical contact means so that said audio signal is received and audibly broadcast by said earphone.
5. The mounting structure of
6. The mounting structure of
7. The mounting structure of
8. The mounting structure of
9. The mounting structure of
10. The mounting structure of
|
This is a continuation-in-part of U.S. Ser. No. 08,608,696 now U.S. Pat. No. 5,860,417, filed Feb. 29, 1996, which is a continuation-in-part of U.S. Ser. No. 08,372,330 now U.S. Pat. No. 5,503,141, filed Jan. 13, 1995.
The present invention relates to a microphone mounting structure, and in particular, a microphone mounting structure which permits easy and reliable conversion of a conventional respirator and/or bubble suit to a sound amplifying respirator and/or bubble suit.
It is known that conventional respirators and/or bubble suits make communications difficult between persons wearing the respirators and/or bubble suits. In particular, the wearer's voice is muffled and difficult to detect over significant distances. This problem is exacerbated when there is background noise, as during firefighting and other similarly hazardous emergency operations. In response to this problem, several attempts have been made to provide sound amplifying respirators and/or masks which facilitate communications among the wearers of the respirators and masks. Examples of such respirators and masks are illustrated by the following U.S. Patents:
PATENT NO. | PATENTEE |
5,307,793 | Sinclair et al. |
5,224,473 | Bloomfield |
5,159,641 | Sopko et al. |
5,138,666 | Bauer et al. |
5,060,308 | Bieback |
4,537,276 | Confer |
4,508,936 | Ingalls |
4,491,699 | Walker |
4,116,237 | Birch |
4,072,831 | Joscelyn |
3,314,424 | Berman |
3,180,333 | Lewis |
2,953,129 | Bloom et al. |
2,950,360 | Duncan |
Although the above exemplary respirators and masks are generally effective, there are several disadvantages associated therewith. The Joscelyn patent, for example, teaches a mounting structure for the microphone which is integrally formed with the mask. Thus, retro-fitting of existing masks with the arrangement of Joscelyn would be very difficult and time-consuming.
Still other disadvantages are associated with one or several ones of the above exemplary respirators and masks. These disadvantages include significant reductions in amplification quality resulting in distortion of the amplified voice; the need for expensive and excessively complex circuitry or manufacturing techniques; serious distortion if the mask is frequently bumped or otherwise subject to frequent quick movements; incompatibility with some irregularly shaped masks and smaller masks, such as filter masks; mounting of the microphone assembly to the mask using a threaded connection which may become loosened during extended use, such loosening of the threaded connection possibly compromising the air-tightness of the mask and thereby posing an extreme danger to the user of the masks in hazardous environments; and difficulty in removing the microphone temporarily from the mask for purposes of cleaning the mask.
It is a primary object of the present invention to overcome the deficiencies of the prior art by providing a microphone mounting structure which permits easy and reliable conversion of a conventional respirator and/or bubble suit into a sound amplifying respirator and/or bubble suit.
Another object of the present invention is to provide a small, light-weight microphone mounting structure which is compatible with almost any respirator mask, including paper filter masks, and positively locks thereto to prevent inadvertent loosening of the mounting structure or leakage through the mask.
Yet another object of the present invention is to provide a microphone mounting structure which does not require a pre-existing mounting feature or connector on the respirator mask or bubble suit, and instead breaches the mask or bubble suit and then re-establishes the air-tight characteristics thereof.
Still another object of the present invention is to provide a microphone mounting structure which does not require complex or expensive circuitry, nor does it require complex signal transmission means such as infra-red transmitters and receivers.
A further object of the present invention is to provide a microphone mounting structure which provides direct electrical connections between a microphone inside a respirator mask and/or bubble suit, and amplifying circuitry so as to provide enhanced voice signal quality.
Another object of the present invention is to provide a microphone mounting structure with an amplification circuit that provides maximum voice signal quality for voices detected within the mask and/or bubble suit by the microphone.
To achieve these and other objects, the present invention comprises a microphone mounting structure for mounting a microphone to a respiratory mask and/or bubble suit through a hole therein. The microphone mounting structure is thus able to convert virtually any conventional respiratory mask or bubble suit into a sound amplifying respiratory mask or bubble suit.
The microphone mounting structure comprises a tubular plug, a sleeve, and a tubular locking mechanism. The tubular plug has a closed end, an open end and a central portion disposed therebetween. The closed end of the tubular plug has a larger outer diameter than the outer diameter of the central portion. The open end has a plurality of resilient fingers defined by slots in the open end, the resilient fingers having Finger tips which project radially out with respect to the tubular plug. The tubular plug further comprises electrical contact means for electrically connecting an interior of the tubular plug with an exterior of the tubular plug.
The sleeve receives the microphone and has an outer diameter substantially equal to the inner diameter of the tubular plug so that the sleeve fits coaxially inside the tubular plug. Preferably, the sleeve has an internal diameter which matches the outer diameter of the microphone so that the microphone is frictionally retained within the sleeve. The sleeve, however, is preferably longer than the central portion and open end of the tubular plug. In this way, a portion of the sleeve projects out from the tubular plug and this, in turn, facilitates removal of the sleeve from within the tubular plug using, for example, needle-nosed pliers.
A microphone cover may also be provided which fits snugly over the projecting sleeve portion and protects the microphone from moisture, dust, and the like. The microphone cover is preferably arranged only over the projecting sleeve portion so that the resilient fingers of the tubular plug remain exposed for easy inspection.
The tubular locking mechanism cooperates with the tubular plug to lock the microphone mounting structure to the respiratory mask. In particular, the tubular locking mechanism includes an inner diameter substantially equal to the outer diameter of the central portion and a longitudinal length only slightly shorter than the combination of the central portion and the open end. By providing these dimensions, the tubular locking mechanism is slidable over the resilient fingers after the tubular plug has been inserted through the hole in the respiratory mask. Doing so, in turn, forces the resilient fingers radially inwardly until the entire tubular locking mechanism has passed over the finger tips of the resilient fingers, at which time the finger tips snap radially outwardly to thereby lock the microphone mounting structure to the respiratory mask. The respiratory Task, consequently, remains sandwiched and locked between the front end of the tubular locking mechanism and the closed end of the tubular plug.
The microphone mounting structure of the present invention preferably comprises three electrical contacts extending radially through the sleeve and arranged for electrical connection to the electrical contact means in the tubular plug. In addition, three electrical wires are provided for electrically connecting the electrical contacts to the microphone.
The microphone mounting structure preferably also comprises an internal alignment slot extending longitudinally along the central portion and open end of the tubular plug, and an external alignment tab which projects radially out from the sleeve for alignment with the internal alignment slot of the tubular plug. The alignment slot and tab are arranged such that, whenever the external alignment tab is received in the internal alignment slot, the external alignment tab prevents axial rotation of the sleeve with respect to the tubular plug. This arrangement helps keep the three electrical contacts of the sleeve aligned with the electrical contact means of the tubular plug.
Preferably, a socket is also provided at the closed end of the tubular plug. The socket receives an electrical plug which electrically connects the electrical contact means to an amplification circuit.
The microphone mounting structure can further comprise a circumferential flange projecting radially outwardly from the front end of the tubular locking mechanism. At least one resilient washer is preferably disposed coaxially around the central portion of the tubular plug, between the front end of the tubular locking mechanism and the closed end of the tubular plug.
According to a preferred arrangement, at least one and preferably all of the finger tips project radially outwardly and backwardly toward the central portion so that each of the corresponding resilient fingers has a semi-arrow-shaped distal end. In addition, the tubular locking mechanism includes an externally bevelled back end for lockingly engaging the semi-arrow-shaped distal end of the resilient fingers.
Amplification circuitry provides output sounds representative of the oral sounds which the microphone detects within the mask. The amplification circuitry may be provided entirely in a separate housing, or alternatively, may be manufactured using integrated chip technology so that certain circuit components are miniaturized and built into the closed end of the tubular plug. According to the latter arrangement, a speaker and power supply portions of the amplification circuitry would remain in a separate housing.
For purposes of this disclosure, the term "respiratory mask" is intended to broadly encompass all types of respiratory masks, including those attached to a supply of gas and those which merely filter air, including conventional paper filter masks.
An alternative embodiment of the mounting structure requires no sleeve and instead utilizes a microphone having socket sleeves. The socket sleeves are arranged so as to receive electrically conductive pins of the tubular plug and thereby establish electrical communication between the microphone and electrical contacts within the tubular plug. In the alternative embodiment, a grommet may surround the microphone; however, the grommet preferably includes no conductive elements.
The mounting structure of the present invention may be combined with other similar mounting structures disposed through respective holes in a bubble suit (or other protective barrier) to facilitate not only verbal communication through the respiratory mask, but also verbal communication through the bubble suit.
In addition, earphones inside a bubble suit may be electrically connected, via a mounting structure of the present invention, to an external communication device outside the bubble suit. When the external communication device includes a microphone, sounds and conversations which occur outside the bubble suit may be easily detected inside the bubble suit. Similarly, when the external communication device includes a transceiver, bi-directional communication is facilitated between the wearer of the bubble suit and remotely located personnel having similar transceivers.
In another embodiment of the invention, a cylinder is configured as a special sleeve for use with the plug of the alternative embodiment having electrically conductive pins. The cylinder has the same general size and shape as the sleeve, and is essentially used in the same manner. However, the cylinder is capable of receiving either a microphone or an electric plug, whereas the sleeve only receives a microphone.
The above and other objects and advantages will become more readily apparent when reference is made to the following description taken in conjunction with the accompanying drawings.
FIG. 18(a) is a perspective view of yet another alternative embodiment of a cylinder that is used with the plug of
FIG. 18(b) is a side view of the cylinder of FIG. 18(a).
A preferred embodiment of the present invention will now be described with reference to
According to the preferred embodiment, a microphone mounting structure 2 is provided for :mounting a microphone 4 to a respiratory mask 6. All that is required to effect mounting of the mounting structure 2 to the respiratory mask 6 is a hole 8 in the respiratory mask 6. Such a hole 8 can be easily cut or drilled through an existing conventional respiratory mask at any convenient location in the mask 6. It is preferably mounted in the front near the wearer's mouth. Accordingly, the microphone mounting structure 2 is able to convert virtually any conventional respiratory mask into a sound amplifying respiratory mask 6.
The microphone mounting structure 2 comprises a tubular plug 10, a sleeve 12, and a tubular locking mechanism 14. The tubular plug 10, sleeve 12, and tubular locking mechanism 14 are all made from non-conductive material, preferably a moldable plastic such as ZYTEL which is a commercially available high temperature nylon thermoplastic resin manufactured by DuPont. The tubular plug 10 has a closed end 16, an open end 18 and a central portion 20 disposed therebetween. The closed end 16 of the tubular plug 10 has a larger outer diameter than the outer diameter of the central portion 20. The open end 18 has a plurality of resilient fingers 22 defined by slots 24 in the open end 18, the resilient fingers 22 having finger tips 26 which project radially outwardly with respect to the tubular plug 10. The tubular plug 10 further includes electrical contact means 28 for electrically connecting the interior of the tubular plug 10 with the exterior of the tubular plug 10.
The sleeve 12 has an outer diameter substantially equal to the inner diameter of the tubular plug 10 so that the sleeve 12 fits coaxially inside the tubular plug 10. These dimensions preferably provide frictional retention of the sleeve 2 inside the tubular plug 10.
In addition, the sleeve 12 preferably has an internal diameter which matches the outer diameter of the microphone 4 so that the microphone 4 remains frictionally retained within the sleeve 12. The sleeve 12 is preferably longer than the combination of the central portion 20 and open end 18 in the tubular plug 10. In this way, portion 30 of the sleeve 12 projects out from the tubular plug 10 and this, in turn, facilitate removal of the sleeve 12 from within the tubular plug 10 using, for example, needle-nosed pliers.
A microphone cover 32 may also be provided which fits snugly over the projecting sleeve portion 30 and protects the microphone 4 from moisture, dust, and the like. The microphone cover 32 is preferably arranged only over the projecting sleeve portion 30 so that the resilient fingers 22 of the tubular plug 10 remain exposed for easy inspection. According to a preferred embodiment, the microphone cover 32 is made using water-impermeable high density cloth or water-impermeable tightly woven cloth.
The tubular locking mechanism 14 cooperates with the tubular plug 10 to lock the microphone mounting structure 2 to the respiratory mask 6. In particular, the tubular locking mechanism 14 includes an inner diameter substantially equal to the outer diameter of the central portion 20 and a longitudinal length only slightly shorter than the combination of the central portion 20 and the open end 18. By providing these dimensions, the tubular locking mechanism 14 is slidable over the resilient fingers 22 after the tubular plug 10 has been inserted through the hole 8 in the respiratory mask 6. Doing so, in turn, forces the resilient fingers 22 radially inwardly until the entire tubular locking mechanism 14 has passed over the finger tips 26 of the resilient fingers 22, at which time the finger tips 26 snap radially outwardly to thereby lock the microphone mounting structure 2 to the respiratory mask 6. The respiratory mask 6, consequently, remains sandwiched and locked between a front end 34 of the tubular locking mechanism 14 and the closed end 16 of the tubular plug 10.
The sleeve 12 preferably includes three electrical contacts 36 extending radially through the sleeve 12 and arranged for electrical connection to the electrical contact means 28 in the tubular plug 10. Preferably, frictional retention of the sleeve 12 within the tubular plug 10 is enhanced by the friction which exists between the three electrical contacts 36 in the sleeve 12 and the contact means 28 of the tubular plug 10. In addition, three electrical wires 38 are provided for electrically connecting the three electrical contacts 36 to the microphone 4 in any convenient, known manner.
The microphone 4 is preferably a commercially available ELECTRECT condenser microphone, sold commercially by Panasonic. The microphone 4 is responsive to oral sounds within the respiratory mask 6, and produces electrical signals indicative of these oral sounds. The microphone 4 is electrically connected to electrical contact means 28 using the three wires 38 so that these electrical signals will be provided to the contact means 28.
The plug 10 also preferably includes an internal alignment slot 40 extending longitudinally along the inner surface of central portion 20 and open end 18 of the tubular plug 10, and an external alignment tab 42 which projects radially outwardly from the sleeve 12 for alignment with the internal alignment slot 40 of the tubular plug 10. The alignment slot 40 and tab 42 are arranged such that, whenever the external alignment tab 42 is received in the internal alignment slot 40, the external alignment tab 42 prevents axial rotation of the sleeve 12 with respect to the tubular plug 10. This arrangement advantageously helps keep the three electrical contacts 36 of the sleeve 12 aligned with the electrical contact means 28 of the tubular plug 10.
Preferably, a socket 44 is Provided at the closed end 16 of the tubular plug 10. The socket 44 receives an electrical plug 46 which, in combination with an electrical cable 47, electrically connects the electrical contact means 28 to an amplification circuit 48 shown schematically in FIG 6. The electrical cable 47 may include an alligator clip 47A which engages an article of clothing to support the weight of the cable 47. This arrangement would be helpful in preventing inadvertent disconnection of the plug 46 from the socket 44 and stress failure of the connection between the cable 47 and the plug 46. In addition, the electrical cable 47 preferably consists of a commercially available, shielded electrical cable to thereby prevent the pick-up of a static hum on the cable 47.
According to a preferred use of the present invention, the separate housing 48A is secured to a shoulder of a user's clothing to thereby facilitate communications using a telephone, radio, or intercom system, any one or all of which may be found in nuclear and other industrial plants. Clear concise communications will increase wearer or user safety and, in groups, will add synergy and reduce work time in hazardous environments, thereby reducing exposure to such hazardous environments.
The amplification circuit 48 provides output sounds representative of the oral sounds which the microphone 4 detects within the mask 6. The amplification circuit 48 may be disposed entirely in a separate housing 48A, or alternatively, may be manufactured using integrated chip technology so that certain circuit components are miniaturized and built into the closed end 16 of the tubular plug 10. According to the latter arrangement, a speaker U3 and power supply portion 48B of the amplification circuit 48 would remain in the separate housing 48A, primarily due to their size.
The separate housing 48A can include an ON/OFF and volume control knob 48C, as is generally known, for turning the amplification circuit 48 on and off and for controlling gain in the amplification circuit 48 to thereby effect volume control. The separate housing 48A also includes a battery compartment, as is generally known, for removably storing batteries which power the amplification circuit 48. The knob 48C and battery compartment each include gaskets which maintain an air-tight seal between the interior and exterior of the separate housing 48A. Preferably, any element which breeches the separate housing 48A is equipped with a similar gasket. This way, the contents of the separate housing 48A remain free from environmental contamination.
The separate housing 48A preferably further includes warning labels which provide instructions regarding the recommended use and non-recommended use of the sound amplifying respirator. One such label, for example, would warn a user not to connect or disconnect the battery in an explosive environment.
Although a preferred amplification circuit 48 is illustrated in
REF. | DETAILS OF CIRCUIT ELEMENTS FROM | |
No. | AMPLIFICATION CIRCUIT 48 | |
4 | ELECTRECT condenser microphone | |
C1 | Audio coupling using a 0.022 μfarad | |
non-polarized film capacitor | ||
C2 | Audio coupling using a 0.05 μfarad | |
non-polarized film capacitor | ||
C3 | Coupling power to speaker using a 47 μfarad | |
polarized aluminum capacitor | ||
C4 | Power supply filter capacitor | |
having a 47 μfarad capacitance | ||
C5 | Audio bypass capacitor which provides a | |
0.1 μfarad bias for the preamplifier U1 | ||
C6 | Gain is increased to 200 using a 10 μfarad | |
polarized aluminum capacitor | ||
R2 | 1 KΩ input limiting resistor | |
R3 | 10 KΩ negative feedback resistor | |
R4 | 100 KΩ bias resistor to ground | |
R5 | 100 KΩ bias resistor to a positive | |
power supply terminal | ||
R6 | 270 Ω input limiting resistor | |
R7 | 10 KΩ potentiometer for providing volume control | |
U1 | 625 milliwatt preamplifier, an example of which is | |
commercially available under part number LM1458 IC | ||
U2 | 1 watt power amplifier, an example of which is | |
commercially available under part number LM386N-1 IC | ||
U3 | Speaker | |
(preferably, 1 watt, and 2 inch diameter) | ||
A significant portion of the amplification circuit 48 is commercially available from MCM TechKit of Centerville, Ohio, and is listed under audio amplifier number AA-1. The amplifier circuit 48 illustrated in
The pin designations in
The microphone mounting structure 2 can further include a circumferential flange 50 projecting radially out from the front end 34 of the tubular locking mechanism 14. The flange 50 advantageously provides a greater surface area squeezing the mask 6 between the tubular locking mechanism 14 and the large-diameter closed end 16 of the tubular plug 10. Preferably, the large-diameter closed end 16 of the tubular plug 10 and the circumferential flange 50, each have a projection 51 which is arranged so as to bite the mask 6. Each projection 51 is preferably coextensive with the flange 50 and the large-diameter closed end 16 of the tubular plug 10. This overall arrangement helps prevent stretching of the hole 8 in the mask 6 beyond the circumference of the mounting structure 2 and consequently prevents any undesirable leaks which might otherwise develop. The flange 50 therefore provides a more secure structural arrangement and a more reliable air-tight seal.
At least one resilient washer 52 is preferably disposed coaxially around the central portion 20 of the tubular plug 10, between the front end 34 of the tubular locking mechanism 14 and the closed end 16 of the tubular plug 10. The number of resilient washers 52 and their respective thicknesses depend primarily upon the resiliency and thickness of the mask 6 itself. Thick masks having a high resiliency typically need no washers 52, while thinner and less resilient masks may require one or more washers 52. The washers 52 are preferably made of neoprene rubber, or similar resilient materials which are capable of withstanding exposure to hostile environments.
According to a preferred arrangement, there are between six and eight fingers 22 in the tubular plug 10. Experiments with other numbers of fingers have yielded more brittle parts or an otherwise less effective locking arrangement. Nevertheless, such parts may be effective in limited applications of the microphone mounting structure 2, which applications would fall well within the scope and spirit of the present invention.
One and preferably all of the finger tips 26 project radially outwardly and backwardly toward the central portion 20 so that each of the corresponding resilient fingers 22 has a semi-arrow-shaped distal end. In addition, the tubular locking mechanism 14 includes an externally bevelled back end 54 for lockingly engaging the semi-arrow-shaped distal ends of the resilient fingers 22. This locking arrangement, once secured to the mask 6, advantageously prevents inadvertent loosening of the mounting structure 2.
A preferred method for securing the microphone mounting structure 2 to the respiratory mask 6 will now be described. Initially, the hole 8 is created at a desired mounting position on the mask 6. The hole 8 may be created in any known manner, including cutting and drilling, and is preferably made by pressing a sharp circular cutting element against a firm surface with the mask 6 sandwiched therebetween. The diameter of the sharp cutting element substantially matches the outside diameter of the central portion 20 of the tubular plug 10 so that the hole 8 will be of proper size.
Once the hole 8 has been created, the tubular plug 10 can be inserted into the hole 8, starting from outside of the mask 6 and penetrating the hole 8 toward the inside of the mask 6. It is understood that any resilient washers which are to remain on the outside of the mask 6, will be mounted circumferentially around the central portion 20 prior to insertion of the tubular plug 10 into the hole 8. Insertion of the tubular plug 10 continues until the closed end 16 of the tubular plug 10 abuts against the outside surface of the mask 6, or against a washer 52 disposed therebetween.
Next, any washers 52 which are to be mounted on an inside surface of the mask 6 are mounted circumferentially around the tubular plug 10 and then brought into contact with the inside surface of the mask 6. After the washers 52 are appropriately positioned, the tubular locking mechanism 14 is brought into axial alignment with the tubular plug 10 inside of the mask 6. This axial alignment is achieved such -hat the flange 50 faces the tubular plug 10. With the flange 50 facing the tubular plug 10, the locking mechanism 14 is brought against the finger tips 26 and then pressed toward the mask 6. This pressing action causes a radially inward displacement of the resilient fingers 22 which permits the tubular locking mechanism 14 to pass over the central portion 20 of the tubular plug 10 and into contact with the mask 6, or alternatively, into contact with a washer 52 disposed against the inside surface of the mask 6.
The tubular locking mechanism is then pressed harder against the mask 6 to cause compression of the mask 6 and/or resilient washers 52. Such compress-on permits the externally bevelled back end 54 of the locking mechanism 14 to pass beyond the finger tips 26 thus releasing the finger tips 26. Once released, the resilient fingers 22 snap outwardly so that the finger tips 26 lockingly engage the bevelled back end 54 of the tubular locking mechanism 14. This locking arrangement is securely maintained by the cooperating shapes of the finger tips 26 and the externally bevelled back end 54, combined with the back pressure exerted by the mask 6 and/or washers 52 by virtue of their compressed state. It is noted that, upon locking the foregoing elements as indicated above, the air-tight characteristic of the respiratory mask 6 is re-established.
This air-tight characteristic Pan be tested in non-filter masks by placing the mask over one's :ace, holding closed any air hoses to the mask 6, and subsequently inhaling. Confirmation of the air-tight characteristics will be evidenced by the ability to suck the mask into one's face. Likewise, the finger tips 26 of the resilient fingers 22 always remain exposed for visual verification of the locking arrangement.
Next, the microphone 4 is inserted into the sleeve 12 so that the sleeve 12 frictionally retains the microphone 4. The wires 38 are preferably pre-connected to respective ones of the electrical contacts 36; however, it is understood that a separate connector can be provided for making connections in the field. The microphone cover 32 is then mounted to the projecting sleeve portion 30.
Thereafter, the sleeve 12 is axially aligned with the tubular plug 10 inside the mask 6, and is rotationally positioned so that the external alignment tab 42 aligns with the internal alignment slot 40 of the tubular plug 10. Once the tab 42 and slot 40 are properly aligned, the sleeve 12 is forced into the open end 18 of the tubular plug 10 and driven therein until only the projecting sleeve portion 30 remains exposed. At this point, the sleeve 12 and the microphone 4 are frictionally retained inside the tubular plug 10, with the electrical contacts 36 engaging the electrical contact means 28 of the tubular plug 10. In this position, the sleeve 12 prevents the resilient fingers 22 from bending radially inwardly. This advantageously provides added security against inadvertent release of the tubular locking mechanism 14.
The microphone 4 is thus securely mounted to the mounting respiratory mask E. Thereafter, the microphone 4 can be electrically connected to the amplification circuit 48 by connecting the electrical plug 46 to the socket 44 of the tubular plug 10.
A particularly advantageous feature of the microphone mounting structure 2 is the ability to remove the combination of the microphone 4 and sleeve 12, while leaving the tubular plug 10 and the tubular locking mechanism 14 mounted to the mask 6. When the mask 6 is then washed, for example, the projecting sleeve portion 30 may be gripped using any suitable means and pulled to remove the combination of the sleeve 12, microphone 4, and microphone cover 32 out from the tubular plug 10 as a unit. Thereafter, the mask 6 can be washed without fear of damaging the microphone 4.
In the preferred structure, according to the present invention, the elements which seal the hole 8 (i.e., the tubular plug 10, tubular locking mechanism 14, and washers 52) remain attached to the mask 6, while the microphone 4 and sleeve 12 are readily removable. Further, once the seal is established by the former elements, there is no need to again break this seal to remove the microphone 4. This advantageously prevents repetitious wearing of the critical elements that establish and maintain the mask's seal. An enhanced level of safety is thereby provided.
With reference to
According to the alternative embodiment, the microphone mounting structure is used for mounting a microphone 104 to a respiratory mask 6 (shown in
The tubular plug 110 is very similar to that of the previously described embodiment, and Includes a closed end 116, an open end 118 and a central portion 120 disposed therebetween. The closed end 116 has a larger outer diameter than an outer diameter of the central portion 120, and the open end 118 has a plurality of resilient fingers 122 defined by slots 124 in the open end 118. The resilient fingers 122 have finger tips 126 which project radially outwardly with respect to the tubular plug 110. Additionally, the tubular plug 110 includes electrical contacts 136 for electrically connecting an interior of the tubular plug 110 with an exterior of the tubular plug 110.
The tubular locking mechanism 114 has an inner diameter substantially equal to the outer diameter of the central portion 120 and a longitudinal length slightly shorter than a combination of the central portion 120 and the open end 118. The tubular locking mechanism 114 is slidable over the resilient fingers 122 after the tubular plug 110 is inserted through the hole in the respirator mask to thereby force the resilient fingers 122 radially inwardly until the entire tubular locking mechanism 114 has passed over the finger tips 126 of the resilient fingers 122 at which time the finger tips 126 snap radially outwardly to thereby lock the microphone mounting structure to the respiratory mask. The respiratory mask therefore remains linked between a front end 134 of the tubular locking mechanism 114 and the closed end 116 of the tubular plug 110.
Preferably, a circumferential flange 150 projects radially outwardly from the front end 134 of the tubular locking mechanism 114. The flange 150 advantageously provides a greater surface area squeezing the mask between the tubular locking mechanism 114 and the large-diameter closed end 116 of the tubular plug 110. At least one resilient washer may be placed coaxially around the central portion 120, as indicated in the previously described embodiment, between the front end 134 of the tubular locking mechanism 114 and the closed end 116 of the tubular plug 110.
The microphone 104 of the alternative embodiment is illustrated, by way of example, in FIG. 11. Preferably, a grommet 105 is placed around the microphone 104. The grommet 105 has an outer diameter substantially equal to an inner diameter of the tubular plug 110 so that the grommet 105 and the microphone 104 snugly fit coaxially inside the tubular plug 110. Preferably, the grommet 105 is made of resilient material capable of cushioning the microphone 104 and preferably has an internal diameter which matches an outer diameter of the microphone 104 so that the microphone 104 is frictionally retained within the grommet 105. The grommet 105 is generally cup-shaped and has an annular bottom 109, as illustrated in FIG. 12.
Alternatively, the grommet 105 may be eliminated by manufacturing the tubular plug 110 with an inner diameter which matches the outer diameter of the microphone 104 so that the microphone 104 is frictionally retained by the inside wall of the tubular plug 110.
Preferably, the electrical contacts 136 include electrically conductive pins projecting into the interior of the tubular plug 110. The electrically conductive pins are arranged for insertion into correspondingly arranged socket sleeves 107 of the microphone 104 when the microphone 104 is contained within the tubular plug 110. Electrical communication is thereby established between the electrical contacts 136 and the microphone 104. A grommet 105 and a microphone 104 of the type illustrated are commercially available from DIGI-KEY Corporation and are currently sold under part numbers P9950-ND and P9970-ND, respectively. The commercially available microphone, however, has two solder connections instead of the socket sleeves 107 illustrated in FIG. 11. Accordingly, the microphone 104 of the alternative embodiment is created by soldering the socket sleeves 107 to the solder connections of the commercially available microphone.
Preferably, at least three socket sleeves 107 are soldered to the commercially available microphone, with two of the socket sleeves 107 being soldered to the same solder connection of the commercially available microphone, and the remaining one of the socket sleeves 107 being soldered to the other solder connection of the microphone. The use of at least three such socket sleeves 107 and three electrically conductive pins is preferred because of the resistance such an arrangement presents against bending of the electrically conductive pins and socket sleeves 107 during disconnection and interconnection of the sleeves 107 and electrically conductive pins.
In order to facilitate proper connection of the microphone 104 to the electrically conductive pins of the electrical contacts 136, a first alignment mark 142 is located at the open end 118 of the tubular plug 110 for alignment with a second alignment mark 143 associated with the microphone 104 and/or grommet 105. In particular, the first alignment mark 142 is arranged so that the electrically conductive pins are properly aligned with the socket sleeves 107 only when the first and second alignment marks 142,143 are aligned.
As illustrated in
Although a preferred amplification circuit 48 is illustrated in
REF. | DETAILS OF CIRCUIT ELEMENTS FROM | |
No. | ALTERNATIVE AMPLIFICATION CIRCUIT 48 | |
104 | Microphone commercially available | |
from DIGI-KEY Corp.: Part No. P9970-ND | ||
C1 | 470 μfarad capacitor; commercially available | |
from DIGI-KEY Corp.: Part No. P6335-ND | ||
C2, | 0.1 μfarad capacitor commercially | |
C6, | available from DIGI-Key Corp.: | |
C5, | Part No. P4525-ND | |
C9, | ||
C10 | ||
C3, | 1.0 μfarad capacitor: commercially available | |
C4, | from DIGI-KEY Corp.: Part No. P2105-ND | |
C5 | ||
C7, | 100 μfarad capacitor: commercially available | |
C11, | from DIGI-KEY Corp.: Part No. P2019-ND | |
C12 | ||
R1 | 2.2 KΩ-ND Resistor commercially available | |
from DIGI-KEY Corp. | ||
R2, | 10.KΩ-ND potentiometer commercially available | |
R9 | from DIGI-KEY Corp. R2 provides an | |
adjustable cut-off frequency for a filter | ||
defined by the combination of R2 and C4. | ||
R9 provides volume control. | ||
R3, | 1 kΩ-ND Resistor commercially available | |
R8 | from DIGI-KEY Corp. | |
R5, | 100 KΩ-ND Resistor commercially | |
R6, | available from DIGI-KEY Corp. | |
R7 | ||
U1 | TL082 Dual Operating Amp commercially | |
available from Motorola. The pin designations | ||
and the connection of these pins to various | ||
circuit elements are illustrated in the | ||
drawing. | ||
U2 | LM386 amplifier chip commercially available | |
from National Semiconductor | ||
U3 | Mylar speaker commercially available from | |
CUI/Stack, Inc. of Beaverton, Oregon: Part. | ||
No. 45-8B-04 | ||
B1 | Battery holder commercially available from | |
DIGI-KEY Corp.; Part No. BH9V-PC-ND | ||
R4 | 10KΩ-ND Resistor commercially available from | |
DIGI-KEY Corp. | ||
It is noted that the illustrated alternative embodiment does not include the externally bevelled back end 54 associated with the previous embodiment for engaging semi-arrow-shaped distal ends of the resilient fingers 26. Instead, the back end 154 of the tubular locking mechanism 114 is flat, as are the bottoms of the finger tips 126. The latter arrangement advantageously reduces manufacturing costs by avoiding the expense associated with creating the bevelling and the semi-arrow shaped distal ends in the previous embodiment.
In the illustrated embodiment, the tubular plug 110 does not include the projection 51 illustrated in connection with the previously illustrated embodiment (FIGS. 1-6). Although such a projection can be provided, it is preferably omitted to avoid additional manufacturing costs.
The microphone mounting structure of the alternative embodiment is utilized in much the same way as the previously recited embodiment. The only differences lie in the insertion of the microphone 104 into the tubular ping 110. In the alternative embodiment, there is no sleeve 12. Instead, the microphone 104 itself or the combination of the microphone 104 and its associated grommet 105 are inserted into the tubular plug with the first and second alignment marks 142,143 properly aligned. This way, the socket sleeves 107 receive the contact pins of the electrical contacts 136. Once the microphone 104 is inserted, the microphone 104 prevents the resilient fingers 122 from bending radially inwardly. This advantageously provides added security against inadvertent release of the tubular locking mechanism 114.
The microphone 104 is thus securely mounted to the respiratory mask 6. Thereafter, the microphone 104 can be electrically connected to the amplification circuit 48 by connecting an electrical plug 146, illustrated in
As illustrated in
The separate housing 148A also includes a battery compartment, as is generally known, for removably storing batteries which power the amplification circuit 48. A preferred battery compartment is commercially available from DIGI-KEY Corp. under Part No. BH9V-PL-ND.
The knob 148B and battery compartment each include gaskets which maintain an air-tight seal between the interior and exterior of the separate housing 148A. Preferably, any element which breeches the separate housing 148A is equipped with a similar gasket. This way, the contents of the separate housing 148A remain free from environmental contamination.
Preferably, as illustrated in
In a preferred alternative arrangement, the three-pin male receptacle connector 149 provides a protective seal from the external environment, an example of which is commercially available from Electroshield, Inc. of Yellow Springs Ohio, under Part No. 17282-3PG-300. When this alternative three-pin male receptacle connector is used, one of the three-contact straight female plugs 146 of the electrical cord 147 is preferably a sealed connector commercially available from Electroshield, Inc., under Part No. 16282-3SG-315.
The separate housing 148A preferably further includes warning labels which provide instructions regarding the recommended use and non-recommended use of the sound amplifying respirator. One such label, for example, would warn a user not to connect or disconnect the battery in an explosive environment.
Yet another preferred embodiment of the present invention will now be described with reference to FIG. 15. In
Such utilization of a protective outer barrier, such as a bubble suit 7, is generally known in the art of handling hazardous materials. The preferred embodiment schematically illustrated in
The communication device 348 may include an amplification circuit similar to the amplification circuits illustrated in
The arrangement illustrated n
During assembly, resilient washers 52 are preferably disposed coaxially around the central portion of each tubular plug 210,310 between the front end of the tubular locking mechanisms 214,314 and the closed end of the tubular plugs 210,310. The number of resilient washers 52 and their respective thicknesses depend primarily upon the resiliency and thickness of the mask 6 and the bubble suit 7. Masks and bubble suits which are thick and/or have high resiliency characteristics typically need no washers 52, while thinner and less resilient masks and bubble suits may require one or more washers 52. The washers 52 are preferably made of neoprene rubber, or similar resilient materials which are capable of withstanding exposure to hostile environments.
Attachment of the microphone mounting structure and the additional mounting structure to the mask 6 and bubble suit 7, respectively, is achieved in the same manner is in the previously described embodiments. Once the tubular locking mechanisms 214,314 are brought over the resilient fingers of tubular plugs 210,310 the two mounting structures are locked in place. Thereafter, insertion of the microphone into the first tubular plug 210 prevents inward displacement of the resilient fingers of the tubular plug 210 and thereby precludes inadvertent unlocking of the microphone mounting structure.
In order to establish electrical communication between the microphone and the communication device 348 external of the bubble suit 7, the socket at the closed end of the first tubular plug 210 is electrically connected to the electrically conductive pins inside the first tubular plug 210. A first electrical plug 346 has a configuration which matches the socket of the first tubular plug 210 and is received in the socket. Preferably, the first electrical plug 346 is identical to the three-contact straight female plugs 146 described in connection with the previous embodiment.
The first electrical plug 346 defines one distal end of the electrical cord 315. The other distal end of the electrical cord 315 includes a second electrical plug 347. The second electrical plug 347 has dimensions similar to that of the microphone and therefore is received in place of the microphone in the additional mounting structure. Preferably, the dimensions of the tubular plug 110 and the socket 144 thereof are such that the first electrical plug 346 and the second electrical plug 347 are identical.
The second electrical plug 347 slides into the second tubular plug 310 and electrically connects to the electrically conductive pins inside the second tubular plug 310. Preferably, a set of conductive socket sleeves 307 inside the second electrical plug 347 provide the electrical connection between the conductive pins inside the second tubular plug 310 and the electrical cord 315.
Upon insertion of the second electrical plug 347 into the second tubular member 310, inward displacement of the resilient fingers of the second tubular plug 310 is prevented, and this, in turn, precludes inadvertent unlocking of the additional mounting structure from the bubble suit 7.
A third electrical plug 348 has a configuration which matches the socket of the second tubular plug 310 and is received in the socket of the second tubular plug 310 to establish electrical communication with the electrically conductive pins in the second tubular plug 310. Preferably, the third electrical plug 348 is identical to the three-contact straight female plugs 146 described in connection with the previous embodiment.
Extending from the third electrical plug 348 is another electrical cord 316 which is electrically connected to the communication device 348 located externally of the protective barrier defined by the bubble suit 7.
The embodiment illustrated in
To further facilitate communications through the respiratory mask 6 and bubble suit 7, the embodiment illustrated in
In
It is understood that the second electrical plug 347 and second tubular plug 310 may include additional pins and conductors to that illustrated.
Preferably, at least two of the electrically conductive pins of the second tubular plug 310 define a dedicated audio conductor set for transmitting audio signals to the earphone 350. These audio signals may be derived from an external microphone located at the communication device 348, or alternatively, the audio signals may be derived from radio signals and/or other signals containing audio information which are received by the communication device 348 from a remote location.
In
In
The earphone 450 preferably includes an amplification circuit similar to that illustrated in FIG. 13. Alternatively, the microphone can be mounted in a separate communication device, as shown in
According to yet another alternative embodiment, the separate communication device may include an audio receiver for receiving radio or other signals containing audio information from remote locations and for communicating these signals to the earphones 350 via the tubular plug 410 and earphone cord 317.
According to a preferred embodiment of the communication device 348, the communication device 348 includes a radio transmitter for transmitting radio signals containing audio information derived from the microphone mounted inside the respiratory mask 6 and further includes a radio receiver for receiving radio signals containing audio information from a remote location. In addition, the radio receiver is electrically connected to the earphone (either 350 or 450) via dedicated audio conductors in the tubular plug (either 310 or 410) which penetrates the bubble suit 7. This way, audio signals indicative of the audio information from the remote location can be transmitted to the earphone (350 or 450), to thereby enable reception of the audio information by a person wearing the earphone in the bubble suit 7.
It is understood that some bubble suits utilize an external air supply connected to the bubble suit via a life-line commonly referred to as an "umbilical cord". Such bubble suits do not require respirator masks. Instead, the person in the bubble suit may be provided with a head-set which, in turn, includes both a microphone placed near the mouth and at least one earphone for placement in or adjacent to the wearer's ear(s). Such head-sets are generally known, especially in the telephony arts (e.g., head-sets for telephone operators and office receptionists).
The present invention advantageously facilitates electrical communication between such a head-set and a communication device such as microphones and amplification circuitry located externally of the bubble suit. When such an arrangement is used, there is no need for three different mounting structures (one in the respirator and two in the bubble suit). Instead, using the arrangement illustrated in
In addition, the head-set's microphone is preferably electrically connected directly to the plug 346 shown in
By combining the embodiments of
In an alternative embodiment for facilitating verbal communications between a person inside a mask-free bubble suit and persons outside the suit, the embodiment of
It is also understood that, when the bubble suit requires no respiratory mask, any of the microphone mounting structures illustrated in
FIG. 18(a) shows a cylinder 500 configured to be used with the systems of
In addition, the cylinder 500 has an internal diameter that matches the outer diameter of a microphone 104 (
Referring to
As shown in
The exterior lug 542 preferably extends the entire length of the cylinder 500 to provide added stability. However, the exterior lug 542 may also be a short fragment located at any point along the cylinder 500, though preferably located at the center on the exterior of the cylinder 500.
As further shown in
In the preferred embodiment, the internal lug 543 is shown as having a curved cross-section. However, the lug 543 may be configured in any shape that corresponds to the shape of orientation slots 547 located in conventional electrical plugs 547. For instance, the internal lug may be replaced by a slot that receives a projection located on an electrical plug. The internal lug 543 preferably extends about one-half the length of the cylinder 500 and lies flush with the end of the cylinder 500.
In addition, the internal lug 543 is located directly opposite the exterior lug 542. This is done so that the electrical contact pins 536 of tubular plug 510 are directly aligned with the corresponding female contact receptacles 549 of the electrical plug 546. Thus, the exterior and interior lugs 542, 543 of the cylinder 500 cooperate with the slot 540 of the tubular plug 510 and the exterior slot 547 of the electrical plug 546, respectively.
Further, when the electrical plug 546 receives the tubular plug 510, the lugs 542, 543 and slots 540, 547 prevent rotation of the electrical plug 546 with respect to the tubular plug 510. This, in turn, prevents the pins 536 from breaking off when inserted in female receptacles 549.
Likewise, cylinder 500 and plug 510 may be fitted with microphone 104, as opposed to electrical plug 546. In this case, the socket sleeves 107 of microphone 104 are aligned with the pins 536 of plug 510. Preferably the microphone has the same number of sleeves 107 as the number of pins 536 on plug 510, though there may be fewer sleeves 107 than pins 536. Accordingly, cylinder 500 is capable of receiving either microphone 104 or an electrical plug 546.
A microphone mounting structure 2 having plug 510 and cylinder 500 is assembled as follows. First, the tubular plug 510 is inserted into a hole 8 in a mask 6 or suit and a locking mechanism 114 is compressed over the plug 510 until the fingers 522 snap outwardly so that the finger tips engage the locking mechanism 114, as described more fully above in relation to the other embodiments of the invention.
Next, the cylinder 500 is axially aligned with the tubular plug 510 by aligning the exterior lug 542 of the cylinder 500 with the slot 540 of the plug 510. The plug 510 and locking collar are compressed together, along with any gaskets located therebetween, so as to reduce any collapse of the fingers 522 and ease insertion of the cylinder 500. The cylinder 500 is then inserted into the plug 510, starting with the chamfered end 502 of the cylinder 500. Once inserted, the cylinder 500 prevents the resilient fingers 522 from bending radially inward.
Once the cylinder 500 is in place, the user may selectively insert and remove either a microphone 104, electrical plug 546, or any other device that is connectable to pins 536 of tubular plug 510. The electrical plug 546, for instance, may be connected with an amplifier, two-way radio, headphones, or other electrical device. Thus, the invention may be configured in a variety of shapes and sizes and is not limited by the dimensions of the preferred embodiment.
The present embodiment is advantageous in that the assembly provides a ready access to any conventional electrical component. Once the cylinder 500 is in place, the user need not plug in a component until the system is to be used. In addition, the cylinder 500 aligns pins 536 of tubular plug 510 with the female receptacles 549 of the electrical plug 546 or the sleeves 107 of microphone 107.
While the present invention has been described with reference to the above preferred embodiments and drawings, it is understood that the invention is not limited to these embodiments. For example, numerous variations of, and modifications to, the above embodiments will become subsequently apparent, which variations and modifications fall well within the scope and spirit of the present invention. Accordingly, it is understood that the present invention is limited only by the scope of the appended claims.
Kettl, Lonnie Joe, Mikronis, James Christopher
Patent | Priority | Assignee | Title |
10004497, | Mar 26 2014 | Cilag GmbH International | Interface systems for use with surgical instruments |
10004498, | Jan 31 2006 | Cilag GmbH International | Surgical instrument comprising a plurality of articulation joints |
10004501, | Dec 18 2014 | Cilag GmbH International | Surgical instruments with improved closure arrangements |
10004505, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10004506, | May 27 2011 | Cilag GmbH International | Surgical system |
10010324, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge compromising fastener cavities including fastener control features |
10013049, | Mar 26 2014 | Cilag GmbH International | Power management through sleep options of segmented circuit and wake up control |
10016199, | Sep 05 2014 | Cilag GmbH International | Polarity of hall magnet to identify cartridge type |
10028742, | Nov 09 2005 | Cilag GmbH International | Staple cartridge comprising staples with different unformed heights |
10028743, | Sep 30 2010 | Cilag GmbH International | Staple cartridge assembly comprising an implantable layer |
10028761, | Mar 26 2014 | Cilag GmbH International | Feedback algorithms for manual bailout systems for surgical instruments |
10045776, | Mar 06 2015 | Cilag GmbH International | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
10045778, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
10045779, | Feb 27 2015 | Cilag GmbH International | Surgical instrument system comprising an inspection station |
10045781, | Jun 13 2014 | Cilag GmbH International | Closure lockout systems for surgical instruments |
10052044, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
10052099, | Jan 31 2006 | Cilag GmbH International | Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps |
10052100, | Jan 31 2006 | Cilag GmbH International | Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement |
10052102, | Jun 18 2015 | Cilag GmbH International | Surgical end effectors with dual cam actuated jaw closing features |
10052104, | Oct 16 2014 | Cilag GmbH International | Staple cartridge comprising a tissue thickness compensator |
10058963, | May 27 2011 | Cilag GmbH International | Automated end effector component reloading system for use with a robotic system |
10064621, | Jun 15 2012 | Cilag GmbH International | Articulatable surgical instrument comprising a firing drive |
10064624, | Sep 30 2010 | Cilag GmbH International | End effector with implantable layer |
10064688, | Mar 23 2006 | Cilag GmbH International | Surgical system with selectively articulatable end effector |
10070861, | Mar 23 2006 | Cilag GmbH International | Articulatable surgical device |
10070863, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a fixed anvil |
10071452, | May 27 2011 | Cilag GmbH International | Automated end effector component reloading system for use with a robotic system |
10076325, | Oct 13 2014 | Cilag GmbH International | Surgical stapling apparatus comprising a tissue stop |
10076326, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having current mirror-based motor control |
10085748, | Dec 18 2014 | Cilag GmbH International | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
10085751, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having temperature-based motor control |
10098636, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having force feedback capabilities |
10098642, | Aug 26 2015 | Cilag GmbH International | Surgical staples comprising features for improved fastening of tissue |
10105136, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
10105139, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having downstream current-based motor control |
10111679, | Sep 05 2014 | Cilag GmbH International | Circuitry and sensors for powered medical device |
10117649, | Dec 18 2014 | Cilag GmbH International | Surgical instrument assembly comprising a lockable articulation system |
10117652, | Mar 28 2012 | Cilag GmbH International | End effector comprising a tissue thickness compensator and progressively released attachment members |
10117653, | Mar 26 2014 | Cilag GmbH International | Systems and methods for controlling a segmented circuit |
10130361, | Sep 23 2008 | Cilag GmbH International | Robotically-controller motorized surgical tool with an end effector |
10130366, | May 27 2011 | Cilag GmbH International | Automated reloading devices for replacing used end effectors on robotic surgical systems |
10135242, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
10136887, | Apr 16 2013 | Cilag GmbH International | Drive system decoupling arrangement for a surgical instrument |
10136889, | Mar 26 2014 | Cilag GmbH International | Systems and methods for controlling a segmented circuit |
10136890, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising a variable thickness compressible portion |
10149679, | Nov 09 2005 | Cilag GmbH International | Surgical instrument comprising drive systems |
10149680, | Apr 16 2013 | Cilag GmbH International | Surgical instrument comprising a gap setting system |
10149682, | Sep 30 2010 | Cilag GmbH International | Stapling system including an actuation system |
10149683, | Oct 10 2008 | Cilag GmbH International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
10158931, | Feb 02 2017 | Shure Acquisition Holdings, Inc | Microphone connector, assembly and system |
10159482, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
10159483, | Feb 27 2015 | Cilag GmbH International | Surgical apparatus configured to track an end-of-life parameter |
10166416, | Feb 01 2013 | 3M Innovative Properties Company | Respirator mask speech enhancement apparatus and method |
10172616, | Sep 29 2006 | Cilag GmbH International | Surgical staple cartridge |
10172620, | Sep 30 2015 | Cilag GmbH International | Compressible adjuncts with bonding nodes |
10180463, | Feb 27 2015 | Cilag GmbH International | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
10182816, | Feb 27 2015 | Cilag GmbH International | Charging system that enables emergency resolutions for charging a battery |
10182819, | Sep 30 2010 | Cilag GmbH International | Implantable layer assemblies |
10188385, | Dec 18 2014 | Cilag GmbH International | Surgical instrument system comprising lockable systems |
10194910, | Sep 30 2010 | Cilag GmbH International | Stapling assemblies comprising a layer |
10201349, | Aug 23 2013 | Cilag GmbH International | End effector detection and firing rate modulation systems for surgical instruments |
10201363, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical instrument |
10201364, | Mar 26 2014 | Cilag GmbH International | Surgical instrument comprising a rotatable shaft |
10206605, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
10206676, | Feb 14 2008 | Cilag GmbH International | Surgical cutting and fastening instrument |
10206677, | Sep 26 2014 | Cilag GmbH International | Surgical staple and driver arrangements for staple cartridges |
10206678, | Oct 03 2006 | Cilag GmbH International | Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument |
10211586, | Jun 28 2017 | Cilag GmbH International | Surgical shaft assemblies with watertight housings |
10213201, | Mar 31 2015 | Cilag GmbH International | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
10213262, | Mar 23 2006 | Cilag GmbH International | Manipulatable surgical systems with selectively articulatable fastening device |
10226249, | Mar 01 2013 | Cilag GmbH International | Articulatable surgical instruments with conductive pathways for signal communication |
10226250, | Feb 27 2015 | Cilag GmbH International | Modular stapling assembly |
10231794, | May 27 2011 | Cilag GmbH International | Surgical stapling instruments with rotatable staple deployment arrangements |
10238385, | Feb 14 2008 | Cilag GmbH International | Surgical instrument system for evaluating tissue impedance |
10238386, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
10238387, | Feb 14 2008 | Cilag GmbH International | Surgical instrument comprising a control system |
10238389, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
10238391, | Mar 14 2013 | Cilag GmbH International | Drive train control arrangements for modular surgical instruments |
10245027, | Dec 18 2014 | Cilag GmbH International | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge |
10245028, | Feb 27 2015 | Cilag GmbH International | Power adapter for a surgical instrument |
10245029, | Feb 09 2016 | Cilag GmbH International | Surgical instrument with articulating and axially translatable end effector |
10245030, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with tensioning arrangements for cable driven articulation systems |
10245032, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
10245033, | Mar 06 2015 | Cilag GmbH International | Surgical instrument comprising a lockable battery housing |
10245035, | Aug 31 2005 | Cilag GmbH International | Stapling assembly configured to produce different formed staple heights |
10258330, | Sep 30 2010 | Cilag GmbH International | End effector including an implantable arrangement |
10258331, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
10258332, | Sep 30 2010 | Cilag GmbH International | Stapling system comprising an adjunct and a flowable adhesive |
10258333, | Jun 28 2012 | Cilag GmbH International | Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system |
10258418, | Jun 29 2017 | Cilag GmbH International | System for controlling articulation forces |
10265067, | Feb 14 2008 | Cilag GmbH International | Surgical instrument including a regulator and a control system |
10265068, | Dec 30 2015 | Cilag GmbH International | Surgical instruments with separable motors and motor control circuits |
10265072, | Sep 30 2010 | Cilag GmbH International | Surgical stapling system comprising an end effector including an implantable layer |
10265074, | Sep 30 2010 | Cilag GmbH International | Implantable layers for surgical stapling devices |
10271845, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a cam and driver arrangement |
10271846, | Aug 31 2005 | Cilag GmbH International | Staple cartridge for use with a surgical stapler |
10271849, | Sep 30 2015 | Cilag GmbH International | Woven constructs with interlocked standing fibers |
10278697, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
10278702, | Jul 28 2004 | Cilag GmbH International | Stapling system comprising a firing bar and a lockout |
10278722, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument |
10278780, | Jan 10 2007 | Cilag GmbH International | Surgical instrument for use with robotic system |
10285695, | Mar 01 2013 | Cilag GmbH International | Articulatable surgical instruments with conductive pathways |
10285699, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct |
10292704, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
10292707, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument incorporating a firing mechanism |
10293100, | Jul 28 2004 | Cilag GmbH International | Surgical stapling instrument having a medical substance dispenser |
10299787, | Jun 04 2007 | Cilag GmbH International | Stapling system comprising rotary inputs |
10299792, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising non-uniform fasteners |
10299817, | Jan 31 2006 | Cilag GmbH International | Motor-driven fastening assembly |
10299878, | Sep 25 2015 | Cilag GmbH International | Implantable adjunct systems for determining adjunct skew |
10307160, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct assemblies with attachment layers |
10307163, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10307170, | Jun 20 2017 | Cilag GmbH International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
10314589, | Jun 27 2006 | Cilag GmbH International | Surgical instrument including a shifting assembly |
10314590, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
10321907, | Feb 27 2015 | Cilag GmbH International | System for monitoring whether a surgical instrument needs to be serviced |
10321909, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple including deformable members |
10327764, | Sep 26 2014 | Cilag GmbH International | Method for creating a flexible staple line |
10327765, | Jun 04 2007 | Cilag GmbH International | Drive systems for surgical instruments |
10327767, | Jun 20 2017 | Cilag GmbH International | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
10327769, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having motor control based on a drive system component |
10327776, | Apr 16 2014 | Cilag GmbH International | Surgical stapling buttresses and adjunct materials |
10327777, | Sep 30 2015 | Cilag GmbH International | Implantable layer comprising plastically deformed fibers |
10335145, | Apr 15 2016 | Cilag GmbH International | Modular surgical instrument with configurable operating mode |
10335148, | Sep 30 2010 | Cilag GmbH International | Staple cartridge including a tissue thickness compensator for a surgical stapler |
10335150, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising an implantable layer |
10335151, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument |
10342541, | Oct 03 2006 | Cilag GmbH International | Surgical instruments with E-beam driver and rotary drive arrangements |
10357247, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with multiple program responses during a firing motion |
10363031, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensators for surgical staplers |
10363033, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled surgical instruments |
10363036, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having force-based motor control |
10363037, | Apr 18 2016 | Cilag GmbH International | Surgical instrument system comprising a magnetic lockout |
10368863, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
10368864, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling displaying motor velocity for a surgical instrument |
10368865, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
10368867, | Apr 18 2016 | Cilag GmbH International | Surgical instrument comprising a lockout |
10376263, | Apr 01 2016 | Cilag GmbH International | Anvil modification members for surgical staplers |
10383630, | Jun 28 2012 | Cilag GmbH International | Surgical stapling device with rotary driven firing member |
10383633, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical assembly |
10383634, | Jul 28 2004 | Cilag GmbH International | Stapling system incorporating a firing lockout |
10390823, | Feb 15 2008 | Cilag GmbH International | End effector comprising an adjunct |
10390825, | Mar 31 2015 | Cilag GmbH International | Surgical instrument with progressive rotary drive systems |
10390829, | Aug 26 2015 | Cilag GmbH International | Staples comprising a cover |
10390841, | Jun 20 2017 | Cilag GmbH International | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
10398433, | Mar 28 2007 | Cilag GmbH International | Laparoscopic clamp load measuring devices |
10398434, | Jun 29 2017 | Cilag GmbH International | Closed loop velocity control of closure member for robotic surgical instrument |
10398436, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising staples positioned within a compressible portion thereof |
10405857, | Apr 16 2013 | Cilag GmbH International | Powered linear surgical stapler |
10405859, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with adjustable stop/start control during a firing motion |
10413291, | Feb 09 2016 | Cilag GmbH International | Surgical instrument articulation mechanism with slotted secondary constraint |
10413294, | Jun 28 2012 | Cilag GmbH International | Shaft assembly arrangements for surgical instruments |
10420549, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
10420550, | Feb 06 2009 | Cilag GmbH International | Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated |
10420553, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
10420555, | Jun 28 2012 | Cilag GmbH International | Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes |
10420560, | Jun 27 2006 | Cilag GmbH International | Manually driven surgical cutting and fastening instrument |
10420561, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument |
10426463, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having a feedback system |
10426467, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with detection sensors |
10426469, | Apr 18 2016 | Cilag GmbH International | Surgical instrument comprising a primary firing lockout and a secondary firing lockout |
10426471, | Dec 21 2016 | Cilag GmbH International | Surgical instrument with multiple failure response modes |
10426476, | Sep 26 2014 | Cilag GmbH International | Circular fastener cartridges for applying radially expandable fastener lines |
10426477, | Sep 26 2014 | Cilag GmbH International | Staple cartridge assembly including a ramp |
10426478, | May 27 2011 | Cilag GmbH International | Surgical stapling systems |
10426481, | Feb 24 2014 | Cilag GmbH International | Implantable layer assemblies |
10433837, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with multiple link articulation arrangements |
10433840, | Apr 18 2016 | Cilag GmbH International | Surgical instrument comprising a replaceable cartridge jaw |
10433844, | Mar 31 2015 | Cilag GmbH International | Surgical instrument with selectively disengageable threaded drive systems |
10433845, | Aug 26 2015 | Cilag GmbH International | Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading |
10433846, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
10433918, | Jan 10 2007 | Cilag GmbH International | Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke |
10441280, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
10441281, | Aug 23 2013 | Cilag GmbH International | surgical instrument including securing and aligning features |
10441285, | Mar 28 2012 | Cilag GmbH International | Tissue thickness compensator comprising tissue ingrowth features |
10441369, | Jan 10 2007 | Cilag GmbH International | Articulatable surgical instrument configured for detachable use with a robotic system |
10448948, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
10448950, | Dec 21 2016 | Cilag GmbH International | Surgical staplers with independently actuatable closing and firing systems |
10448952, | Sep 29 2006 | Cilag GmbH International | End effector for use with a surgical fastening instrument |
10456133, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
10456137, | Apr 15 2016 | Cilag GmbH International | Staple formation detection mechanisms |
10463369, | Aug 31 2005 | Cilag GmbH International | Disposable end effector for use with a surgical instrument |
10463370, | Feb 14 2008 | Ethicon LLC | Motorized surgical instrument |
10463372, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising multiple regions |
10463383, | Jan 31 2006 | Cilag GmbH International | Stapling instrument including a sensing system |
10463384, | Jan 31 2006 | Cilag GmbH International | Stapling assembly |
10470762, | Mar 14 2013 | Cilag GmbH International | Multi-function motor for a surgical instrument |
10470763, | Feb 14 2008 | Cilag GmbH International | Surgical cutting and fastening instrument including a sensing system |
10470764, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with closure stroke reduction arrangements |
10470768, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge including a layer attached thereto |
10478181, | Apr 18 2016 | Cilag GmbH International | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
10478188, | Sep 30 2015 | Cilag GmbH International | Implantable layer comprising a constricted configuration |
10485536, | Sep 30 2010 | Cilag GmbH International | Tissue stapler having an anti-microbial agent |
10485537, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
10485539, | Jan 31 2006 | Cilag GmbH International | Surgical instrument with firing lockout |
10485541, | Jun 28 2012 | Cilag GmbH International | Robotically powered surgical device with manually-actuatable reversing system |
10485543, | Dec 21 2016 | Cilag GmbH International | Anvil having a knife slot width |
10485546, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical assembly |
10485547, | Jul 28 2004 | Cilag GmbH International | Surgical staple cartridges |
10492783, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with improved stop/start control during a firing motion |
10492785, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising a lockout |
10499890, | Jan 31 2006 | Cilag GmbH International | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
10499914, | Dec 21 2016 | Cilag GmbH International | Staple forming pocket arrangements |
10517590, | Jan 10 2007 | Cilag GmbH International | Powered surgical instrument having a transmission system |
10517594, | Oct 29 2014 | Cilag GmbH International | Cartridge assemblies for surgical staplers |
10517595, | Dec 21 2016 | Cilag GmbH International | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
10517596, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical instruments with articulation stroke amplification features |
10517682, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and remote sensor |
10524787, | Mar 06 2015 | Cilag GmbH International | Powered surgical instrument with parameter-based firing rate |
10524788, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with attachment regions |
10524789, | Dec 21 2016 | Cilag GmbH International | Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration |
10524790, | May 27 2011 | Cilag GmbH International | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
10531887, | Mar 06 2015 | Cilag GmbH International | Powered surgical instrument including speed display |
10537325, | Dec 21 2016 | Cilag GmbH International | Staple forming pocket arrangement to accommodate different types of staples |
10542974, | Feb 14 2008 | Cilag GmbH International | Surgical instrument including a control system |
10542982, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising first and second articulation lockouts |
10542988, | Apr 16 2014 | Cilag GmbH International | End effector comprising an anvil including projections extending therefrom |
10548504, | Mar 06 2015 | Cilag GmbH International | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
10548600, | Sep 30 2010 | Cilag GmbH International | Multiple thickness implantable layers for surgical stapling devices |
10561420, | Sep 30 2015 | Cilag GmbH International | Tubular absorbable constructs |
10561422, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising deployable tissue engaging members |
10568624, | Dec 21 2016 | Cilag GmbH International | Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems |
10568625, | Dec 21 2016 | Cilag GmbH International | Staple cartridges and arrangements of staples and staple cavities therein |
10568626, | Dec 21 2016 | Cilag GmbH International | Surgical instruments with jaw opening features for increasing a jaw opening distance |
10568629, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument |
10568652, | Sep 29 2006 | Cilag GmbH International | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
10575868, | Mar 01 2013 | Cilag GmbH International | Surgical instrument with coupler assembly |
10582928, | Dec 21 2016 | Cilag GmbH International | Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system |
10588623, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
10588625, | Feb 09 2016 | Cilag GmbH International | Articulatable surgical instruments with off-axis firing beam arrangements |
10588626, | Mar 26 2014 | Cilag GmbH International | Surgical instrument displaying subsequent step of use |
10588630, | Dec 21 2016 | Cilag GmbH International | Surgical tool assemblies with closure stroke reduction features |
10588631, | Dec 21 2016 | Cilag GmbH International | Surgical instruments with positive jaw opening features |
10588632, | Dec 21 2016 | Cilag GmbH International | Surgical end effectors and firing members thereof |
10588633, | Jun 28 2017 | Cilag GmbH International | Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing |
10595862, | Sep 29 2006 | Cilag GmbH International | Staple cartridge including a compressible member |
10595882, | Jun 20 2017 | Cilag GmbH International | Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument |
10603036, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock |
10603039, | Sep 30 2015 | Cilag GmbH International | Progressively releasable implantable adjunct for use with a surgical stapling instrument |
10610224, | Dec 21 2016 | Cilag GmbH International | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
10617412, | Mar 06 2015 | Cilag GmbH International | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
10617413, | Apr 01 2016 | Cilag GmbH International | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
10617414, | Dec 21 2016 | Cilag GmbH International | Closure member arrangements for surgical instruments |
10617416, | Mar 14 2013 | Cilag GmbH International | Control systems for surgical instruments |
10617417, | Nov 06 2014 | Cilag GmbH International | Staple cartridge comprising a releasable adjunct material |
10617418, | Aug 17 2015 | Cilag GmbH International | Implantable layers for a surgical instrument |
10617420, | May 27 2011 | Cilag GmbH International | Surgical system comprising drive systems |
10624633, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
10624634, | Aug 23 2013 | Cilag GmbH International | Firing trigger lockout arrangements for surgical instruments |
10624635, | Dec 21 2016 | Cilag GmbH International | Firing members with non-parallel jaw engagement features for surgical end effectors |
10624861, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator configured to redistribute compressive forces |
10631859, | Jun 27 2017 | Cilag GmbH International | Articulation systems for surgical instruments |
10639034, | Dec 21 2016 | Cilag GmbH International | Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present |
10639035, | Dec 21 2016 | Cilag GmbH International | Surgical stapling instruments and replaceable tool assemblies thereof |
10639036, | Feb 14 2008 | Cilag GmbH International | Robotically-controlled motorized surgical cutting and fastening instrument |
10639037, | Jun 28 2017 | Cilag GmbH International | Surgical instrument with axially movable closure member |
10639115, | Jun 28 2012 | Cilag GmbH International | Surgical end effectors having angled tissue-contacting surfaces |
10646220, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling displacement member velocity for a surgical instrument |
10653413, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly |
10653417, | Jan 31 2006 | Cilag GmbH International | Surgical instrument |
10653435, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
10653570, | Jun 28 2012 | The Procter & Gamble Company | Absorbent articles with improved core |
10660640, | Feb 14 2008 | Cilag GmbH International | Motorized surgical cutting and fastening instrument |
10667808, | Mar 28 2012 | Cilag GmbH International | Staple cartridge comprising an absorbable adjunct |
10667809, | Dec 21 2016 | Cilag GmbH International | Staple cartridge and staple cartridge channel comprising windows defined therein |
10667810, | Dec 21 2016 | Cilag GmbH International | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
10667811, | Dec 21 2016 | Cilag GmbH International | Surgical stapling instruments and staple-forming anvils |
10675025, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising separately actuatable and retractable systems |
10675026, | Dec 21 2016 | Cilag GmbH International | Methods of stapling tissue |
10675028, | Jan 31 2006 | Cilag GmbH International | Powered surgical instruments with firing system lockout arrangements |
10682134, | Dec 21 2017 | Cilag GmbH International | Continuous use self-propelled stapling instrument |
10682138, | Dec 21 2016 | Cilag GmbH International | Bilaterally asymmetric staple forming pocket pairs |
10682141, | Feb 14 2008 | Cilag GmbH International | Surgical device including a control system |
10682142, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatus including an articulation system |
10687806, | Mar 06 2015 | Cilag GmbH International | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
10687809, | Dec 21 2016 | Cilag GmbH International | Surgical staple cartridge with movable camming member configured to disengage firing member lockout features |
10687812, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
10687813, | Dec 15 2017 | Cilag GmbH International | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
10687817, | Jul 28 2004 | Cilag GmbH International | Stapling device comprising a firing member lockout |
10695055, | Dec 21 2016 | Cilag GmbH International | Firing assembly comprising a lockout |
10695057, | Jun 28 2017 | Cilag GmbH International | Surgical instrument lockout arrangement |
10695058, | Dec 18 2014 | Cilag GmbH International | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
10695062, | Oct 01 2010 | Cilag GmbH International | Surgical instrument including a retractable firing member |
10695063, | Feb 13 2012 | Cilag GmbH International | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
10702266, | Apr 16 2013 | Cilag GmbH International | Surgical instrument system |
10702267, | Jun 29 2007 | Cilag GmbH International | Surgical stapling instrument having a releasable buttress material |
10709468, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument |
10716563, | Jul 28 2004 | Cilag GmbH International | Stapling system comprising an instrument assembly including a lockout |
10716565, | Dec 19 2017 | Cilag GmbH International | Surgical instruments with dual articulation drivers |
10716568, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatus with control features operable with one hand |
10716614, | Jun 28 2017 | Cilag GmbH International | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
10722232, | Feb 14 2008 | Cilag GmbH International | Surgical instrument for use with different cartridges |
10729432, | Mar 06 2015 | Cilag GmbH International | Methods for operating a powered surgical instrument |
10729436, | Aug 31 2005 | Cilag GmbH International | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
10729501, | Sep 29 2017 | Cilag GmbH International | Systems and methods for language selection of a surgical instrument |
10729509, | Dec 19 2017 | Cilag GmbH International | Surgical instrument comprising closure and firing locking mechanism |
10736628, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
10736629, | Dec 21 2016 | Cilag GmbH International | Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems |
10736630, | Oct 13 2014 | Cilag GmbH International | Staple cartridge |
10736633, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with looping members |
10736634, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument including a drive system |
10736636, | Dec 10 2014 | Cilag GmbH International | Articulatable surgical instrument system |
10743849, | Jan 31 2006 | Cilag GmbH International | Stapling system including an articulation system |
10743851, | Feb 14 2008 | Cilag GmbH International | Interchangeable tools for surgical instruments |
10743868, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising a pivotable distal head |
10743870, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatus with interlockable firing system |
10743872, | Sep 29 2017 | Cilag GmbH International | System and methods for controlling a display of a surgical instrument |
10743873, | Dec 18 2014 | Cilag GmbH International | Drive arrangements for articulatable surgical instruments |
10743874, | Dec 15 2017 | Cilag GmbH International | Sealed adapters for use with electromechanical surgical instruments |
10743875, | Dec 15 2017 | Cilag GmbH International | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
10743877, | Sep 30 2010 | Cilag GmbH International | Surgical stapler with floating anvil |
10750266, | Feb 02 2017 | Shure Acquisition Holdings, Inc. | Microphone connector, assembly and system |
10751053, | Sep 26 2014 | Cilag GmbH International | Fastener cartridges for applying expandable fastener lines |
10751076, | Dec 24 2009 | Cilag GmbH International | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
10751138, | Jan 10 2007 | Cilag GmbH International | Surgical instrument for use with a robotic system |
10758229, | Dec 21 2016 | Cilag GmbH International | Surgical instrument comprising improved jaw control |
10758230, | Dec 21 2016 | Cilag GmbH International | Surgical instrument with primary and safety processors |
10758232, | Jun 28 2017 | Cilag GmbH International | Surgical instrument with positive jaw opening features |
10758233, | Feb 05 2009 | Cilag GmbH International | Articulatable surgical instrument comprising a firing drive |
10765425, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
10765427, | Jun 28 2017 | Cilag GmbH International | Method for articulating a surgical instrument |
10765429, | Sep 29 2017 | Cilag GmbH International | Systems and methods for providing alerts according to the operational state of a surgical instrument |
10765432, | Feb 14 2008 | Cilag GmbH International | Surgical device including a control system |
10772625, | Mar 06 2015 | Cilag GmbH International | Signal and power communication system positioned on a rotatable shaft |
10772629, | Jun 27 2017 | Cilag GmbH International | Surgical anvil arrangements |
10779820, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling motor speed according to user input for a surgical instrument |
10779821, | Aug 20 2018 | Cilag GmbH International | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
10779822, | Feb 14 2008 | Cilag GmbH International | System including a surgical cutting and fastening instrument |
10779823, | Dec 21 2016 | Cilag GmbH International | Firing member pin angle |
10779824, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an articulation system lockable by a closure system |
10779825, | Dec 15 2017 | Cilag GmbH International | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
10779826, | Dec 15 2017 | Cilag GmbH International | Methods of operating surgical end effectors |
10779903, | Oct 31 2017 | Cilag GmbH International | Positive shaft rotation lock activated by jaw closure |
10780539, | May 27 2011 | Cilag GmbH International | Stapling instrument for use with a robotic system |
10786253, | Jun 28 2017 | Cilag GmbH International | Surgical end effectors with improved jaw aperture arrangements |
10796471, | Sep 29 2017 | Cilag GmbH International | Systems and methods of displaying a knife position for a surgical instrument |
10799240, | Jul 28 2004 | Cilag GmbH International | Surgical instrument comprising a staple firing lockout |
10806448, | Dec 18 2014 | Cilag GmbH International | Surgical instrument assembly comprising a flexible articulation system |
10806449, | Nov 09 2005 | Cilag GmbH International | End effectors for surgical staplers |
10806450, | Feb 14 2008 | Cilag GmbH International | Surgical cutting and fastening instrument having a control system |
10806479, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
10813638, | Dec 21 2016 | Cilag GmbH International | Surgical end effectors with expandable tissue stop arrangements |
10813639, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
10813641, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument |
10828028, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with multiple program responses during a firing motion |
10828032, | Aug 23 2013 | Cilag GmbH International | End effector detection systems for surgical instruments |
10828033, | Dec 15 2017 | Cilag GmbH International | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
10835245, | Dec 21 2016 | Cilag GmbH International | Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot |
10835247, | Dec 21 2016 | Cilag GmbH International | Lockout arrangements for surgical end effectors |
10835249, | Aug 17 2015 | Cilag GmbH International | Implantable layers for a surgical instrument |
10835251, | Sep 30 2010 | Cilag GmbH International | Surgical instrument assembly including an end effector configurable in different positions |
10835330, | Dec 19 2017 | Cilag GmbH International | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
10842488, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
10842489, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a cam and driver arrangement |
10842490, | Oct 31 2017 | Cilag GmbH International | Cartridge body design with force reduction based on firing completion |
10842491, | Jan 31 2006 | Cilag GmbH International | Surgical system with an actuation console |
10842492, | Aug 20 2018 | Cilag GmbH International | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
10856866, | Feb 15 2008 | Cilag GmbH International | Surgical end effector having buttress retention features |
10856868, | Dec 21 2016 | Cilag GmbH International | Firing member pin configurations |
10856869, | Jun 27 2017 | Cilag GmbH International | Surgical anvil arrangements |
10856870, | Aug 20 2018 | Cilag GmbH International | Switching arrangements for motor powered articulatable surgical instruments |
10863981, | Mar 26 2014 | Cilag GmbH International | Interface systems for use with surgical instruments |
10863986, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having downstream current-based motor control |
10869664, | Aug 31 2005 | Cilag GmbH International | End effector for use with a surgical stapling instrument |
10869665, | Aug 23 2013 | Cilag GmbH International | Surgical instrument system including a control system |
10869666, | Dec 15 2017 | Cilag GmbH International | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
10869669, | Sep 30 2010 | Cilag GmbH International | Surgical instrument assembly |
10874391, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
10874396, | Feb 14 2008 | Cilag GmbH International | Stapling instrument for use with a surgical robot |
10881396, | Jun 20 2017 | Cilag GmbH International | Surgical instrument with variable duration trigger arrangement |
10881399, | Jun 20 2017 | Cilag GmbH International | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
10881401, | Dec 21 2016 | Cilag GmbH International | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
10888318, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
10888321, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
10888322, | Dec 21 2016 | Cilag GmbH International | Surgical instrument comprising a cutting member |
10888328, | Sep 30 2010 | Cilag GmbH International | Surgical end effector |
10888329, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10888330, | Feb 14 2008 | Cilag GmbH International | Surgical system |
10893853, | Jan 31 2006 | Cilag GmbH International | Stapling assembly including motor drive systems |
10893864, | Dec 21 2016 | Cilag GmbH International | Staple cartridges and arrangements of staples and staple cavities therein |
10893867, | Mar 14 2013 | Cilag GmbH International | Drive train control arrangements for modular surgical instruments |
10898183, | Jun 29 2017 | Cilag GmbH International | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
10898184, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
10898185, | Mar 26 2014 | Cilag GmbH International | Surgical instrument power management through sleep and wake up control |
10898186, | Dec 21 2016 | Cilag GmbH International | Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls |
10898190, | Aug 23 2013 | Cilag GmbH International | Secondary battery arrangements for powered surgical instruments |
10898193, | Sep 30 2010 | Cilag GmbH International | End effector for use with a surgical instrument |
10898194, | May 27 2011 | Cilag GmbH International | Detachable motor powered surgical instrument |
10898195, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10903685, | Jun 28 2017 | Cilag GmbH International | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
10905418, | Oct 16 2014 | Cilag GmbH International | Staple cartridge comprising a tissue thickness compensator |
10905422, | Dec 21 2016 | Cilag GmbH International | Surgical instrument for use with a robotic surgical system |
10905423, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
10905426, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
10905427, | Feb 14 2008 | Cilag GmbH International | Surgical System |
10912559, | Aug 20 2018 | Cilag GmbH International | Reinforced deformable anvil tip for surgical stapler anvil |
10912575, | Jan 11 2007 | Cilag GmbH International | Surgical stapling device having supports for a flexible drive mechanism |
10918380, | Jan 31 2006 | Cilag GmbH International | Surgical instrument system including a control system |
10918385, | Dec 21 2016 | Cilag GmbH International | Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system |
10918386, | Jan 10 2007 | Cilag GmbH International | Interlock and surgical instrument including same |
10925605, | Feb 14 2008 | Cilag GmbH International | Surgical stapling system |
10932772, | Jun 29 2017 | Cilag GmbH International | Methods for closed loop velocity control for robotic surgical instrument |
10932774, | Aug 30 2005 | Cilag GmbH International | Surgical end effector for forming staples to different heights |
10932775, | Jun 28 2012 | Cilag GmbH International | Firing system lockout arrangements for surgical instruments |
10932778, | Oct 10 2008 | Cilag GmbH International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
10932779, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
10945728, | Dec 18 2014 | Cilag GmbH International | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
10945729, | Jan 10 2007 | Cilag GmbH International | Interlock and surgical instrument including same |
10945731, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising controlled release and expansion |
10952727, | Jan 10 2007 | Cilag GmbH International | Surgical instrument for assessing the state of a staple cartridge |
10952728, | Jan 31 2006 | Cilag GmbH International | Powered surgical instruments with firing system lockout arrangements |
10959722, | Jan 31 2006 | Cilag GmbH International | Surgical instrument for deploying fasteners by way of rotational motion |
10959725, | Jun 15 2012 | Cilag GmbH International | Articulatable surgical instrument comprising a firing drive |
10959727, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical end effector with asymmetric shaft arrangement |
10966627, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
10966718, | Dec 15 2017 | Cilag GmbH International | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
10973516, | Dec 21 2016 | Cilag GmbH International | Surgical end effectors and adaptable firing members therefor |
10980534, | May 27 2011 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
10980535, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument with an end effector |
10980536, | Dec 21 2016 | Cilag GmbH International | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
10980537, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
10980539, | Sep 30 2015 | Cilag GmbH International | Implantable adjunct comprising bonded layers |
10987102, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising a plurality of layers |
10993713, | Nov 09 2005 | Cilag GmbH International | Surgical instruments |
10993716, | Jun 27 2017 | Cilag GmbH International | Surgical anvil arrangements |
10993717, | Jan 31 2006 | Cilag GmbH International | Surgical stapling system comprising a control system |
11000274, | Aug 23 2013 | Cilag GmbH International | Powered surgical instrument |
11000275, | Jan 31 2006 | Cilag GmbH International | Surgical instrument |
11000277, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and remote sensor |
11000279, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an articulation system ratio |
11006951, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and sensor transponders |
11006955, | Dec 15 2017 | Cilag GmbH International | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
11007004, | Jun 28 2012 | Cilag GmbH International | Powered multi-axial articulable electrosurgical device with external dissection features |
11007022, | Jun 29 2017 | Cilag GmbH International | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
11013511, | Jun 22 2007 | Cilag GmbH International | Surgical stapling instrument with an articulatable end effector |
11020112, | Dec 19 2017 | Cilag GmbH International | Surgical tools configured for interchangeable use with different controller interfaces |
11020113, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having force feedback capabilities |
11020114, | Jun 28 2017 | Cilag GmbH International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
11020115, | Feb 12 2014 | Cilag GmbH International | Deliverable surgical instrument |
11026678, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
11026680, | Aug 23 2013 | Cilag GmbH International | Surgical instrument configured to operate in different states |
11026684, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with multiple program responses during a firing motion |
11033267, | Dec 15 2017 | Cilag GmbH International | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
11039834, | Aug 20 2018 | Cilag GmbH International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
11039836, | Jan 11 2007 | Cilag GmbH International | Staple cartridge for use with a surgical stapling instrument |
11039837, | Jun 28 2012 | Cilag GmbH International | Firing system lockout arrangements for surgical instruments |
11045189, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
11045192, | Aug 20 2018 | Cilag GmbH International | Fabricating techniques for surgical stapler anvils |
11045270, | Dec 19 2017 | Cilag GmbH International | Robotic attachment comprising exterior drive actuator |
11051807, | Jun 28 2019 | Cilag GmbH International | Packaging assembly including a particulate trap |
11051810, | Apr 15 2016 | Cilag GmbH International | Modular surgical instrument with configurable operating mode |
11051811, | Jan 31 2006 | Cilag GmbH International | End effector for use with a surgical instrument |
11051813, | Jan 31 2006 | Cilag GmbH International | Powered surgical instruments with firing system lockout arrangements |
11058418, | Feb 15 2008 | Cilag GmbH International | Surgical end effector having buttress retention features |
11058420, | Jan 31 2006 | Cilag GmbH International | Surgical stapling apparatus comprising a lockout system |
11058422, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
11058423, | Jun 28 2012 | Cilag GmbH International | Stapling system including first and second closure systems for use with a surgical robot |
11058424, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an offset articulation joint |
11058425, | Aug 17 2015 | Cilag GmbH International | Implantable layers for a surgical instrument |
11064998, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
11071543, | Dec 15 2017 | Cilag GmbH International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
11071545, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
11071554, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
11076853, | Dec 21 2017 | Cilag GmbH International | Systems and methods of displaying a knife position during transection for a surgical instrument |
11076854, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
11076929, | Sep 25 2015 | Cilag GmbH International | Implantable adjunct systems for determining adjunct skew |
11083452, | Sep 30 2010 | Cilag GmbH International | Staple cartridge including a tissue thickness compensator |
11083453, | Dec 18 2014 | Cilag GmbH International | Surgical stapling system including a flexible firing actuator and lateral buckling supports |
11083454, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11083455, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an articulation system ratio |
11083456, | Jul 28 2004 | Cilag GmbH International | Articulating surgical instrument incorporating a two-piece firing mechanism |
11083457, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
11083458, | Aug 20 2018 | Cilag GmbH International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
11090045, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11090046, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
11090048, | Dec 21 2016 | Cilag GmbH International | Method for resetting a fuse of a surgical instrument shaft |
11090049, | Jun 27 2017 | Cilag GmbH International | Staple forming pocket arrangements |
11090075, | Oct 30 2017 | Cilag GmbH International | Articulation features for surgical end effector |
11096689, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising a lockout |
11103241, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11103269, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11109858, | Aug 23 2012 | Cilag GmbH International | Surgical instrument including a display which displays the position of a firing element |
11109859, | Mar 06 2015 | Cilag GmbH International | Surgical instrument comprising a lockable battery housing |
11109860, | Jun 28 2012 | Cilag GmbH International | Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems |
11116502, | Jul 28 2004 | Cilag GmbH International | Surgical stapling instrument incorporating a two-piece firing mechanism |
11129613, | Dec 30 2015 | Cilag GmbH International | Surgical instruments with separable motors and motor control circuits |
11129615, | Feb 05 2009 | Cilag GmbH International | Surgical stapling system |
11129616, | May 27 2011 | Cilag GmbH International | Surgical stapling system |
11129680, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising a projector |
11133106, | Aug 23 2013 | Cilag GmbH International | Surgical instrument assembly comprising a retraction assembly |
11134938, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
11134940, | Aug 23 2013 | Cilag GmbH International | Surgical instrument including a variable speed firing member |
11134942, | Dec 21 2016 | Cilag GmbH International | Surgical stapling instruments and staple-forming anvils |
11134943, | Jan 10 2007 | Cilag GmbH International | Powered surgical instrument including a control unit and sensor |
11134944, | Oct 30 2017 | Cilag GmbH International | Surgical stapler knife motion controls |
11134947, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a camming sled with variable cam arrangements |
11135352, | Jul 28 2004 | Cilag GmbH International | End effector including a gradually releasable medical adjunct |
11141153, | Oct 29 2014 | Cilag GmbH International | Staple cartridges comprising driver arrangements |
11141154, | Jun 27 2017 | Cilag GmbH International | Surgical end effectors and anvils |
11141155, | Jun 28 2012 | Cilag GmbH International | Drive system for surgical tool |
11141156, | Jun 28 2012 | Cilag GmbH International | Surgical stapling assembly comprising flexible output shaft |
11147549, | Jun 04 2007 | Cilag GmbH International | Stapling instrument including a firing system and a closure system |
11147551, | Mar 25 2019 | Cilag GmbH International | Firing drive arrangements for surgical systems |
11147553, | Mar 25 2019 | Cilag GmbH International | Firing drive arrangements for surgical systems |
11147554, | Apr 18 2016 | Cilag GmbH International | Surgical instrument system comprising a magnetic lockout |
11154296, | Mar 28 2012 | Cilag GmbH International | Anvil layer attached to a proximal end of an end effector |
11154297, | Feb 15 2008 | Cilag GmbH International | Layer arrangements for surgical staple cartridges |
11154298, | Jun 04 2007 | Cilag GmbH International | Stapling system for use with a robotic surgical system |
11154299, | Jun 28 2012 | Cilag GmbH International | Stapling assembly comprising a firing lockout |
11154301, | Feb 27 2015 | Cilag GmbH International | Modular stapling assembly |
11160551, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical stapling instruments |
11160553, | Dec 21 2016 | Cilag GmbH International | Surgical stapling systems |
11166717, | Jan 31 2006 | Cilag GmbH International | Surgical instrument with firing lockout |
11166720, | Jan 10 2007 | Cilag GmbH International | Surgical instrument including a control module for assessing an end effector |
11172927, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11172929, | Mar 25 2019 | Cilag GmbH International | Articulation drive arrangements for surgical systems |
11179150, | Apr 15 2016 | Cilag GmbH International | Systems and methods for controlling a surgical stapling and cutting instrument |
11179151, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising a display |
11179152, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising a tissue grasping system |
11179153, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11179155, | Dec 21 2016 | Cilag GmbH International | Anvil arrangements for surgical staplers |
11185325, | Oct 16 2014 | Cilag GmbH International | End effector including different tissue gaps |
11185330, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge assemblies and staple retainer cover arrangements |
11191539, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
11191540, | Dec 21 2016 | Cilag GmbH International | Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument |
11191543, | Dec 21 2016 | Cilag GmbH International | Assembly comprising a lock |
11191545, | Apr 15 2016 | Cilag GmbH International | Staple formation detection mechanisms |
11197670, | Dec 15 2017 | Cilag GmbH International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
11197671, | Jun 28 2012 | Cilag GmbH International | Stapling assembly comprising a lockout |
11202631, | Jun 28 2012 | Cilag GmbH International | Stapling assembly comprising a firing lockout |
11202633, | Sep 26 2014 | Cilag GmbH International | Surgical stapling buttresses and adjunct materials |
11207064, | May 27 2011 | Cilag GmbH International | Automated end effector component reloading system for use with a robotic system |
11207065, | Aug 20 2018 | Cilag GmbH International | Method for fabricating surgical stapler anvils |
11213293, | Feb 09 2016 | Cilag GmbH International | Articulatable surgical instruments with single articulation link arrangements |
11213302, | Jun 20 2017 | Cilag GmbH International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
11219455, | Jun 28 2019 | Cilag GmbH International | Surgical instrument including a lockout key |
11222648, | May 11 2019 | Positive pressure ventilation microphone system, nebulizer, and related methods | |
11224423, | Mar 06 2015 | Cilag GmbH International | Smart sensors with local signal processing |
11224426, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11224427, | Jan 31 2006 | Cilag GmbH International | Surgical stapling system including a console and retraction assembly |
11224428, | Dec 21 2016 | Cilag GmbH International | Surgical stapling systems |
11224454, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11224497, | Jun 28 2019 | Cilag GmbH International | Surgical systems with multiple RFID tags |
11229437, | Jun 28 2019 | Cilag GmbH International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
11234698, | Dec 19 2019 | Cilag GmbH International | Stapling system comprising a clamp lockout and a firing lockout |
11241229, | Oct 29 2014 | Cilag GmbH International | Staple cartridges comprising driver arrangements |
11241230, | Jun 28 2012 | Cilag GmbH International | Clip applier tool for use with a robotic surgical system |
11241235, | Jun 28 2019 | Cilag GmbH International | Method of using multiple RFID chips with a surgical assembly |
11246590, | Aug 31 2005 | Cilag GmbH International | Staple cartridge including staple drivers having different unfired heights |
11246592, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising an articulation system lockable to a frame |
11246616, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11246618, | Mar 01 2013 | Cilag GmbH International | Surgical instrument soft stop |
11246678, | Jun 28 2019 | Cilag GmbH International | Surgical stapling system having a frangible RFID tag |
11253254, | Apr 30 2019 | Cilag GmbH International | Shaft rotation actuator on a surgical instrument |
11253256, | Aug 20 2018 | Cilag GmbH International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
11259799, | Mar 26 2014 | Cilag GmbH International | Interface systems for use with surgical instruments |
11259803, | Jun 28 2019 | Cilag GmbH International | Surgical stapling system having an information encryption protocol |
11259805, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising firing member supports |
11266405, | Jun 27 2017 | Cilag GmbH International | Surgical anvil manufacturing methods |
11266406, | Mar 14 2013 | Cilag GmbH International | Control systems for surgical instruments |
11266409, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising a sled including longitudinally-staggered ramps |
11266410, | May 27 2011 | Cilag GmbH International | Surgical device for use with a robotic system |
11272927, | Feb 15 2008 | Cilag GmbH International | Layer arrangements for surgical staple cartridges |
11272928, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11272938, | Jun 27 2006 | Cilag GmbH International | Surgical instrument including dedicated firing and retraction assemblies |
11278279, | Jan 31 2006 | Cilag GmbH International | Surgical instrument assembly |
11278284, | Jun 28 2012 | Cilag GmbH International | Rotary drive arrangements for surgical instruments |
11284891, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with multiple program responses during a firing motion |
11284898, | Sep 18 2014 | Cilag GmbH International | Surgical instrument including a deployable knife |
11284953, | Dec 19 2017 | Cilag GmbH International | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
11291440, | Aug 20 2018 | Cilag GmbH International | Method for operating a powered articulatable surgical instrument |
11291441, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and remote sensor |
11291447, | Dec 19 2019 | Cilag GmbH International | Stapling instrument comprising independent jaw closing and staple firing systems |
11291449, | Dec 24 2009 | Cilag GmbH International | Surgical cutting instrument that analyzes tissue thickness |
11291451, | Jun 28 2019 | Cilag GmbH International | Surgical instrument with battery compatibility verification functionality |
11298125, | Sep 30 2010 | Cilag GmbH International | Tissue stapler having a thickness compensator |
11298127, | Jun 28 2019 | Cilag GmbH International | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
11298132, | Jun 28 2019 | Cilag GmbH International | Staple cartridge including a honeycomb extension |
11298134, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising non-uniform fasteners |
11304695, | Aug 03 2017 | Cilag GmbH International | Surgical system shaft interconnection |
11304696, | Dec 19 2019 | Cilag GmbH International | Surgical instrument comprising a powered articulation system |
11311290, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising an end effector dampener |
11311292, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with detection sensors |
11311294, | Sep 05 2014 | Cilag GmbH International | Powered medical device including measurement of closure state of jaws |
11317910, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with detection sensors |
11317913, | Dec 21 2016 | Cilag GmbH International | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
11317917, | Apr 18 2016 | Cilag GmbH International | Surgical stapling system comprising a lockable firing assembly |
11324501, | Aug 20 2018 | Cilag GmbH International | Surgical stapling devices with improved closure members |
11324503, | Jun 27 2017 | Cilag GmbH International | Surgical firing member arrangements |
11324506, | Feb 27 2015 | Cilag GmbH International | Modular stapling assembly |
11337691, | Dec 21 2017 | Cilag GmbH International | Surgical instrument configured to determine firing path |
11337693, | Jun 29 2007 | Cilag GmbH International | Surgical stapling instrument having a releasable buttress material |
11337698, | Nov 06 2014 | Cilag GmbH International | Staple cartridge comprising a releasable adjunct material |
11344299, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having downstream current-based motor control |
11344303, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11350843, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
11350916, | Jan 31 2006 | Cilag GmbH International | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
11350928, | Apr 18 2016 | Cilag GmbH International | Surgical instrument comprising a tissue thickness lockout and speed control system |
11350929, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication between control unit and sensor transponders |
11350932, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with improved stop/start control during a firing motion |
11350934, | Dec 21 2016 | Cilag GmbH International | Staple forming pocket arrangement to accommodate different types of staples |
11350935, | Dec 21 2016 | Cilag GmbH International | Surgical tool assemblies with closure stroke reduction features |
11350938, | Jun 28 2019 | Cilag GmbH International | Surgical instrument comprising an aligned rfid sensor |
11364027, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising speed control |
11364046, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11369368, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising synchronized drive systems |
11369376, | Dec 21 2016 | Cilag GmbH International | Surgical stapling systems |
11373755, | Aug 23 2012 | Cilag GmbH International | Surgical device drive system including a ratchet mechanism |
11376001, | Aug 23 2013 | Cilag GmbH International | Surgical stapling device with rotary multi-turn retraction mechanism |
11376098, | Jun 28 2019 | Cilag GmbH International | Surgical instrument system comprising an RFID system |
11382625, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising non-uniform fasteners |
11382626, | Oct 03 2006 | Cilag GmbH International | Surgical system including a knife bar supported for rotational and axial travel |
11382627, | Apr 16 2014 | Cilag GmbH International | Surgical stapling assembly comprising a firing member including a lateral extension |
11382628, | Dec 10 2014 | Cilag GmbH International | Articulatable surgical instrument system |
11382638, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
11389160, | Aug 23 2013 | Cilag GmbH International | Surgical system comprising a display |
11389161, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
11389162, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
11395651, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
11395652, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
11399828, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
11399829, | Sep 29 2017 | Cilag GmbH International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
11399831, | Dec 18 2014 | Cilag GmbH International | Drive arrangements for articulatable surgical instruments |
11399837, | Jun 28 2019 | Cilag GmbH International | Mechanisms for motor control adjustments of a motorized surgical instrument |
11401017, | Aug 03 2017 | MESTEL SAFETY S R L | Mask for underwater use, in particular of the full face type, provided with a communication device |
11406377, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
11406378, | Mar 28 2012 | Cilag GmbH International | Staple cartridge comprising a compressible tissue thickness compensator |
11406380, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
11406381, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
11406386, | Sep 05 2014 | Cilag GmbH International | End effector including magnetic and impedance sensors |
11419606, | Dec 21 2016 | Cilag GmbH International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
11426160, | Mar 06 2015 | Cilag GmbH International | Smart sensors with local signal processing |
11426167, | Jun 28 2019 | Cilag GmbH International | Mechanisms for proper anvil attachment surgical stapling head assembly |
11426251, | Apr 30 2019 | Cilag GmbH International | Articulation directional lights on a surgical instrument |
11432816, | Apr 30 2019 | Cilag GmbH International | Articulation pin for a surgical instrument |
11439470, | May 27 2011 | Cilag GmbH International | Robotically-controlled surgical instrument with selectively articulatable end effector |
11446029, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising projections extending from a curved deck surface |
11446034, | Feb 14 2008 | Cilag GmbH International | Surgical stapling assembly comprising first and second actuation systems configured to perform different functions |
11452526, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising a staged voltage regulation start-up system |
11452528, | Apr 30 2019 | Cilag GmbH International | Articulation actuators for a surgical instrument |
11457918, | Oct 29 2014 | Cilag GmbH International | Cartridge assemblies for surgical staplers |
11464512, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising a curved deck surface |
11464513, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
11464514, | Feb 14 2008 | Cilag GmbH International | Motorized surgical stapling system including a sensing array |
11464601, | Jun 28 2019 | Cilag GmbH International | Surgical instrument comprising an RFID system for tracking a movable component |
11471155, | Aug 03 2017 | Cilag GmbH International | Surgical system bailout |
11471157, | Apr 30 2019 | Cilag GmbH International | Articulation control mapping for a surgical instrument |
11478241, | Jun 28 2019 | Cilag GmbH International | Staple cartridge including projections |
11478242, | Jun 28 2017 | Cilag GmbH International | Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw |
11478244, | Oct 31 2017 | Cilag GmbH International | Cartridge body design with force reduction based on firing completion |
11478247, | Jul 30 2010 | Cilag GmbH International | Tissue acquisition arrangements and methods for surgical stapling devices |
11484307, | Feb 14 2008 | Cilag GmbH International | Loading unit coupleable to a surgical stapling system |
11484309, | Dec 30 2015 | Cilag GmbH International | Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence |
11484310, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising a shaft including a closure tube profile |
11484311, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
11484312, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
11490889, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having motor control based on an electrical parameter related to a motor current |
11497488, | Mar 26 2014 | Cilag GmbH International | Systems and methods for controlling a segmented circuit |
11497492, | Jun 28 2019 | Cilag GmbH International | Surgical instrument including an articulation lock |
11497499, | Dec 21 2016 | Cilag GmbH International | Articulatable surgical stapling instruments |
11504116, | Mar 28 2012 | Cilag GmbH International | Layer of material for a surgical end effector |
11504119, | Aug 23 2013 | Cilag GmbH International | Surgical instrument including an electronic firing lockout |
11504122, | Dec 19 2019 | Cilag GmbH International | Surgical instrument comprising a nested firing member |
11510671, | Jun 28 2012 | Cilag GmbH International | Firing system lockout arrangements for surgical instruments |
11517304, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11517306, | Apr 15 2016 | Cilag GmbH International | Surgical instrument with detection sensors |
11517311, | Dec 18 2014 | Cilag GmbH International | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
11517315, | Apr 16 2014 | Cilag GmbH International | Fastener cartridges including extensions having different configurations |
11517325, | Jun 20 2017 | Cilag GmbH International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
11517390, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising a limited travel switch |
11523821, | Sep 26 2014 | Cilag GmbH International | Method for creating a flexible staple line |
11523822, | Jun 28 2019 | Cilag GmbH International | Battery pack including a circuit interrupter |
11523823, | Feb 09 2016 | Cilag GmbH International | Surgical instruments with non-symmetrical articulation arrangements |
11529137, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising driver retention members |
11529138, | Mar 01 2013 | Cilag GmbH International | Powered surgical instrument including a rotary drive screw |
11529139, | Dec 19 2019 | Cilag GmbH International | Motor driven surgical instrument |
11529140, | Jun 28 2017 | Cilag GmbH International | Surgical instrument lockout arrangement |
11529142, | Oct 01 2010 | Cilag GmbH International | Surgical instrument having a power control circuit |
11534162, | Jun 28 2012 | Cilag GmbH International | Robotically powered surgical device with manually-actuatable reversing system |
11534259, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising an articulation indicator |
11540824, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator |
11540829, | Jun 28 2012 | Cilag GmbH International | Surgical instrument system including replaceable end effectors |
11547403, | Dec 18 2014 | Cilag GmbH International | Surgical instrument having a laminate firing actuator and lateral buckling supports |
11547404, | Dec 18 2014 | Cilag GmbH International | Surgical instrument assembly comprising a flexible articulation system |
11553911, | Dec 18 2014 | Cilag GmbH International | Surgical instrument assembly comprising a flexible articulation system |
11553916, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
11553919, | Jun 28 2019 | Cilag GmbH International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
11553971, | Jun 28 2019 | Cilag GmbH International | Surgical RFID assemblies for display and communication |
11559302, | Jun 04 2007 | Cilag GmbH International | Surgical instrument including a firing member movable at different speeds |
11559303, | Apr 18 2016 | Cilag GmbH International | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
11559304, | Dec 19 2019 | Cilag GmbH International | Surgical instrument comprising a rapid closure mechanism |
11559496, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator configured to redistribute compressive forces |
11564679, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
11564682, | Jun 04 2007 | Cilag GmbH International | Surgical stapler device |
11564686, | Jun 28 2017 | Cilag GmbH International | Surgical shaft assemblies with flexible interfaces |
11564688, | Dec 21 2016 | Cilag GmbH International | Robotic surgical tool having a retraction mechanism |
11571207, | Dec 18 2014 | Cilag GmbH International | Surgical system including lateral supports for a flexible drive member |
11571210, | Dec 21 2016 | Cilag GmbH International | Firing assembly comprising a multiple failed-state fuse |
11571212, | Feb 14 2008 | Cilag GmbH International | Surgical stapling system including an impedance sensor |
11571215, | Sep 30 2010 | Cilag GmbH International | Layer of material for a surgical end effector |
11571231, | Sep 29 2006 | Cilag GmbH International | Staple cartridge having a driver for driving multiple staples |
11576668, | Dec 21 2017 | Cilag GmbH International | Staple instrument comprising a firing path display |
11576672, | Dec 19 2019 | Cilag GmbH International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
11576673, | Aug 31 2005 | Cilag GmbH International | Stapling assembly for forming staples to different heights |
11583274, | Dec 21 2017 | Cilag GmbH International | Self-guiding stapling instrument |
11583277, | Sep 30 2010 | Cilag GmbH International | Layer of material for a surgical end effector |
11583278, | May 27 2011 | Cilag GmbH International | Surgical stapling system having multi-direction articulation |
11583279, | Oct 10 2008 | Cilag GmbH International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
11596406, | Apr 16 2014 | Cilag GmbH International | Fastener cartridges including extensions having different configurations |
11602340, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
11602346, | Jun 28 2012 | Cilag GmbH International | Robotically powered surgical device with manually-actuatable reversing system |
11607219, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising a detachable tissue cutting knife |
11607239, | Apr 15 2016 | Cilag GmbH International | Systems and methods for controlling a surgical stapling and cutting instrument |
11612393, | Jan 31 2006 | Cilag GmbH International | Robotically-controlled end effector |
11612394, | May 27 2011 | Cilag GmbH International | Automated end effector component reloading system for use with a robotic system |
11612395, | Feb 14 2008 | Cilag GmbH International | Surgical system including a control system having an RFID tag reader |
11617575, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11617576, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11617577, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
11622763, | Apr 16 2013 | Cilag GmbH International | Stapling assembly comprising a shiftable drive |
11622766, | Jun 28 2012 | Cilag GmbH International | Empty clip cartridge lockout |
11622785, | Sep 29 2006 | Cilag GmbH International | Surgical staples having attached drivers and stapling instruments for deploying the same |
11627959, | Jun 28 2019 | Cilag GmbH International | Surgical instruments including manual and powered system lockouts |
11627960, | Dec 02 2020 | Cilag GmbH International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
11633183, | Apr 16 2013 | Cilag International GmbH | Stapling assembly comprising a retraction drive |
11638581, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
11638582, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with torsion spine drive arrangements |
11638583, | Feb 14 2008 | Cilag GmbH International | Motorized surgical system having a plurality of power sources |
11638587, | Jun 28 2019 | Cilag GmbH International | RFID identification systems for surgical instruments |
11642125, | Apr 15 2016 | Cilag GmbH International | Robotic surgical system including a user interface and a control circuit |
11642128, | Jun 28 2017 | Cilag GmbH International | Method for articulating a surgical instrument |
11648005, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
11648006, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
11648008, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having force feedback capabilities |
11648009, | Apr 30 2019 | Cilag GmbH International | Rotatable jaw tip for a surgical instrument |
11648024, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with position feedback |
11653914, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
11653915, | Dec 02 2020 | Cilag GmbH International | Surgical instruments with sled location detection and adjustment features |
11653917, | Dec 21 2016 | Cilag GmbH International | Surgical stapling systems |
11653918, | Sep 05 2014 | Cilag GmbH International | Local display of tissue parameter stabilization |
11653920, | Dec 02 2020 | Cilag GmbH International | Powered surgical instruments with communication interfaces through sterile barrier |
11660090, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with segmented flexible drive arrangements |
11660110, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument with tactile position feedback |
11660163, | Jun 28 2019 | Cilag GmbH International | Surgical system with RFID tags for updating motor assembly parameters |
11666332, | Jan 10 2007 | Cilag GmbH International | Surgical instrument comprising a control circuit configured to adjust the operation of a motor |
11667362, | Apr 21 2015 | Decathlon | Diving mask provided with a telecommunications device |
11672531, | Jun 04 2007 | Cilag GmbH International | Rotary drive systems for surgical instruments |
11672532, | Jun 20 2017 | Cilag GmbH International | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
11672536, | Sep 30 2010 | Cilag GmbH International | Layer of material for a surgical end effector |
11678877, | Dec 18 2014 | Cilag GmbH International | Surgical instrument including a flexible support configured to support a flexible firing member |
11678880, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising a shaft including a housing arrangement |
11678882, | Dec 02 2020 | Cilag GmbH International | Surgical instruments with interactive features to remedy incidental sled movements |
11684360, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising a variable thickness compressible portion |
11684361, | Sep 23 2008 | Cilag GmbH International | Motor-driven surgical cutting instrument |
11684365, | Jul 28 2004 | Cilag GmbH International | Replaceable staple cartridges for surgical instruments |
11684369, | Jun 28 2019 | Cilag GmbH International | Method of using multiple RFID chips with a surgical assembly |
11684434, | Jun 28 2019 | Cilag GmbH International | Surgical RFID assemblies for instrument operational setting control |
11690615, | Apr 16 2013 | Cilag GmbH International | Surgical system including an electric motor and a surgical instrument |
11690623, | Sep 30 2015 | Cilag GmbH International | Method for applying an implantable layer to a fastener cartridge |
11696757, | Feb 26 2021 | Cilag GmbH International | Monitoring of internal systems to detect and track cartridge motion status |
11696759, | Jun 28 2017 | Cilag GmbH International | Surgical stapling instruments comprising shortened staple cartridge noses |
11696761, | Mar 25 2019 | Cilag GmbH International | Firing drive arrangements for surgical systems |
11701110, | Aug 23 2013 | Cilag GmbH International | Surgical instrument including a drive assembly movable in a non-motorized mode of operation |
11701111, | Dec 19 2019 | Cilag GmbH International | Method for operating a surgical stapling instrument |
11701113, | Feb 26 2021 | Cilag GmbH International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
11701114, | Oct 16 2014 | Cilag GmbH International | Staple cartridge |
11701115, | Dec 21 2016 | Cilag GmbH International | Methods of stapling tissue |
11707273, | Jun 15 2012 | Cilag GmbH International | Articulatable surgical instrument comprising a firing drive |
11712244, | Sep 30 2015 | Cilag GmbH International | Implantable layer with spacer fibers |
11717285, | Feb 14 2008 | Cilag GmbH International | Surgical cutting and fastening instrument having RF electrodes |
11717289, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
11717291, | Mar 22 2021 | Cilag GmbH International | Staple cartridge comprising staples configured to apply different tissue compression |
11717294, | Apr 16 2014 | Cilag GmbH International | End effector arrangements comprising indicators |
11717297, | Sep 05 2014 | Cilag GmbH International | Smart cartridge wake up operation and data retention |
11723657, | Feb 26 2021 | Cilag GmbH International | Adjustable communication based on available bandwidth and power capacity |
11723658, | Mar 22 2021 | Cilag GmbH International | Staple cartridge comprising a firing lockout |
11723662, | May 28 2021 | Cilag GmbH International | Stapling instrument comprising an articulation control display |
11730471, | Feb 09 2016 | Cilag GmbH International | Articulatable surgical instruments with single articulation link arrangements |
11730473, | Feb 26 2021 | Cilag GmbH International | Monitoring of manufacturing life-cycle |
11730474, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement |
11730477, | Oct 10 2008 | Cilag GmbH International | Powered surgical system with manually retractable firing system |
11737748, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with double spherical articulation joints with pivotable links |
11737749, | Mar 22 2021 | Cilag GmbH International | Surgical stapling instrument comprising a retraction system |
11737751, | Dec 02 2020 | Cilag GmbH International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
11737754, | Sep 30 2010 | Cilag GmbH International | Surgical stapler with floating anvil |
11744581, | Dec 02 2020 | Cilag GmbH International | Powered surgical instruments with multi-phase tissue treatment |
11744583, | Feb 26 2021 | Cilag GmbH International | Distal communication array to tune frequency of RF systems |
11744588, | Feb 27 2015 | Cilag GmbH International | Surgical stapling instrument including a removably attachable battery pack |
11744593, | Jun 28 2019 | Cilag GmbH International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
11744603, | Mar 24 2021 | Cilag GmbH International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
11749877, | Feb 26 2021 | Cilag GmbH International | Stapling instrument comprising a signal antenna |
11751867, | Dec 21 2017 | Cilag GmbH International | Surgical instrument comprising sequenced systems |
11751869, | Feb 26 2021 | Cilag GmbH International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
11759202, | Mar 22 2021 | Cilag GmbH International | Staple cartridge comprising an implantable layer |
11759208, | Dec 30 2015 | Cilag GmbH International | Mechanisms for compensating for battery pack failure in powered surgical instruments |
11766258, | Jun 27 2017 | Cilag GmbH International | Surgical anvil arrangements |
11766259, | Dec 21 2016 | Cilag GmbH International | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
11766260, | Dec 21 2016 | Cilag GmbH International | Methods of stapling tissue |
11771419, | Jun 28 2019 | Cilag GmbH International | Packaging for a replaceable component of a surgical stapling system |
11771425, | Aug 31 2005 | Cilag GmbH International | Stapling assembly for forming staples to different formed heights |
11771426, | Jan 10 2007 | Cilag GmbH International | Surgical instrument with wireless communication |
11771454, | Apr 15 2016 | Cilag GmbH International | Stapling assembly including a controller for monitoring a clamping laod |
11779330, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising a jaw alignment system |
11779336, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11779420, | Jun 28 2012 | Cilag GmbH International | Robotic surgical attachments having manually-actuated retraction assemblies |
11786239, | Mar 24 2021 | Cilag GmbH International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
11786243, | Mar 24 2021 | Cilag GmbH International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
11793509, | Mar 28 2012 | Cilag GmbH International | Staple cartridge including an implantable layer |
11793511, | Nov 09 2005 | Cilag GmbH International | Surgical instruments |
11793512, | Aug 31 2005 | Cilag GmbH International | Staple cartridges for forming staples having differing formed staple heights |
11793513, | Jun 20 2017 | Cilag GmbH International | Systems and methods for controlling motor speed according to user input for a surgical instrument |
11793514, | Feb 26 2021 | Cilag GmbH International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
11793516, | Mar 24 2021 | Cilag GmbH International | Surgical staple cartridge comprising longitudinal support beam |
11793518, | Jan 31 2006 | Cilag GmbH International | Powered surgical instruments with firing system lockout arrangements |
11793521, | Oct 10 2008 | Cilag GmbH International | Powered surgical cutting and stapling apparatus with manually retractable firing system |
11793522, | Sep 30 2015 | Cilag GmbH International | Staple cartridge assembly including a compressible adjunct |
11801047, | Feb 14 2008 | Cilag GmbH International | Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor |
11801051, | Jan 31 2006 | Cilag GmbH International | Accessing data stored in a memory of a surgical instrument |
11806011, | Mar 22 2021 | Cilag GmbH International | Stapling instrument comprising tissue compression systems |
11806013, | Jun 28 2012 | Cilag GmbH International | Firing system arrangements for surgical instruments |
11811253, | Apr 18 2016 | Cilag GmbH International | Surgical robotic system with fault state detection configurations based on motor current draw |
11812954, | Sep 23 2008 | Cilag GmbH International | Robotically-controlled motorized surgical instrument with an end effector |
11812958, | Dec 18 2014 | Cilag GmbH International | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
11812960, | Jul 28 2004 | Cilag GmbH International | Method of segmenting the operation of a surgical stapling instrument |
11812961, | Jan 10 2007 | Cilag GmbH International | Surgical instrument including a motor control system |
11812964, | Feb 26 2021 | Cilag GmbH International | Staple cartridge comprising a power management circuit |
11812965, | Sep 30 2010 | Cilag GmbH International | Layer of material for a surgical end effector |
11826012, | Mar 22 2021 | Cilag GmbH International | Stapling instrument comprising a pulsed motor-driven firing rack |
11826013, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with firing member closure features |
11826042, | Mar 22 2021 | Cilag GmbH International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
11826045, | Feb 12 2016 | Cilag GmbH International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
11826047, | May 28 2021 | Cilag GmbH International | Stapling instrument comprising jaw mounts |
11826048, | Jun 28 2017 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
11826132, | Mar 06 2015 | Cilag GmbH International | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
11832816, | Mar 24 2021 | Cilag GmbH International | Surgical stapling assembly comprising nonplanar staples and planar staples |
11839352, | Jan 11 2007 | Cilag GmbH International | Surgical stapling device with an end effector |
11839375, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising an anvil and different staple heights |
11844518, | Oct 29 2020 | Cilag GmbH International | Method for operating a surgical instrument |
11844520, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising driver retention members |
11844521, | Jan 10 2007 | Cilag GmbH International | Surgical instrument for use with a robotic system |
11849939, | Dec 21 2017 | Cilag GmbH International | Continuous use self-propelled stapling instrument |
11849941, | Jun 29 2007 | Cilag GmbH International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
11849943, | Dec 02 2020 | Cilag GmbH International | Surgical instrument with cartridge release mechanisms |
11849944, | Mar 24 2021 | Cilag GmbH International | Drivers for fastener cartridge assemblies having rotary drive screws |
11849945, | Mar 24 2021 | Cilag GmbH International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
11849946, | Sep 23 2015 | Cilag GmbH International | Surgical stapler having downstream current-based motor control |
11849947, | Jan 10 2007 | Cilag GmbH International | Surgical system including a control circuit and a passively-powered transponder |
11849948, | Dec 21 2016 | Cilag GmbH International | Method for resetting a fuse of a surgical instrument shaft |
11849952, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising staples positioned within a compressible portion thereof |
11850310, | Sep 30 2010 | INTERNATIONAL, CILAG GMBH; Cilag GmbH International | Staple cartridge including an adjunct |
11857181, | May 27 2011 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
11857182, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with combination function articulation joint arrangements |
11857183, | Mar 24 2021 | Cilag GmbH International | Stapling assembly components having metal substrates and plastic bodies |
11857187, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising controlled release and expansion |
11857189, | Jun 28 2012 | Cilag GmbH International | Surgical instrument including first and second articulation joints |
11864756, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with flexible ball chain drive arrangements |
11864760, | Oct 29 2014 | Cilag GmbH International | Staple cartridges comprising driver arrangements |
11871923, | Sep 23 2008 | Cilag GmbH International | Motorized surgical instrument |
11871925, | Jul 28 2020 | Cilag GmbH International | Surgical instruments with dual spherical articulation joint arrangements |
11871939, | Jun 20 2017 | Cilag GmbH International | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
11877745, | Oct 18 2021 | Cilag GmbH International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
11877748, | May 27 2011 | Cilag GmbH International | Robotically-driven surgical instrument with E-beam driver |
11882987, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
11883019, | Dec 21 2017 | Cilag GmbH International | Stapling instrument comprising a staple feeding system |
11883020, | Jan 31 2006 | Cilag GmbH International | Surgical instrument having a feedback system |
11883024, | Jul 28 2020 | Cilag GmbH International | Method of operating a surgical instrument |
11883025, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising a plurality of layers |
11883026, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge assemblies and staple retainer cover arrangements |
11890005, | Jun 29 2017 | Cilag GmbH International | Methods for closed loop velocity control for robotic surgical instrument |
11890008, | Jan 31 2006 | Cilag GmbH International | Surgical instrument with firing lockout |
11890010, | Dec 02 2020 | Cilag GmbH International | Dual-sided reinforced reload for surgical instruments |
11890012, | Jul 28 2004 | Cilag GmbH International | Staple cartridge comprising cartridge body and attached support |
11890015, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
11890029, | Jan 31 2006 | Cilag GmbH International | Motor-driven surgical cutting and fastening instrument |
11896217, | Oct 29 2020 | Cilag GmbH International | Surgical instrument comprising an articulation lock |
11896218, | Mar 24 2021 | Cilag GmbH International; INTERNATIONAL, CILAG GMBH | Method of using a powered stapling device |
11896219, | Mar 24 2021 | Cilag GmbH International | Mating features between drivers and underside of a cartridge deck |
11896222, | Dec 15 2017 | Cilag GmbH International | Methods of operating surgical end effectors |
11896225, | Jul 28 2004 | Cilag GmbH International | Staple cartridge comprising a pan |
11903581, | Apr 30 2019 | Cilag GmbH International | Methods for stapling tissue using a surgical instrument |
11903582, | Mar 24 2021 | Cilag GmbH International | Leveraging surfaces for cartridge installation |
11903586, | Sep 30 2015 | Cilag GmbH International | Compressible adjunct with crossing spacer fibers |
11911027, | Sep 30 2010 | Cilag GmbH International | Adhesive film laminate |
11911028, | Jun 04 2007 | Cilag GmbH International | Surgical instruments for use with a robotic surgical system |
11911032, | Dec 19 2019 | Cilag GmbH International | Staple cartridge comprising a seating cam |
6978034, | Nov 16 1999 | Helmet headset mounting assembly and method | |
7302072, | May 16 2003 | UNDERSEA SENSOR SYSTEMS, INC | Electronic device mount for mask |
7464705, | Oct 07 2004 | SHIGEMATSU WORKS CO , LTD | Powered respirator |
7616774, | Nov 16 1999 | Clampless headset mounting assembly | |
9498658, | Feb 01 2013 | 3M Innovative Properties Company | Respirator mask speech enhancement apparatus and method |
9517366, | Feb 01 2013 | 3M Innovative Properties Company | Respirator mask speech enhancement apparatus and method |
9554794, | Mar 01 2013 | Cilag GmbH International | Multiple processor motor control for modular surgical instruments |
9561032, | Aug 31 2005 | Cilag GmbH International | Staple cartridge comprising a staple driver arrangement |
9574644, | May 30 2013 | Cilag GmbH International | Power module for use with a surgical instrument |
9585657, | Feb 15 2008 | Cilag GmbH International | Actuator for releasing a layer of material from a surgical end effector |
9585658, | Jun 04 2007 | Cilag GmbH International | Stapling systems |
9585663, | Jul 28 2004 | Cilag GmbH International | Surgical stapling instrument configured to apply a compressive pressure to tissue |
9592050, | Mar 28 2012 | Cilag GmbH International | End effector comprising a distal tissue abutment member |
9592053, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising multiple regions |
9592054, | Sep 23 2011 | Cilag GmbH International | Surgical stapler with stationary staple drivers |
9629623, | Mar 14 2013 | Cilag GmbH International | Drive system lockout arrangements for modular surgical instruments |
9629629, | Mar 14 2013 | Cilag GmbH International | Control systems for surgical instruments |
9629814, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator configured to redistribute compressive forces |
9649110, | Apr 16 2013 | Cilag GmbH International | Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output |
9655624, | Jan 11 2007 | Cilag GmbH International | Surgical stapling device with a curved end effector |
9687237, | Sep 23 2011 | Cilag GmbH International | Staple cartridge including collapsible deck arrangement |
9690362, | Mar 26 2014 | Cilag GmbH International | Surgical instrument control circuit having a safety processor |
9693777, | Feb 24 2014 | Cilag GmbH International | Implantable layers comprising a pressed region |
9700310, | Aug 23 2013 | Cilag GmbH International | Firing member retraction devices for powered surgical instruments |
9706991, | Sep 29 2006 | Cilag GmbH International | Staple cartridge comprising staples including a lateral base |
9724094, | Sep 05 2014 | Cilag GmbH International | Adjunct with integrated sensors to quantify tissue compression |
9724098, | Mar 28 2012 | Cilag GmbH International | Staple cartridge comprising an implantable layer |
9730697, | Feb 13 2012 | Cilag GmbH International | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
9737301, | Sep 05 2014 | Cilag GmbH International | Monitoring device degradation based on component evaluation |
9737302, | Jul 28 2004 | Cilag GmbH International | Surgical stapling instrument having a restraining member |
9737303, | Jul 28 2004 | Cilag GmbH International | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
9743929, | Mar 26 2014 | Cilag GmbH International | Modular powered surgical instrument with detachable shaft assemblies |
9750498, | Jun 04 2007 | Cilag GmbH International | Drive systems for surgical instruments |
9750499, | Mar 26 2014 | Cilag GmbH International | Surgical stapling instrument system |
9750501, | Jan 11 2007 | Cilag GmbH International | Surgical stapling devices having laterally movable anvils |
9757123, | Jan 10 2007 | Cilag GmbH International | Powered surgical instrument having a transmission system |
9757124, | Feb 24 2014 | Cilag GmbH International | Implantable layer assemblies |
9757128, | Sep 05 2014 | Cilag GmbH International | Multiple sensors with one sensor affecting a second sensor's output or interpretation |
9775608, | Feb 24 2014 | Cilag GmbH International | Fastening system comprising a firing member lockout |
9775609, | Aug 23 2013 | Cilag GmbH International | Tamper proof circuit for surgical instrument battery pack |
9775613, | Jan 11 2007 | Cilag GmbH International | Surgical stapling device with a curved end effector |
9775614, | May 27 2011 | Cilag GmbH International | Surgical stapling instruments with rotatable staple deployment arrangements |
9788834, | Mar 28 2012 | Cilag GmbH International | Layer comprising deployable attachment members |
9788836, | Sep 05 2014 | Cilag GmbH International | Multiple motor control for powered medical device |
9795381, | Jun 04 2007 | Cilag GmbH International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
9795383, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator comprising resilient members |
9801626, | Apr 16 2013 | Cilag GmbH International | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
9801627, | Sep 26 2014 | Cilag GmbH International | Fastener cartridge for creating a flexible staple line |
9801628, | Sep 26 2014 | Cilag GmbH International | Surgical staple and driver arrangements for staple cartridges |
9801634, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator for a surgical stapler |
9808246, | Mar 06 2015 | Cilag GmbH International | Method of operating a powered surgical instrument |
9808249, | Aug 23 2013 | Cilag GmbH International | Attachment portions for surgical instrument assemblies |
9814460, | Apr 16 2013 | Cilag GmbH International | Modular motor driven surgical instruments with status indication arrangements |
9814462, | Sep 30 2010 | Cilag GmbH International | Assembly for fastening tissue comprising a compressible layer |
9820738, | Mar 26 2014 | Cilag GmbH International | Surgical instrument comprising interactive systems |
9826976, | Apr 16 2013 | Cilag GmbH International | Motor driven surgical instruments with lockable dual drive shafts |
9826977, | Mar 26 2014 | Cilag GmbH International | Sterilization verification circuit |
9826978, | Sep 30 2010 | Cilag GmbH International | End effectors with same side closure and firing motions |
9833236, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensator for surgical staplers |
9833238, | Sep 30 2010 | Cilag GmbH International | Retainer assembly including a tissue thickness compensator |
9833241, | Apr 16 2014 | Cilag GmbH International | Surgical fastener cartridges with driver stabilizing arrangements |
9833242, | Sep 30 2010 | Cilag GmbH International | Tissue thickness compensators |
9839422, | Feb 24 2014 | Cilag GmbH International | Implantable layers and methods for altering implantable layers for use with surgical fastening instruments |
9839423, | Feb 24 2014 | Cilag GmbH International | Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument |
9844368, | Apr 16 2013 | Cilag GmbH International | Surgical system comprising first and second drive systems |
9844369, | Apr 16 2014 | Ethicon LLC | Surgical end effectors with firing element monitoring arrangements |
9844374, | Dec 18 2014 | Cilag GmbH International | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
9844375, | Dec 18 2014 | Cilag GmbH International | Drive arrangements for articulatable surgical instruments |
9844376, | Nov 06 2014 | Cilag GmbH International | Staple cartridge comprising a releasable adjunct material |
9844379, | Jul 28 2004 | Ethicon LLC | Surgical stapling instrument having a clearanced opening |
9848873, | Aug 31 2005 | Cilag GmbH International | Fastener cartridge assembly comprising a driver and staple cavity arrangement |
9867612, | Apr 16 2013 | Cilag GmbH International | Powered surgical stapler |
9867618, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatus including firing force regulation |
9872682, | Jun 29 2007 | Cilag GmbH International | Surgical stapling instrument having a releasable buttress material |
9872684, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatus including firing force regulation |
9877721, | Apr 16 2014 | Cilag GmbH International | Fastener cartridge comprising tissue control features |
9877723, | Feb 14 2008 | Cilag GmbH International | Surgical stapling assembly comprising a selector arrangement |
9883860, | Mar 14 2013 | Cilag GmbH International | Interchangeable shaft assemblies for use with a surgical instrument |
9884456, | Feb 24 2014 | Cilag GmbH International | Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments |
9895147, | Nov 09 2005 | Cilag GmbH International | End effectors for surgical staplers |
9895148, | Mar 06 2015 | Cilag GmbH International | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
9901342, | Mar 06 2015 | Cilag GmbH International | Signal and power communication system positioned on a rotatable shaft |
9901344, | Feb 14 2008 | Cilag GmbH International | Stapling assembly |
9901345, | Feb 14 2008 | Cilag GmbH International | Stapling assembly |
9901346, | Feb 14 2008 | Cilag GmbH International | Stapling assembly |
9907620, | Jun 28 2012 | Cilag GmbH International | Surgical end effectors having angled tissue-contacting surfaces |
9913642, | Mar 26 2014 | Cilag GmbH International | Surgical instrument comprising a sensor system |
9913648, | May 27 2011 | Cilag GmbH International | Surgical system |
9918716, | Mar 28 2012 | Cilag GmbH International | Staple cartridge comprising implantable layers |
9924942, | Aug 23 2013 | Cilag GmbH International | Motor-powered articulatable surgical instruments |
9924944, | Oct 16 2014 | Cilag GmbH International | Staple cartridge comprising an adjunct material |
9924947, | Sep 30 2010 | Cilag GmbH International | Staple cartridge comprising a compressible portion |
9924961, | Mar 06 2015 | Cilag GmbH International | Interactive feedback system for powered surgical instruments |
9931118, | Feb 27 2015 | Cilag GmbH International | Reinforced battery for a surgical instrument |
9943309, | Dec 18 2014 | Cilag GmbH International | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
9950201, | Jan 04 2007 | SAFRAN AEROTECHNICS SAS; SAFRAN AEROTECHNICS | Acoustic sensor for use in breathing masks |
9962158, | Feb 14 2008 | Cilag GmbH International | Surgical stapling apparatuses with lockable end effector positioning systems |
9962161, | Feb 12 2014 | Cilag GmbH International | Deliverable surgical instrument |
9968355, | Dec 18 2014 | Cilag GmbH International | Surgical instruments with articulatable end effectors and improved firing beam support arrangements |
9968356, | Nov 09 2005 | Cilag GmbH International | Surgical instrument drive systems |
9974538, | Mar 28 2012 | Cilag GmbH International | Staple cartridge comprising a compressible layer |
9980729, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
9987000, | Dec 18 2014 | Cilag GmbH International | Surgical instrument assembly comprising a flexible articulation system |
9987003, | Jun 04 2007 | Cilag GmbH International | Robotic actuator assembly |
9987006, | Aug 23 2013 | Cilag GmbH International | Shroud retention arrangement for sterilizable surgical instruments |
9993248, | Mar 06 2015 | Cilag GmbH International | Smart sensors with local signal processing |
9993258, | Feb 27 2015 | Cilag GmbH International | Adaptable surgical instrument handle |
9999426, | Feb 14 2008 | Cilag GmbH International | Detachable motor powered surgical instrument |
9999431, | Jan 11 2007 | Cilag GmbH International | Surgical stapling device having supports for a flexible drive mechanism |
D851762, | Jun 28 2017 | Cilag GmbH International | Anvil |
D854151, | Jun 28 2017 | Cilag GmbH International | Surgical instrument shaft |
D869655, | Jun 28 2017 | Cilag GmbH International | Surgical fastener cartridge |
D879808, | Jun 20 2017 | Cilag GmbH International | Display panel with graphical user interface |
D879809, | Jun 20 2017 | Cilag GmbH International | Display panel with changeable graphical user interface |
D890784, | Jun 20 2017 | Cilag GmbH International | Display panel with changeable graphical user interface |
D906355, | Jun 28 2017 | Cilag GmbH International | Display screen or portion thereof with a graphical user interface for a surgical instrument |
D907647, | Sep 29 2017 | Cilag GmbH International | Display screen or portion thereof with animated graphical user interface |
D907648, | Sep 29 2017 | Cilag GmbH International | Display screen or portion thereof with animated graphical user interface |
D910847, | Dec 19 2017 | Cilag GmbH International | Surgical instrument assembly |
D914878, | Aug 20 2018 | Cilag GmbH International | Surgical instrument anvil |
D917500, | Sep 29 2017 | Cilag GmbH International | Display screen or portion thereof with graphical user interface |
D966512, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D967421, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D974560, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D975278, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D975850, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D975851, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D976401, | Jun 02 2020 | Cilag GmbH International | Staple cartridge |
D980425, | Oct 29 2020 | Cilag GmbH International | Surgical instrument assembly |
ER1904, |
Patent | Priority | Assignee | Title |
2950360, | |||
2953129, | |||
3180333, | |||
3314424, | |||
4072831, | Sep 10 1976 | Instrument Systems Corporation | Voice transmitting apparatus for a breathing mask |
4116237, | Feb 07 1977 | Emergency breathing apparatus | |
4491699, | Apr 15 1981 | BAROID TECHNOLOGY, INC | Communication apparatus for hostile environments |
4508936, | Jul 16 1980 | Gentex Corporation | Local external communication system |
4537276, | Sep 07 1984 | American Sterilizer Company | Mask/microphone system for voice actuated control |
4885796, | Apr 19 1985 | SHELLEY, NANCY L | Communication apparatus for use in hazardous environments |
4980926, | Jan 05 1989 | LASER TECH COMMUNICATIONS INC | Voice communication unit |
5060308, | Jan 23 1989 | SAFETY TECH INDUSTRIES, INC | Firefighters mask communication system |
5138666, | Dec 18 1987 | UNDERSEA SENSOR SYSTEMS, INC | Voice transmission system |
5159641, | Jul 31 1991 | SCOTT TECHNOLOGIES, INC | Microphone circuit control mechanism for breathing apparatus |
5224473, | Mar 04 1991 | UNDERSEA SENSOR SYSTEMS, INC | Retrofitting gas mask voice amplifier unit with easily actuated switch means |
5307793, | Jun 29 1992 | BE INTELLECTUAL PROPERTY, INC | Microphone signal attenuating apparatus for oxygen masks |
5428688, | Mar 29 1993 | UNDERSEA SENSOR SYSTEMS, INC | Voice transmission system with remote microphone |
5503141, | Jan 13 1995 | KETTL, LONNIE J | Microphone mounting structure for a sound amplifying respirator |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 20 2004 | KETTL, LONNIE J | CLOSED LOOP COMMUNICATIONS | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015027 | /0981 | |
Feb 20 2004 | MIKRONIS, JAMES C | CLOSED LOOP COMMUNICATIONS | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015027 | /0981 | |
May 23 2005 | CLOSED LOOP COMMUNICATIONS | KETTL, LONNIE J | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016301 | /0331 |
Date | Maintenance Fee Events |
Sep 22 2005 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Feb 05 2010 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Mar 14 2014 | REM: Maintenance Fee Reminder Mailed. |
Aug 06 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 06 2005 | 4 years fee payment window open |
Feb 06 2006 | 6 months grace period start (w surcharge) |
Aug 06 2006 | patent expiry (for year 4) |
Aug 06 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 06 2009 | 8 years fee payment window open |
Feb 06 2010 | 6 months grace period start (w surcharge) |
Aug 06 2010 | patent expiry (for year 8) |
Aug 06 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 06 2013 | 12 years fee payment window open |
Feb 06 2014 | 6 months grace period start (w surcharge) |
Aug 06 2014 | patent expiry (for year 12) |
Aug 06 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |