A microphone mounting structure for mounting a microphone to a respiratory mask and/or bubble suit through a hole therein. The microphone mounting structure is thus able to convert a conventional respiratory mask and/or bubble suit into a sound amplifying mask and/or bubble suit. The microphone mounting structure comprises a tubular plug and a tubular locking mechanism. The tubular plug has a closed end, an open end and a central portion disposed therebetween. The closed end of the tubular plug has a larger outer diameter than an outer diameter of the central portion. The open end has a plurality of resilient fingers defined by slots in the open end, the resilient fingers having finger tips which project radially outwardly with respect to the tubular plug. The microphone is dimensioned so as to fit coaxially inside the is tubular plug, and preferably, a grommet is provided around the microphone. The tubular locking mechanism has an inner diameter substantially equal to the outer diameter of the central portion and a longitudinal length slightly shorter than a combination of the central portion and the open end. Accordingly, the tubular locking mechanism is slidable over the resilient fingers after the tubular plug is inserted through the hole in the mask. This forces the resilient fingers radially inwardly until the entire tubular locking mechanism has passed over the finger tips of the resilient fingers at which time the finger tips snap outwardly to thereby lock the microphone mounting structure to the respiratory mask/bubble suit. Amplification circuitry is also provided.

Patent
   6430298
Priority
Jan 13 1995
Filed
Dec 01 1997
Issued
Aug 06 2002
Expiry
Jan 13 2015

TERM.DISCL.
Assg.orig
Entity
Small
1015
18
EXPIRED
1. A mounting structure for electrically connecting a microphone located on a first side of a protective barrier to a communication device located on an opposite side of said protective barrier, through a hole in the protective barrier, said mounting structure comprising:
a tubular plug for receiving conductive means which are electrically connected to said microphone, said tubular plug having a closed end, an open end and a central portion disposed therebetween, said closed end having a larger outer diameter than an outer diameter of the central portion, said open end having a plurality of resilient fingers defined by slots in said open end of the tubular plug, said resilient fingers having finger tips which project radially outwardly with respect to the tubular plug, said tubular plug having electrical contact means for electrically connecting an interior of said tubular plug with an exterior of said tubular plug; and
a tubular locking mechanism having an inner diameter substantially equal to the outer diameter of said central portion and a longitudinal length slightly shorter than a combination of said central portion and said open end, said tubular locking mechanism being slidable over said resilient fingers after said tubular plug is inserted through said hole to thereby force said resilient fingers radially inwardly until the entire tubular locking mechanism has passed over the finger tips of the resilient fingers at which time the finger tips snap radially outwardly to thereby lock said mounting structure to the protective barrier, the protective barrier being locked between a front end of said tubular locking mechanism and the closed end of the tubular plug.
2. The mounting structure of claim 1, wherein said electrical contact means include electrically conductive pins projecting into the interior of said tubular plug, said electrically conductive pins being arranged for insertion into correspondingly arranged socket sleeves of said conductive means when said conductive means are contained within said tubular plug.
3. The mounting structure of claim 1, wherein said tubular plug is dimensioned so as to accommodate said microphone and said conductive means.
4. The mounting structure of claim 1, further comprising:
a second tubular plug having a closed end, an open end and a central portion disposed therebetween, said closed end of the second tubular plug having a larger outer diameter than an outer diameter of the central portion of the second tubular plug, said open end of the second tubular plug also having a plurality of resilient fingers defined by slots in said open end of the second tubular plug, said resilient fingers of the second tubular plug having finger tips which project radially outwardly with respect to the second tubular plug, said second tubular plug having second electrical contact means for electrically connecting an interior of said second tubular plug with an exterior of said second tubular plug, said interior of the second tubular plug being configured so as to receive an audio signal from said communication device when electrically connected to said interior of the second tubular plug and so as to transmit said audio signal to the second electrical contact means;
a second tubular locking mechanism having an inner diameter substantially equal to the outer diameter of said central portion of the second tubular plug and a longitudinal length slightly shorter than a combination of said central portion and said open end of the second tubular plug, said second tubular locking mechanism being slidable over said resilient fingers of the second tubular plug after said second tubular plug is inserted through a hole in said protective barrier to thereby force said resilient fingers radially inwardly until the entire second tubular locking mechanism has passed over the finger tips of the resilient fingers of said second tubular plug at which time the finger tips snap radially outwardly to thereby lock said second tubular plug and said second tubular locking mechanism to the protective barrier, the protective barrier being locked between a front end of said second tubular locking mechanism and the closed end of the second tubular plug; and
an earphone electrically connected via an earphone cable and said closed end of the second tubular plug to said second electrical contact means so that said audio signal is received and audibly broadcast by said earphone.
5. The mounting structure of claim 1, further comprising a cylinder having an outer diameter substantially equal to an inner diameter of said tubular plug so that said cylinder fits coaxially inside said tubular plug.
6. The mounting structure of claim 5, wherein the cylinder supports the resilient fingers and prevents the resilient fingers from collapsing radially inwards.
7. The mounting structure of claim 5, further comprising an external alignment lug which projects radially outwardly from said cylinder for alignment with an alignment space located between two adjacent resilient fingers, said external alignment lug being arranged to prevent axial rotation of said cylinder with respect to said tubular plug whenever said external alignment lug is received in said alignment space.
8. The mounting structure of claim 5, further comprising an internal alignment lug which projects radially inwardly from said cylinder for alignment with a slot located on an electrical plug, said internal alignment lug being arranged to prevent axial rotation of said cylinder with respect to said electrical plug whenever said internal alignment lug is received in said slot.
9. The mounting structure of claim 5, further comprising an internal alignment lug which projects radially inwardly from said cylinder for alignment with a slot located on a microphone, said internal alignment lug being arranged to prevent axial rotation of said cylinder with respect to said microphone whenever said internal alignment lug is received in said slot.
10. The mounting structure of claim 5, farther comprising an external chamfer at an outside end of said cylinder.

This is a continuation-in-part of U.S. Ser. No. 08,608,696 now U.S. Pat. No. 5,860,417, filed Feb. 29, 1996, which is a continuation-in-part of U.S. Ser. No. 08,372,330 now U.S. Pat. No. 5,503,141, filed Jan. 13, 1995.

The present invention relates to a microphone mounting structure, and in particular, a microphone mounting structure which permits easy and reliable conversion of a conventional respirator and/or bubble suit to a sound amplifying respirator and/or bubble suit.

It is known that conventional respirators and/or bubble suits make communications difficult between persons wearing the respirators and/or bubble suits. In particular, the wearer's voice is muffled and difficult to detect over significant distances. This problem is exacerbated when there is background noise, as during firefighting and other similarly hazardous emergency operations. In response to this problem, several attempts have been made to provide sound amplifying respirators and/or masks which facilitate communications among the wearers of the respirators and masks. Examples of such respirators and masks are illustrated by the following U.S. Patents:

PATENT NO. PATENTEE
5,307,793 Sinclair et al.
5,224,473 Bloomfield
5,159,641 Sopko et al.
5,138,666 Bauer et al.
5,060,308 Bieback
4,537,276 Confer
4,508,936 Ingalls
4,491,699 Walker
4,116,237 Birch
4,072,831 Joscelyn
3,314,424 Berman
3,180,333 Lewis
2,953,129 Bloom et al.
2,950,360 Duncan

Although the above exemplary respirators and masks are generally effective, there are several disadvantages associated therewith. The Joscelyn patent, for example, teaches a mounting structure for the microphone which is integrally formed with the mask. Thus, retro-fitting of existing masks with the arrangement of Joscelyn would be very difficult and time-consuming.

Still other disadvantages are associated with one or several ones of the above exemplary respirators and masks. These disadvantages include significant reductions in amplification quality resulting in distortion of the amplified voice; the need for expensive and excessively complex circuitry or manufacturing techniques; serious distortion if the mask is frequently bumped or otherwise subject to frequent quick movements; incompatibility with some irregularly shaped masks and smaller masks, such as filter masks; mounting of the microphone assembly to the mask using a threaded connection which may become loosened during extended use, such loosening of the threaded connection possibly compromising the air-tightness of the mask and thereby posing an extreme danger to the user of the masks in hazardous environments; and difficulty in removing the microphone temporarily from the mask for purposes of cleaning the mask.

It is a primary object of the present invention to overcome the deficiencies of the prior art by providing a microphone mounting structure which permits easy and reliable conversion of a conventional respirator and/or bubble suit into a sound amplifying respirator and/or bubble suit.

Another object of the present invention is to provide a small, light-weight microphone mounting structure which is compatible with almost any respirator mask, including paper filter masks, and positively locks thereto to prevent inadvertent loosening of the mounting structure or leakage through the mask.

Yet another object of the present invention is to provide a microphone mounting structure which does not require a pre-existing mounting feature or connector on the respirator mask or bubble suit, and instead breaches the mask or bubble suit and then re-establishes the air-tight characteristics thereof.

Still another object of the present invention is to provide a microphone mounting structure which does not require complex or expensive circuitry, nor does it require complex signal transmission means such as infra-red transmitters and receivers.

A further object of the present invention is to provide a microphone mounting structure which provides direct electrical connections between a microphone inside a respirator mask and/or bubble suit, and amplifying circuitry so as to provide enhanced voice signal quality.

Another object of the present invention is to provide a microphone mounting structure with an amplification circuit that provides maximum voice signal quality for voices detected within the mask and/or bubble suit by the microphone.

To achieve these and other objects, the present invention comprises a microphone mounting structure for mounting a microphone to a respiratory mask and/or bubble suit through a hole therein. The microphone mounting structure is thus able to convert virtually any conventional respiratory mask or bubble suit into a sound amplifying respiratory mask or bubble suit.

The microphone mounting structure comprises a tubular plug, a sleeve, and a tubular locking mechanism. The tubular plug has a closed end, an open end and a central portion disposed therebetween. The closed end of the tubular plug has a larger outer diameter than the outer diameter of the central portion. The open end has a plurality of resilient fingers defined by slots in the open end, the resilient fingers having Finger tips which project radially out with respect to the tubular plug. The tubular plug further comprises electrical contact means for electrically connecting an interior of the tubular plug with an exterior of the tubular plug.

The sleeve receives the microphone and has an outer diameter substantially equal to the inner diameter of the tubular plug so that the sleeve fits coaxially inside the tubular plug. Preferably, the sleeve has an internal diameter which matches the outer diameter of the microphone so that the microphone is frictionally retained within the sleeve. The sleeve, however, is preferably longer than the central portion and open end of the tubular plug. In this way, a portion of the sleeve projects out from the tubular plug and this, in turn, facilitates removal of the sleeve from within the tubular plug using, for example, needle-nosed pliers.

A microphone cover may also be provided which fits snugly over the projecting sleeve portion and protects the microphone from moisture, dust, and the like. The microphone cover is preferably arranged only over the projecting sleeve portion so that the resilient fingers of the tubular plug remain exposed for easy inspection.

The tubular locking mechanism cooperates with the tubular plug to lock the microphone mounting structure to the respiratory mask. In particular, the tubular locking mechanism includes an inner diameter substantially equal to the outer diameter of the central portion and a longitudinal length only slightly shorter than the combination of the central portion and the open end. By providing these dimensions, the tubular locking mechanism is slidable over the resilient fingers after the tubular plug has been inserted through the hole in the respiratory mask. Doing so, in turn, forces the resilient fingers radially inwardly until the entire tubular locking mechanism has passed over the finger tips of the resilient fingers, at which time the finger tips snap radially outwardly to thereby lock the microphone mounting structure to the respiratory mask. The respiratory Task, consequently, remains sandwiched and locked between the front end of the tubular locking mechanism and the closed end of the tubular plug.

The microphone mounting structure of the present invention preferably comprises three electrical contacts extending radially through the sleeve and arranged for electrical connection to the electrical contact means in the tubular plug. In addition, three electrical wires are provided for electrically connecting the electrical contacts to the microphone.

The microphone mounting structure preferably also comprises an internal alignment slot extending longitudinally along the central portion and open end of the tubular plug, and an external alignment tab which projects radially out from the sleeve for alignment with the internal alignment slot of the tubular plug. The alignment slot and tab are arranged such that, whenever the external alignment tab is received in the internal alignment slot, the external alignment tab prevents axial rotation of the sleeve with respect to the tubular plug. This arrangement helps keep the three electrical contacts of the sleeve aligned with the electrical contact means of the tubular plug.

Preferably, a socket is also provided at the closed end of the tubular plug. The socket receives an electrical plug which electrically connects the electrical contact means to an amplification circuit.

The microphone mounting structure can further comprise a circumferential flange projecting radially outwardly from the front end of the tubular locking mechanism. At least one resilient washer is preferably disposed coaxially around the central portion of the tubular plug, between the front end of the tubular locking mechanism and the closed end of the tubular plug.

According to a preferred arrangement, at least one and preferably all of the finger tips project radially outwardly and backwardly toward the central portion so that each of the corresponding resilient fingers has a semi-arrow-shaped distal end. In addition, the tubular locking mechanism includes an externally bevelled back end for lockingly engaging the semi-arrow-shaped distal end of the resilient fingers.

Amplification circuitry provides output sounds representative of the oral sounds which the microphone detects within the mask. The amplification circuitry may be provided entirely in a separate housing, or alternatively, may be manufactured using integrated chip technology so that certain circuit components are miniaturized and built into the closed end of the tubular plug. According to the latter arrangement, a speaker and power supply portions of the amplification circuitry would remain in a separate housing.

For purposes of this disclosure, the term "respiratory mask" is intended to broadly encompass all types of respiratory masks, including those attached to a supply of gas and those which merely filter air, including conventional paper filter masks.

An alternative embodiment of the mounting structure requires no sleeve and instead utilizes a microphone having socket sleeves. The socket sleeves are arranged so as to receive electrically conductive pins of the tubular plug and thereby establish electrical communication between the microphone and electrical contacts within the tubular plug. In the alternative embodiment, a grommet may surround the microphone; however, the grommet preferably includes no conductive elements.

The mounting structure of the present invention may be combined with other similar mounting structures disposed through respective holes in a bubble suit (or other protective barrier) to facilitate not only verbal communication through the respiratory mask, but also verbal communication through the bubble suit.

In addition, earphones inside a bubble suit may be electrically connected, via a mounting structure of the present invention, to an external communication device outside the bubble suit. When the external communication device includes a microphone, sounds and conversations which occur outside the bubble suit may be easily detected inside the bubble suit. Similarly, when the external communication device includes a transceiver, bi-directional communication is facilitated between the wearer of the bubble suit and remotely located personnel having similar transceivers.

In another embodiment of the invention, a cylinder is configured as a special sleeve for use with the plug of the alternative embodiment having electrically conductive pins. The cylinder has the same general size and shape as the sleeve, and is essentially used in the same manner. However, the cylinder is capable of receiving either a microphone or an electric plug, whereas the sleeve only receives a microphone.

The above and other objects and advantages will become more readily apparent when reference is made to the following description taken in conjunction with the accompanying drawings.

FIG. 1 is a perspective view of a microphone mounting structure disposed on a respirator mask and connected to an amplification circuit in accordance with the present invention.

FIG. 2 is an exploded view of the microphone mounting structure illustrated in FIG. 1.

FIG. 3 is a top partially cross sectioned view of a tubular plug in accordance with the present invention.

FIG. 4 is a cross section of the microphone mounting structure in accordance with the present invention.

FIG. 5 is a side cross sectional view of the microphone mounting structure illustrated in FIGS. 1-4.

FIG. 6 is a circuit diagram of an amplification circuit for the microphone mounting structure of the present invention.

FIG. 7 is a perspective view of a tubular plug in accordance with an alternative embodiment of the present invention.

FIG. 8 is a interior view of the tubular plug illustrated in FIG. 7.

FIG. 9 is an exterior view of the tubular plug illustrated in FIG. 7.

FIG. 10 is a perspective view of a locking mechanism in accordance with the alternative embodiment of the present invention.

FIG. 11 is a perspective view of a microphone and grommet in accordance with the alternative embodiment of the present invention.

FIG. 12 is a top view of the grommet illustrated in FIG. 11.

FIG. 13 is a circuit diagram of an alternative amplification circuit for the microphone mounting structure of the present invention.

FIG. 14 is a perspective view of a preferred arrangement for electrically connecting the alternative amplification circuit illustrated in FIG. 13 to the tubular plug illustrated in FIG. 9.

FIG. 15 is a schematic illustration of yet another preferred embodiment of the present invention, -which embodiment is adapted for use in conjunction with a bubble suit or other protective barrier.

FIG. 16 schematically illustrates a modification of the embodiment illustrated in FIG. 15, which modification includes an earphone.

FIG. 17 illustrates an alternative modification to that illustrated in FIG. 16.

FIG. 18(a) is a perspective view of yet another alternative embodiment of a cylinder that is used with the plug of FIG. 7, as illustrated in FIG. 2.

FIG. 18(b) is a side view of the cylinder of FIG. 18(a).

FIG. 19 is a front view of the cylinder of FIG. 18(a)

FIG. 20 is a front view of a tubular plug, together with the cylinder of FIG. 18(a).

FIG. 21 is a perspective view of an electrical plug used with the cylinder of FIG. 18(a).

A preferred embodiment of the present invention will now be described with reference to FIGS. 1-6.

According to the preferred embodiment, a microphone mounting structure 2 is provided for :mounting a microphone 4 to a respiratory mask 6. All that is required to effect mounting of the mounting structure 2 to the respiratory mask 6 is a hole 8 in the respiratory mask 6. Such a hole 8 can be easily cut or drilled through an existing conventional respiratory mask at any convenient location in the mask 6. It is preferably mounted in the front near the wearer's mouth. Accordingly, the microphone mounting structure 2 is able to convert virtually any conventional respiratory mask into a sound amplifying respiratory mask 6.

The microphone mounting structure 2 comprises a tubular plug 10, a sleeve 12, and a tubular locking mechanism 14. The tubular plug 10, sleeve 12, and tubular locking mechanism 14 are all made from non-conductive material, preferably a moldable plastic such as ZYTEL which is a commercially available high temperature nylon thermoplastic resin manufactured by DuPont. The tubular plug 10 has a closed end 16, an open end 18 and a central portion 20 disposed therebetween. The closed end 16 of the tubular plug 10 has a larger outer diameter than the outer diameter of the central portion 20. The open end 18 has a plurality of resilient fingers 22 defined by slots 24 in the open end 18, the resilient fingers 22 having finger tips 26 which project radially outwardly with respect to the tubular plug 10. The tubular plug 10 further includes electrical contact means 28 for electrically connecting the interior of the tubular plug 10 with the exterior of the tubular plug 10.

The sleeve 12 has an outer diameter substantially equal to the inner diameter of the tubular plug 10 so that the sleeve 12 fits coaxially inside the tubular plug 10. These dimensions preferably provide frictional retention of the sleeve 2 inside the tubular plug 10.

In addition, the sleeve 12 preferably has an internal diameter which matches the outer diameter of the microphone 4 so that the microphone 4 remains frictionally retained within the sleeve 12. The sleeve 12 is preferably longer than the combination of the central portion 20 and open end 18 in the tubular plug 10. In this way, portion 30 of the sleeve 12 projects out from the tubular plug 10 and this, in turn, facilitate removal of the sleeve 12 from within the tubular plug 10 using, for example, needle-nosed pliers.

A microphone cover 32 may also be provided which fits snugly over the projecting sleeve portion 30 and protects the microphone 4 from moisture, dust, and the like. The microphone cover 32 is preferably arranged only over the projecting sleeve portion 30 so that the resilient fingers 22 of the tubular plug 10 remain exposed for easy inspection. According to a preferred embodiment, the microphone cover 32 is made using water-impermeable high density cloth or water-impermeable tightly woven cloth.

The tubular locking mechanism 14 cooperates with the tubular plug 10 to lock the microphone mounting structure 2 to the respiratory mask 6. In particular, the tubular locking mechanism 14 includes an inner diameter substantially equal to the outer diameter of the central portion 20 and a longitudinal length only slightly shorter than the combination of the central portion 20 and the open end 18. By providing these dimensions, the tubular locking mechanism 14 is slidable over the resilient fingers 22 after the tubular plug 10 has been inserted through the hole 8 in the respiratory mask 6. Doing so, in turn, forces the resilient fingers 22 radially inwardly until the entire tubular locking mechanism 14 has passed over the finger tips 26 of the resilient fingers 22, at which time the finger tips 26 snap radially outwardly to thereby lock the microphone mounting structure 2 to the respiratory mask 6. The respiratory mask 6, consequently, remains sandwiched and locked between a front end 34 of the tubular locking mechanism 14 and the closed end 16 of the tubular plug 10.

The sleeve 12 preferably includes three electrical contacts 36 extending radially through the sleeve 12 and arranged for electrical connection to the electrical contact means 28 in the tubular plug 10. Preferably, frictional retention of the sleeve 12 within the tubular plug 10 is enhanced by the friction which exists between the three electrical contacts 36 in the sleeve 12 and the contact means 28 of the tubular plug 10. In addition, three electrical wires 38 are provided for electrically connecting the three electrical contacts 36 to the microphone 4 in any convenient, known manner.

The microphone 4 is preferably a commercially available ELECTRECT condenser microphone, sold commercially by Panasonic. The microphone 4 is responsive to oral sounds within the respiratory mask 6, and produces electrical signals indicative of these oral sounds. The microphone 4 is electrically connected to electrical contact means 28 using the three wires 38 so that these electrical signals will be provided to the contact means 28.

The plug 10 also preferably includes an internal alignment slot 40 extending longitudinally along the inner surface of central portion 20 and open end 18 of the tubular plug 10, and an external alignment tab 42 which projects radially outwardly from the sleeve 12 for alignment with the internal alignment slot 40 of the tubular plug 10. The alignment slot 40 and tab 42 are arranged such that, whenever the external alignment tab 42 is received in the internal alignment slot 40, the external alignment tab 42 prevents axial rotation of the sleeve 12 with respect to the tubular plug 10. This arrangement advantageously helps keep the three electrical contacts 36 of the sleeve 12 aligned with the electrical contact means 28 of the tubular plug 10.

Preferably, a socket 44 is Provided at the closed end 16 of the tubular plug 10. The socket 44 receives an electrical plug 46 which, in combination with an electrical cable 47, electrically connects the electrical contact means 28 to an amplification circuit 48 shown schematically in FIG 6. The electrical cable 47 may include an alligator clip 47A which engages an article of clothing to support the weight of the cable 47. This arrangement would be helpful in preventing inadvertent disconnection of the plug 46 from the socket 44 and stress failure of the connection between the cable 47 and the plug 46. In addition, the electrical cable 47 preferably consists of a commercially available, shielded electrical cable to thereby prevent the pick-up of a static hum on the cable 47.

According to a preferred use of the present invention, the separate housing 48A is secured to a shoulder of a user's clothing to thereby facilitate communications using a telephone, radio, or intercom system, any one or all of which may be found in nuclear and other industrial plants. Clear concise communications will increase wearer or user safety and, in groups, will add synergy and reduce work time in hazardous environments, thereby reducing exposure to such hazardous environments.

The amplification circuit 48 provides output sounds representative of the oral sounds which the microphone 4 detects within the mask 6. The amplification circuit 48 may be disposed entirely in a separate housing 48A, or alternatively, may be manufactured using integrated chip technology so that certain circuit components are miniaturized and built into the closed end 16 of the tubular plug 10. According to the latter arrangement, a speaker U3 and power supply portion 48B of the amplification circuit 48 would remain in the separate housing 48A, primarily due to their size.

The separate housing 48A can include an ON/OFF and volume control knob 48C, as is generally known, for turning the amplification circuit 48 on and off and for controlling gain in the amplification circuit 48 to thereby effect volume control. The separate housing 48A also includes a battery compartment, as is generally known, for removably storing batteries which power the amplification circuit 48. The knob 48C and battery compartment each include gaskets which maintain an air-tight seal between the interior and exterior of the separate housing 48A. Preferably, any element which breeches the separate housing 48A is equipped with a similar gasket. This way, the contents of the separate housing 48A remain free from environmental contamination.

The separate housing 48A preferably further includes warning labels which provide instructions regarding the recommended use and non-recommended use of the sound amplifying respirator. One such label, for example, would warn a user not to connect or disconnect the battery in an explosive environment.

Although a preferred amplification circuit 48 is illustrated in FIG. 6, it is well understood that many other amplifications circuits will suffice. In addition, the amplification circuit 48 can be modified, for example, to include a voice actuation circuit to thereby conserve battery power, as is generally known. The following table correlates the reference numeral for each element In amplification circuit 48, with the details thereof:

REF. DETAILS OF CIRCUIT ELEMENTS FROM
No. AMPLIFICATION CIRCUIT 48
4 ELECTRECT condenser microphone
C1 Audio coupling using a 0.022 μfarad
non-polarized film capacitor
C2 Audio coupling using a 0.05 μfarad
non-polarized film capacitor
C3 Coupling power to speaker using a 47 μfarad
polarized aluminum capacitor
C4 Power supply filter capacitor
having a 47 μfarad capacitance
C5 Audio bypass capacitor which provides a
0.1 μfarad bias for the preamplifier U1
C6 Gain is increased to 200 using a 10 μfarad
polarized aluminum capacitor
R2 1 KΩ input limiting resistor
R3 10 KΩ negative feedback resistor
R4 100 KΩ bias resistor to ground
R5 100 KΩ bias resistor to a positive
power supply terminal
R6 270 Ω input limiting resistor
R7 10 KΩ potentiometer for providing volume control
U1 625 milliwatt preamplifier, an example of which is
commercially available under part number LM1458 IC
U2 1 watt power amplifier, an example of which is
commercially available under part number LM386N-1 IC
U3 Speaker
(preferably, 1 watt, and 2 inch diameter)

A significant portion of the amplification circuit 48 is commercially available from MCM TechKit of Centerville, Ohio, and is listed under audio amplifier number AA-1. The amplifier circuit 48 illustrated in FIG. 6, however, includes several modifications which make the circuit 48 particularly well suited for amplification of voices in a respiratory mask. In particular, the capacitors C1, C2, C5 and C6 have been chosen so as to provide a frequency response highly conducive to amplifying the human voice from within a respiratory mask. Preferably, the low frequencies associated with breath sounds are attenuated, while the higher frequencies associated with the human voice are amplified.

The pin designations in FIG. 5 relate to the particular amplifier integrated chips listed in the above table. It is understood that such pin designations may be different depending on the particular amplifier chips used. In addition, as FIG. 6 indicates, the amplifier circuit 48 is particularly adapted to operate from a 9 volt power supply, and according to the preferred embodiment, from a conventional 9 volt battery.

The microphone mounting structure 2 can further include a circumferential flange 50 projecting radially out from the front end 34 of the tubular locking mechanism 14. The flange 50 advantageously provides a greater surface area squeezing the mask 6 between the tubular locking mechanism 14 and the large-diameter closed end 16 of the tubular plug 10. Preferably, the large-diameter closed end 16 of the tubular plug 10 and the circumferential flange 50, each have a projection 51 which is arranged so as to bite the mask 6. Each projection 51 is preferably coextensive with the flange 50 and the large-diameter closed end 16 of the tubular plug 10. This overall arrangement helps prevent stretching of the hole 8 in the mask 6 beyond the circumference of the mounting structure 2 and consequently prevents any undesirable leaks which might otherwise develop. The flange 50 therefore provides a more secure structural arrangement and a more reliable air-tight seal.

At least one resilient washer 52 is preferably disposed coaxially around the central portion 20 of the tubular plug 10, between the front end 34 of the tubular locking mechanism 14 and the closed end 16 of the tubular plug 10. The number of resilient washers 52 and their respective thicknesses depend primarily upon the resiliency and thickness of the mask 6 itself. Thick masks having a high resiliency typically need no washers 52, while thinner and less resilient masks may require one or more washers 52. The washers 52 are preferably made of neoprene rubber, or similar resilient materials which are capable of withstanding exposure to hostile environments.

According to a preferred arrangement, there are between six and eight fingers 22 in the tubular plug 10. Experiments with other numbers of fingers have yielded more brittle parts or an otherwise less effective locking arrangement. Nevertheless, such parts may be effective in limited applications of the microphone mounting structure 2, which applications would fall well within the scope and spirit of the present invention.

One and preferably all of the finger tips 26 project radially outwardly and backwardly toward the central portion 20 so that each of the corresponding resilient fingers 22 has a semi-arrow-shaped distal end. In addition, the tubular locking mechanism 14 includes an externally bevelled back end 54 for lockingly engaging the semi-arrow-shaped distal ends of the resilient fingers 22. This locking arrangement, once secured to the mask 6, advantageously prevents inadvertent loosening of the mounting structure 2.

A preferred method for securing the microphone mounting structure 2 to the respiratory mask 6 will now be described. Initially, the hole 8 is created at a desired mounting position on the mask 6. The hole 8 may be created in any known manner, including cutting and drilling, and is preferably made by pressing a sharp circular cutting element against a firm surface with the mask 6 sandwiched therebetween. The diameter of the sharp cutting element substantially matches the outside diameter of the central portion 20 of the tubular plug 10 so that the hole 8 will be of proper size.

Once the hole 8 has been created, the tubular plug 10 can be inserted into the hole 8, starting from outside of the mask 6 and penetrating the hole 8 toward the inside of the mask 6. It is understood that any resilient washers which are to remain on the outside of the mask 6, will be mounted circumferentially around the central portion 20 prior to insertion of the tubular plug 10 into the hole 8. Insertion of the tubular plug 10 continues until the closed end 16 of the tubular plug 10 abuts against the outside surface of the mask 6, or against a washer 52 disposed therebetween.

Next, any washers 52 which are to be mounted on an inside surface of the mask 6 are mounted circumferentially around the tubular plug 10 and then brought into contact with the inside surface of the mask 6. After the washers 52 are appropriately positioned, the tubular locking mechanism 14 is brought into axial alignment with the tubular plug 10 inside of the mask 6. This axial alignment is achieved such -hat the flange 50 faces the tubular plug 10. With the flange 50 facing the tubular plug 10, the locking mechanism 14 is brought against the finger tips 26 and then pressed toward the mask 6. This pressing action causes a radially inward displacement of the resilient fingers 22 which permits the tubular locking mechanism 14 to pass over the central portion 20 of the tubular plug 10 and into contact with the mask 6, or alternatively, into contact with a washer 52 disposed against the inside surface of the mask 6.

The tubular locking mechanism is then pressed harder against the mask 6 to cause compression of the mask 6 and/or resilient washers 52. Such compress-on permits the externally bevelled back end 54 of the locking mechanism 14 to pass beyond the finger tips 26 thus releasing the finger tips 26. Once released, the resilient fingers 22 snap outwardly so that the finger tips 26 lockingly engage the bevelled back end 54 of the tubular locking mechanism 14. This locking arrangement is securely maintained by the cooperating shapes of the finger tips 26 and the externally bevelled back end 54, combined with the back pressure exerted by the mask 6 and/or washers 52 by virtue of their compressed state. It is noted that, upon locking the foregoing elements as indicated above, the air-tight characteristic of the respiratory mask 6 is re-established.

This air-tight characteristic Pan be tested in non-filter masks by placing the mask over one's :ace, holding closed any air hoses to the mask 6, and subsequently inhaling. Confirmation of the air-tight characteristics will be evidenced by the ability to suck the mask into one's face. Likewise, the finger tips 26 of the resilient fingers 22 always remain exposed for visual verification of the locking arrangement.

Next, the microphone 4 is inserted into the sleeve 12 so that the sleeve 12 frictionally retains the microphone 4. The wires 38 are preferably pre-connected to respective ones of the electrical contacts 36; however, it is understood that a separate connector can be provided for making connections in the field. The microphone cover 32 is then mounted to the projecting sleeve portion 30.

Thereafter, the sleeve 12 is axially aligned with the tubular plug 10 inside the mask 6, and is rotationally positioned so that the external alignment tab 42 aligns with the internal alignment slot 40 of the tubular plug 10. Once the tab 42 and slot 40 are properly aligned, the sleeve 12 is forced into the open end 18 of the tubular plug 10 and driven therein until only the projecting sleeve portion 30 remains exposed. At this point, the sleeve 12 and the microphone 4 are frictionally retained inside the tubular plug 10, with the electrical contacts 36 engaging the electrical contact means 28 of the tubular plug 10. In this position, the sleeve 12 prevents the resilient fingers 22 from bending radially inwardly. This advantageously provides added security against inadvertent release of the tubular locking mechanism 14.

The microphone 4 is thus securely mounted to the mounting respiratory mask E. Thereafter, the microphone 4 can be electrically connected to the amplification circuit 48 by connecting the electrical plug 46 to the socket 44 of the tubular plug 10.

A particularly advantageous feature of the microphone mounting structure 2 is the ability to remove the combination of the microphone 4 and sleeve 12, while leaving the tubular plug 10 and the tubular locking mechanism 14 mounted to the mask 6. When the mask 6 is then washed, for example, the projecting sleeve portion 30 may be gripped using any suitable means and pulled to remove the combination of the sleeve 12, microphone 4, and microphone cover 32 out from the tubular plug 10 as a unit. Thereafter, the mask 6 can be washed without fear of damaging the microphone 4.

In the preferred structure, according to the present invention, the elements which seal the hole 8 (i.e., the tubular plug 10, tubular locking mechanism 14, and washers 52) remain attached to the mask 6, while the microphone 4 and sleeve 12 are readily removable. Further, once the seal is established by the former elements, there is no need to again break this seal to remove the microphone 4. This advantageously prevents repetitious wearing of the critical elements that establish and maintain the mask's seal. An enhanced level of safety is thereby provided.

With reference to FIGS. 7-11, an alternative embodiment of the microphone mounting structure will now be described.

According to the alternative embodiment, the microphone mounting structure is used for mounting a microphone 104 to a respiratory mask 6 (shown in FIG. 2) through a hole 8 (also shown in FIG. 2) in the respiratory mask 6. In particular, the microphone mounting structure includes a tubular plug 110 for receiving the microphone 104 and a tubular locking mechanism 114.

The tubular plug 110 is very similar to that of the previously described embodiment, and Includes a closed end 116, an open end 118 and a central portion 120 disposed therebetween. The closed end 116 has a larger outer diameter than an outer diameter of the central portion 120, and the open end 118 has a plurality of resilient fingers 122 defined by slots 124 in the open end 118. The resilient fingers 122 have finger tips 126 which project radially outwardly with respect to the tubular plug 110. Additionally, the tubular plug 110 includes electrical contacts 136 for electrically connecting an interior of the tubular plug 110 with an exterior of the tubular plug 110.

The tubular locking mechanism 114 has an inner diameter substantially equal to the outer diameter of the central portion 120 and a longitudinal length slightly shorter than a combination of the central portion 120 and the open end 118. The tubular locking mechanism 114 is slidable over the resilient fingers 122 after the tubular plug 110 is inserted through the hole in the respirator mask to thereby force the resilient fingers 122 radially inwardly until the entire tubular locking mechanism 114 has passed over the finger tips 126 of the resilient fingers 122 at which time the finger tips 126 snap radially outwardly to thereby lock the microphone mounting structure to the respiratory mask. The respiratory mask therefore remains linked between a front end 134 of the tubular locking mechanism 114 and the closed end 116 of the tubular plug 110.

Preferably, a circumferential flange 150 projects radially outwardly from the front end 134 of the tubular locking mechanism 114. The flange 150 advantageously provides a greater surface area squeezing the mask between the tubular locking mechanism 114 and the large-diameter closed end 116 of the tubular plug 110. At least one resilient washer may be placed coaxially around the central portion 120, as indicated in the previously described embodiment, between the front end 134 of the tubular locking mechanism 114 and the closed end 116 of the tubular plug 110.

The microphone 104 of the alternative embodiment is illustrated, by way of example, in FIG. 11. Preferably, a grommet 105 is placed around the microphone 104. The grommet 105 has an outer diameter substantially equal to an inner diameter of the tubular plug 110 so that the grommet 105 and the microphone 104 snugly fit coaxially inside the tubular plug 110. Preferably, the grommet 105 is made of resilient material capable of cushioning the microphone 104 and preferably has an internal diameter which matches an outer diameter of the microphone 104 so that the microphone 104 is frictionally retained within the grommet 105. The grommet 105 is generally cup-shaped and has an annular bottom 109, as illustrated in FIG. 12.

Alternatively, the grommet 105 may be eliminated by manufacturing the tubular plug 110 with an inner diameter which matches the outer diameter of the microphone 104 so that the microphone 104 is frictionally retained by the inside wall of the tubular plug 110.

Preferably, the electrical contacts 136 include electrically conductive pins projecting into the interior of the tubular plug 110. The electrically conductive pins are arranged for insertion into correspondingly arranged socket sleeves 107 of the microphone 104 when the microphone 104 is contained within the tubular plug 110. Electrical communication is thereby established between the electrical contacts 136 and the microphone 104. A grommet 105 and a microphone 104 of the type illustrated are commercially available from DIGI-KEY Corporation and are currently sold under part numbers P9950-ND and P9970-ND, respectively. The commercially available microphone, however, has two solder connections instead of the socket sleeves 107 illustrated in FIG. 11. Accordingly, the microphone 104 of the alternative embodiment is created by soldering the socket sleeves 107 to the solder connections of the commercially available microphone.

Preferably, at least three socket sleeves 107 are soldered to the commercially available microphone, with two of the socket sleeves 107 being soldered to the same solder connection of the commercially available microphone, and the remaining one of the socket sleeves 107 being soldered to the other solder connection of the microphone. The use of at least three such socket sleeves 107 and three electrically conductive pins is preferred because of the resistance such an arrangement presents against bending of the electrically conductive pins and socket sleeves 107 during disconnection and interconnection of the sleeves 107 and electrically conductive pins.

In order to facilitate proper connection of the microphone 104 to the electrically conductive pins of the electrical contacts 136, a first alignment mark 142 is located at the open end 118 of the tubular plug 110 for alignment with a second alignment mark 143 associated with the microphone 104 and/or grommet 105. In particular, the first alignment mark 142 is arranged so that the electrically conductive pins are properly aligned with the socket sleeves 107 only when the first and second alignment marks 142,143 are aligned.

As illustrated in FIG. 9, a socket 144 is preferably located at the closed end 116 of the tubular plug 110. The socket 144 is arranged so as to receive an electrical plug which electrically connects the electrical contacts 136 to the amplification circuit 48.

Although a preferred amplification circuit 48 is illustrated in FIG. 6, it is well understood that many other amplifications circuits will suffice. An alternative amplification circuit 48 is illustrated in FIG. 13. The following table correlates the reference numeral for each element in the alternative amplification circuit 48 of FIG. 13, with the details thereof:

REF. DETAILS OF CIRCUIT ELEMENTS FROM
No. ALTERNATIVE AMPLIFICATION CIRCUIT 48
104 Microphone commercially available
from DIGI-KEY Corp.: Part No. P9970-ND
C1 470 μfarad capacitor; commercially available
from DIGI-KEY Corp.: Part No. P6335-ND
C2, 0.1 μfarad capacitor commercially
C6, available from DIGI-Key Corp.:
C5, Part No. P4525-ND
C9,
C10
C3, 1.0 μfarad capacitor: commercially available
C4, from DIGI-KEY Corp.: Part No. P2105-ND
C5
C7, 100 μfarad capacitor: commercially available
C11, from DIGI-KEY Corp.: Part No. P2019-ND
C12
R1 2.2 KΩ-ND Resistor commercially available
from DIGI-KEY Corp.
R2, 10.KΩ-ND potentiometer commercially available
R9 from DIGI-KEY Corp. R2 provides an
adjustable cut-off frequency for a filter
defined by the combination of R2 and C4.
R9 provides volume control.
R3, 1 kΩ-ND Resistor commercially available
R8 from DIGI-KEY Corp.
R5, 100 KΩ-ND Resistor commercially
R6, available from DIGI-KEY Corp.
R7
U1 TL082 Dual Operating Amp commercially
available from Motorola. The pin designations
and the connection of these pins to various
circuit elements are illustrated in the
drawing.
U2 LM386 amplifier chip commercially available
from National Semiconductor
U3 Mylar speaker commercially available from
CUI/Stack, Inc. of Beaverton, Oregon: Part.
No. 45-8B-04
B1 Battery holder commercially available from
DIGI-KEY Corp.; Part No. BH9V-PC-ND
R4 10KΩ-ND Resistor commercially available from
DIGI-KEY Corp.

It is noted that the illustrated alternative embodiment does not include the externally bevelled back end 54 associated with the previous embodiment for engaging semi-arrow-shaped distal ends of the resilient fingers 26. Instead, the back end 154 of the tubular locking mechanism 114 is flat, as are the bottoms of the finger tips 126. The latter arrangement advantageously reduces manufacturing costs by avoiding the expense associated with creating the bevelling and the semi-arrow shaped distal ends in the previous embodiment.

In the illustrated embodiment, the tubular plug 110 does not include the projection 51 illustrated in connection with the previously illustrated embodiment (FIGS. 1-6). Although such a projection can be provided, it is preferably omitted to avoid additional manufacturing costs.

The microphone mounting structure of the alternative embodiment is utilized in much the same way as the previously recited embodiment. The only differences lie in the insertion of the microphone 104 into the tubular ping 110. In the alternative embodiment, there is no sleeve 12. Instead, the microphone 104 itself or the combination of the microphone 104 and its associated grommet 105 are inserted into the tubular plug with the first and second alignment marks 142,143 properly aligned. This way, the socket sleeves 107 receive the contact pins of the electrical contacts 136. Once the microphone 104 is inserted, the microphone 104 prevents the resilient fingers 122 from bending radially inwardly. This advantageously provides added security against inadvertent release of the tubular locking mechanism 114.

The microphone 104 is thus securely mounted to the respiratory mask 6. Thereafter, the microphone 104 can be electrically connected to the amplification circuit 48 by connecting an electrical plug 146, illustrated in FIG. 14, to the socket 144 of the tubular plug 110. The electrical plug 146 preferably comprises a three-contact straight female plug of the type commercially available from Switchcraft, Inc. under part numbers ST603 or TA3FL, and is connected to an electrical cord 147 leading to the amplification circuit 48. The electrical cord 147 is preferably a multi-wire shielded cable assembly.

As illustrated in FIG. 14, the amplification circuitry is preferably contained in a separate housing 148A. The separate housing 148A can include an ON/OFF and volume control knob 148B, as is generally known, for turning the amplification circuit 48 on and off and for controlling gain in the amplification circuit 48 to thereby effect volume control. An exemplary environmentally sealed box from which the separate housing 148A can be manufactured is commercially available from Bud West under Part No. PN-1321-DG.

The separate housing 148A also includes a battery compartment, as is generally known, for removably storing batteries which power the amplification circuit 48. A preferred battery compartment is commercially available from DIGI-KEY Corp. under Part No. BH9V-PL-ND.

The knob 148B and battery compartment each include gaskets which maintain an air-tight seal between the interior and exterior of the separate housing 148A. Preferably, any element which breeches the separate housing 148A is equipped with a similar gasket. This way, the contents of the separate housing 148A remain free from environmental contamination.

Preferably, as illustrated in FIG. 14, the separate housing 148A includes a three-pin male receptacle connector 149, and each distal end of the electrical cord 147 includes one of the three-contact straight female plugs 146. One of the plugs 146 may be removably connected to the socket 144 of the tubular plug 110, while the other plug 146 is removably connected to the three-pin male receptacle connector 149. An exemplary three-pin male receptacle connector 149 is commercially available from Switchcraft, Inc. under part number TB3M.

In a preferred alternative arrangement, the three-pin male receptacle connector 149 provides a protective seal from the external environment, an example of which is commercially available from Electroshield, Inc. of Yellow Springs Ohio, under Part No. 17282-3PG-300. When this alternative three-pin male receptacle connector is used, one of the three-contact straight female plugs 146 of the electrical cord 147 is preferably a sealed connector commercially available from Electroshield, Inc., under Part No. 16282-3SG-315.

The separate housing 148A preferably further includes warning labels which provide instructions regarding the recommended use and non-recommended use of the sound amplifying respirator. One such label, for example, would warn a user not to connect or disconnect the battery in an explosive environment.

Yet another preferred embodiment of the present invention will now be described with reference to FIG. 15. In FIG. 15, the respirator mask 6 is being utilized in conjunction with a bubble suit 7, or other protective outer barrier.

Such utilization of a protective outer barrier, such as a bubble suit 7, is generally known in the art of handling hazardous materials. The preferred embodiment schematically illustrated in FIG. 15 greatly facilitates oral communication through the respirator mask 6 and bubble suit 7 by providing a microphone mounting structure extending through a hole 8 in the respirator mask and by also providing an additional mounting structure extending through a hole in the bubble suit 7. The additional mounting structure electrically connects the microphone mounting structure at the respirator mask 6 to a communication device 348.

The communication device 348 may include an amplification circuit similar to the amplification circuits illustrated in FIGS. 6 and 14, or alternatively, may include a transmitter or transceiver for communicating with remotely located communication equipment.

The arrangement illustrated n FIG. 15 includes a first tubular plug 210, a first tubular locking mechanism 214, a second tubular plug 310, a second tubular locking mechanism 314, and an electrical cord 315 electrically connecting the first tubular plug 210 to the second tubular plug 310. The first and second tubular plugs 210,310 are preferably identical to the tubular plug 110 illustrated in FIGS. 7-9. Likewise, the first and second tubular locking mechanisms 214,314 are preferably identical to the tubular locking mechanism 114 illustrated in FIG. 10.

During assembly, resilient washers 52 are preferably disposed coaxially around the central portion of each tubular plug 210,310 between the front end of the tubular locking mechanisms 214,314 and the closed end of the tubular plugs 210,310. The number of resilient washers 52 and their respective thicknesses depend primarily upon the resiliency and thickness of the mask 6 and the bubble suit 7. Masks and bubble suits which are thick and/or have high resiliency characteristics typically need no washers 52, while thinner and less resilient masks and bubble suits may require one or more washers 52. The washers 52 are preferably made of neoprene rubber, or similar resilient materials which are capable of withstanding exposure to hostile environments.

Attachment of the microphone mounting structure and the additional mounting structure to the mask 6 and bubble suit 7, respectively, is achieved in the same manner is in the previously described embodiments. Once the tubular locking mechanisms 214,314 are brought over the resilient fingers of tubular plugs 210,310 the two mounting structures are locked in place. Thereafter, insertion of the microphone into the first tubular plug 210 prevents inward displacement of the resilient fingers of the tubular plug 210 and thereby precludes inadvertent unlocking of the microphone mounting structure.

In order to establish electrical communication between the microphone and the communication device 348 external of the bubble suit 7, the socket at the closed end of the first tubular plug 210 is electrically connected to the electrically conductive pins inside the first tubular plug 210. A first electrical plug 346 has a configuration which matches the socket of the first tubular plug 210 and is received in the socket. Preferably, the first electrical plug 346 is identical to the three-contact straight female plugs 146 described in connection with the previous embodiment.

The first electrical plug 346 defines one distal end of the electrical cord 315. The other distal end of the electrical cord 315 includes a second electrical plug 347. The second electrical plug 347 has dimensions similar to that of the microphone and therefore is received in place of the microphone in the additional mounting structure. Preferably, the dimensions of the tubular plug 110 and the socket 144 thereof are such that the first electrical plug 346 and the second electrical plug 347 are identical.

The second electrical plug 347 slides into the second tubular plug 310 and electrically connects to the electrically conductive pins inside the second tubular plug 310. Preferably, a set of conductive socket sleeves 307 inside the second electrical plug 347 provide the electrical connection between the conductive pins inside the second tubular plug 310 and the electrical cord 315.

Upon insertion of the second electrical plug 347 into the second tubular member 310, inward displacement of the resilient fingers of the second tubular plug 310 is prevented, and this, in turn, precludes inadvertent unlocking of the additional mounting structure from the bubble suit 7.

A third electrical plug 348 has a configuration which matches the socket of the second tubular plug 310 and is received in the socket of the second tubular plug 310 to establish electrical communication with the electrically conductive pins in the second tubular plug 310. Preferably, the third electrical plug 348 is identical to the three-contact straight female plugs 146 described in connection with the previous embodiment.

Extending from the third electrical plug 348 is another electrical cord 316 which is electrically connected to the communication device 348 located externally of the protective barrier defined by the bubble suit 7.

The embodiment illustrated in FIG. 15 also preferably includes the grommet 105 described in connection with the embodiment of FIGS. 7-14.

To further facilitate communications through the respiratory mask 6 and bubble suit 7, the embodiment illustrated in FIG. 15 may be augmented with an earphone 350 as schematically illustrated in FIGS. 16 and 17.

In FIG. 16, the electrical cord 315 is bifurcated and therefore also includes an earphone cable 317 which electrically connects the earphone 350 via the second electrical plug 347 to the electrically conductive pins of the second tubular plug 310.

It is understood that the second electrical plug 347 and second tubular plug 310 may include additional pins and conductors to that illustrated.

Preferably, at least two of the electrically conductive pins of the second tubular plug 310 define a dedicated audio conductor set for transmitting audio signals to the earphone 350. These audio signals may be derived from an external microphone located at the communication device 348, or alternatively, the audio signals may be derived from radio signals and/or other signals containing audio information which are received by the communication device 348 from a remote location.

In FIG. 17, in order to avoid bifurcation of the electrical cord 315, the microphone mounting structure includes a third tubular plug 410, a third tubular locking mechanism 414, a microphone for insertion into the tubular plug 410 outside of the bubble suit 7, and an earphone cord 317 for electrically connecting the electrically conductive pins of the third tubular plug 410 to the earphones 450. The third tubular plug 410 and the third tubular locking mechanism 414 are identical to the tubular plug 110 and tubular locking mechanism 114 of FIGS. 7-10.

In FIG. 17, however, these elements are mounted in the reverse direction with the tubular plug 410 entering a hole 9 in the bubble suit from outside the bubble suit 7 and with the tubular locking mechanism located inside the bubble suit. Such reverse mounting is desired because the microphone must remain outside of the bubble suit 7 to pick up oral signals outside of the bubble suit 7, while the earphone cord 317 remains inside the bubble suit 7 to permit wearing of the earphone 450 inside the suit 7.

The earphone 450 preferably includes an amplification circuit similar to that illustrated in FIG. 13. Alternatively, the microphone can be mounted in a separate communication device, as shown in FIG. 16, and a plug similar to the plug 347 in FIG. 16 may be provided to electrically connect the separate communication device to the electrically conductive pins of the tubular plug 410 via the interior of the tubular plug 410.

According to yet another alternative embodiment, the separate communication device may include an audio receiver for receiving radio or other signals containing audio information from remote locations and for communicating these signals to the earphones 350 via the tubular plug 410 and earphone cord 317.

According to a preferred embodiment of the communication device 348, the communication device 348 includes a radio transmitter for transmitting radio signals containing audio information derived from the microphone mounted inside the respiratory mask 6 and further includes a radio receiver for receiving radio signals containing audio information from a remote location. In addition, the radio receiver is electrically connected to the earphone (either 350 or 450) via dedicated audio conductors in the tubular plug (either 310 or 410) which penetrates the bubble suit 7. This way, audio signals indicative of the audio information from the remote location can be transmitted to the earphone (350 or 450), to thereby enable reception of the audio information by a person wearing the earphone in the bubble suit 7.

It is understood that some bubble suits utilize an external air supply connected to the bubble suit via a life-line commonly referred to as an "umbilical cord". Such bubble suits do not require respirator masks. Instead, the person in the bubble suit may be provided with a head-set which, in turn, includes both a microphone placed near the mouth and at least one earphone for placement in or adjacent to the wearer's ear(s). Such head-sets are generally known, especially in the telephony arts (e.g., head-sets for telephone operators and office receptionists).

The present invention advantageously facilitates electrical communication between such a head-set and a communication device such as microphones and amplification circuitry located externally of the bubble suit. When such an arrangement is used, there is no need for three different mounting structures (one in the respirator and two in the bubble suit). Instead, using the arrangement illustrated in FIG. 17, the earphones of the head-set may be electrically connected to the external microphone or other communication device located externally of the bubble suit so that sounds and conversations which occur outside the bubble suit are transmitted into the suit and heard via the earphones of the head-set. The arrangement of FIG. 17 advantageously includes only one mounting structure.

In addition, the head-set's microphone is preferably electrically connected directly to the plug 346 shown in FIG. 15 thereby eliminating the need for the tubular plug 210 and tubular locking mechanism 214 which, according to the embodiment illustrated in Figure IS, passes through the respirator mask. The arrangement of FIG. 17 therefore, when combined with some element from FIG. 15, also allows oral communication from inside the bubble suit to be transmitted outside the bubble suit.

By combining the embodiments of FIG. 15 and 17 as indicated above, verbal communications is greatly facilitated between a person inside a mask-free bubble suit and persons outside the suit.

In an alternative embodiment for facilitating verbal communications between a person inside a mask-free bubble suit and persons outside the suit, the embodiment of FIG. 15 is made with more than three electrically conductive paths from the plug 346 to the communication device 348 (including the tubular plug 310 and tubular locking mechanism 314. The number of conductive paths depends primarily on the number necessary to support transmission of audio signals from the head-set's microphone to the communication device 348 and also from the communication device 348 to the head-set's earphone. This arrangement advantageously requires no additional tubular plug 210 and no additional tubular locking mechanism 214. Instead, the head-set includes a jack capable of receiving the plug 346 so as to electrically connect the conductive paths to respective terminals of the head-set's earphone and microphone.

It is also understood that, when the bubble suit requires no respiratory mask, any of the microphone mounting structures illustrated in FIGS. 1-14 may be located through a hole in the bubble suit so that the microphone is mounted inside the bubble suit to the suit itself.

FIG. 18(a) shows a cylinder 500 configured to be used with the systems of FIGS. 7-17. Cylinder 500 has the same general shape and size as sleeve 12 of FIG. 2. Cylinder 500 has an outer diameter substantially equal to the inner diameter of the tubular plug 510 so that the cylinder 500 fits coaxially inside the tubular plug 510. As shown in FIG. 18(b), one end of the cylinder is slightly chamfered 502 in order that the cylinder 500 be more easily inserted into plug 510.

In addition, the cylinder 500 has an internal diameter that matches the outer diameter of a microphone 104 (FIG. 11) or an electrical plug 546 (FIG. 21), so that the microphone 104 or plug 546 is frictionally retained within the cylinder 500. The cylinder 500 is preferably of the same length as, or shorter than, the central portion 120 and open end 118 (FIG. 7) of the tubular plug 510. The slost 524 of tubular plug 510 extend all the way to the floor of the tubular plug 510. In this way, the cylinder 500 extends from the bottom a of pins 536 on the inside of tubular plug 510 to the ends of fingers 522. Thus, the cylinder 500 lies flush with the end of the tubular plug 510 and allows for a better connection between tubular plug 510 and electric plug 546 or microphone 104.

Referring to FIG. 20, tubular plug 510 is essentially the same as the tubular plug 110 of FIGS. 7-9. An alignment mark 540 is located, for purposes of illustration, at one of the spaces or slots 524 between fingers 522, to indicate a position of alignment for plug 510 and cylinder 500. However, plug 510 preferably now has seven (7) electric contact pins 536, though more or less pins 536 may be provided. The three pin configuration is preferably used, for example, with a respirator.

As shown in FIGS. 18 and 19, cylinder 500 has an orientation lug 542 projecting radially outwardly from the external surface of the cylinder 500. The exterior lug 542 and slot 540 are arranged such that, whenever the external lug 542 is received in the alignment slot 540, the lug 542 prevents axial rotation of the cylinder 500 with respect to the tubular plug 510.

The exterior lug 542 preferably extends the entire length of the cylinder 500 to provide added stability. However, the exterior lug 542 may also be a short fragment located at any point along the cylinder 500, though preferably located at the center on the exterior of the cylinder 500.

As further shown in FIG. 19, cylinder 500 has an additional orientation lug 543 projecting radially inward from the internal surface of the cylinder 500. As shown in FIG. 21, the electrical plug 546 has an orientation slot 547 that extends longitudinally along the outer surface of the plug 546. Thus, the internal lug 543 and slot 547 are arranged such that, whenever the internal lug 543 is received in the orientation slot 547 of the electrical plug 546, the lug 543 prevents axial rotation of the cylinder 500 with respect to the plug 546.

In the preferred embodiment, the internal lug 543 is shown as having a curved cross-section. However, the lug 543 may be configured in any shape that corresponds to the shape of orientation slots 547 located in conventional electrical plugs 547. For instance, the internal lug may be replaced by a slot that receives a projection located on an electrical plug. The internal lug 543 preferably extends about one-half the length of the cylinder 500 and lies flush with the end of the cylinder 500.

In addition, the internal lug 543 is located directly opposite the exterior lug 542. This is done so that the electrical contact pins 536 of tubular plug 510 are directly aligned with the corresponding female contact receptacles 549 of the electrical plug 546. Thus, the exterior and interior lugs 542, 543 of the cylinder 500 cooperate with the slot 540 of the tubular plug 510 and the exterior slot 547 of the electrical plug 546, respectively.

Further, when the electrical plug 546 receives the tubular plug 510, the lugs 542, 543 and slots 540, 547 prevent rotation of the electrical plug 546 with respect to the tubular plug 510. This, in turn, prevents the pins 536 from breaking off when inserted in female receptacles 549.

Likewise, cylinder 500 and plug 510 may be fitted with microphone 104, as opposed to electrical plug 546. In this case, the socket sleeves 107 of microphone 104 are aligned with the pins 536 of plug 510. Preferably the microphone has the same number of sleeves 107 as the number of pins 536 on plug 510, though there may be fewer sleeves 107 than pins 536. Accordingly, cylinder 500 is capable of receiving either microphone 104 or an electrical plug 546.

A microphone mounting structure 2 having plug 510 and cylinder 500 is assembled as follows. First, the tubular plug 510 is inserted into a hole 8 in a mask 6 or suit and a locking mechanism 114 is compressed over the plug 510 until the fingers 522 snap outwardly so that the finger tips engage the locking mechanism 114, as described more fully above in relation to the other embodiments of the invention.

Next, the cylinder 500 is axially aligned with the tubular plug 510 by aligning the exterior lug 542 of the cylinder 500 with the slot 540 of the plug 510. The plug 510 and locking collar are compressed together, along with any gaskets located therebetween, so as to reduce any collapse of the fingers 522 and ease insertion of the cylinder 500. The cylinder 500 is then inserted into the plug 510, starting with the chamfered end 502 of the cylinder 500. Once inserted, the cylinder 500 prevents the resilient fingers 522 from bending radially inward.

Once the cylinder 500 is in place, the user may selectively insert and remove either a microphone 104, electrical plug 546, or any other device that is connectable to pins 536 of tubular plug 510. The electrical plug 546, for instance, may be connected with an amplifier, two-way radio, headphones, or other electrical device. Thus, the invention may be configured in a variety of shapes and sizes and is not limited by the dimensions of the preferred embodiment.

The present embodiment is advantageous in that the assembly provides a ready access to any conventional electrical component. Once the cylinder 500 is in place, the user need not plug in a component until the system is to be used. In addition, the cylinder 500 aligns pins 536 of tubular plug 510 with the female receptacles 549 of the electrical plug 546 or the sleeves 107 of microphone 107.

While the present invention has been described with reference to the above preferred embodiments and drawings, it is understood that the invention is not limited to these embodiments. For example, numerous variations of, and modifications to, the above embodiments will become subsequently apparent, which variations and modifications fall well within the scope and spirit of the present invention. Accordingly, it is understood that the present invention is limited only by the scope of the appended claims.

Kettl, Lonnie Joe, Mikronis, James Christopher

Patent Priority Assignee Title
10004497, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
10004498, Jan 31 2006 Cilag GmbH International Surgical instrument comprising a plurality of articulation joints
10004501, Dec 18 2014 Cilag GmbH International Surgical instruments with improved closure arrangements
10004505, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10004506, May 27 2011 Cilag GmbH International Surgical system
10010324, Apr 16 2014 Cilag GmbH International Fastener cartridge compromising fastener cavities including fastener control features
10013049, Mar 26 2014 Cilag GmbH International Power management through sleep options of segmented circuit and wake up control
10016199, Sep 05 2014 Cilag GmbH International Polarity of hall magnet to identify cartridge type
10028742, Nov 09 2005 Cilag GmbH International Staple cartridge comprising staples with different unformed heights
10028743, Sep 30 2010 Cilag GmbH International Staple cartridge assembly comprising an implantable layer
10028761, Mar 26 2014 Cilag GmbH International Feedback algorithms for manual bailout systems for surgical instruments
10045776, Mar 06 2015 Cilag GmbH International Control techniques and sub-processor contained within modular shaft with select control processing from handle
10045778, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10045779, Feb 27 2015 Cilag GmbH International Surgical instrument system comprising an inspection station
10045781, Jun 13 2014 Cilag GmbH International Closure lockout systems for surgical instruments
10052044, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10052099, Jan 31 2006 Cilag GmbH International Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
10052100, Jan 31 2006 Cilag GmbH International Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
10052102, Jun 18 2015 Cilag GmbH International Surgical end effectors with dual cam actuated jaw closing features
10052104, Oct 16 2014 Cilag GmbH International Staple cartridge comprising a tissue thickness compensator
10058963, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
10064621, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
10064624, Sep 30 2010 Cilag GmbH International End effector with implantable layer
10064688, Mar 23 2006 Cilag GmbH International Surgical system with selectively articulatable end effector
10070861, Mar 23 2006 Cilag GmbH International Articulatable surgical device
10070863, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil
10071452, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
10076325, Oct 13 2014 Cilag GmbH International Surgical stapling apparatus comprising a tissue stop
10076326, Sep 23 2015 Cilag GmbH International Surgical stapler having current mirror-based motor control
10085748, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
10085751, Sep 23 2015 Cilag GmbH International Surgical stapler having temperature-based motor control
10098636, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
10098642, Aug 26 2015 Cilag GmbH International Surgical staples comprising features for improved fastening of tissue
10105136, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10105139, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
10111679, Sep 05 2014 Cilag GmbH International Circuitry and sensors for powered medical device
10117649, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a lockable articulation system
10117652, Mar 28 2012 Cilag GmbH International End effector comprising a tissue thickness compensator and progressively released attachment members
10117653, Mar 26 2014 Cilag GmbH International Systems and methods for controlling a segmented circuit
10130361, Sep 23 2008 Cilag GmbH International Robotically-controller motorized surgical tool with an end effector
10130366, May 27 2011 Cilag GmbH International Automated reloading devices for replacing used end effectors on robotic surgical systems
10135242, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
10136887, Apr 16 2013 Cilag GmbH International Drive system decoupling arrangement for a surgical instrument
10136889, Mar 26 2014 Cilag GmbH International Systems and methods for controlling a segmented circuit
10136890, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a variable thickness compressible portion
10149679, Nov 09 2005 Cilag GmbH International Surgical instrument comprising drive systems
10149680, Apr 16 2013 Cilag GmbH International Surgical instrument comprising a gap setting system
10149682, Sep 30 2010 Cilag GmbH International Stapling system including an actuation system
10149683, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
10158931, Feb 02 2017 Shure Acquisition Holdings, Inc Microphone connector, assembly and system
10159482, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
10159483, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to track an end-of-life parameter
10166416, Feb 01 2013 3M Innovative Properties Company Respirator mask speech enhancement apparatus and method
10172616, Sep 29 2006 Cilag GmbH International Surgical staple cartridge
10172620, Sep 30 2015 Cilag GmbH International Compressible adjuncts with bonding nodes
10180463, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
10182816, Feb 27 2015 Cilag GmbH International Charging system that enables emergency resolutions for charging a battery
10182819, Sep 30 2010 Cilag GmbH International Implantable layer assemblies
10188385, Dec 18 2014 Cilag GmbH International Surgical instrument system comprising lockable systems
10194910, Sep 30 2010 Cilag GmbH International Stapling assemblies comprising a layer
10201349, Aug 23 2013 Cilag GmbH International End effector detection and firing rate modulation systems for surgical instruments
10201363, Jan 31 2006 Cilag GmbH International Motor-driven surgical instrument
10201364, Mar 26 2014 Cilag GmbH International Surgical instrument comprising a rotatable shaft
10206605, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10206676, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument
10206677, Sep 26 2014 Cilag GmbH International Surgical staple and driver arrangements for staple cartridges
10206678, Oct 03 2006 Cilag GmbH International Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
10211586, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with watertight housings
10213201, Mar 31 2015 Cilag GmbH International Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
10213262, Mar 23 2006 Cilag GmbH International Manipulatable surgical systems with selectively articulatable fastening device
10226249, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways for signal communication
10226250, Feb 27 2015 Cilag GmbH International Modular stapling assembly
10231794, May 27 2011 Cilag GmbH International Surgical stapling instruments with rotatable staple deployment arrangements
10238385, Feb 14 2008 Cilag GmbH International Surgical instrument system for evaluating tissue impedance
10238386, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
10238387, Feb 14 2008 Cilag GmbH International Surgical instrument comprising a control system
10238389, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10238391, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10245027, Dec 18 2014 Cilag GmbH International Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
10245028, Feb 27 2015 Cilag GmbH International Power adapter for a surgical instrument
10245029, Feb 09 2016 Cilag GmbH International Surgical instrument with articulating and axially translatable end effector
10245030, Feb 09 2016 Cilag GmbH International Surgical instruments with tensioning arrangements for cable driven articulation systems
10245032, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
10245033, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
10245035, Aug 31 2005 Cilag GmbH International Stapling assembly configured to produce different formed staple heights
10258330, Sep 30 2010 Cilag GmbH International End effector including an implantable arrangement
10258331, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10258332, Sep 30 2010 Cilag GmbH International Stapling system comprising an adjunct and a flowable adhesive
10258333, Jun 28 2012 Cilag GmbH International Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
10258418, Jun 29 2017 Cilag GmbH International System for controlling articulation forces
10265067, Feb 14 2008 Cilag GmbH International Surgical instrument including a regulator and a control system
10265068, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
10265072, Sep 30 2010 Cilag GmbH International Surgical stapling system comprising an end effector including an implantable layer
10265074, Sep 30 2010 Cilag GmbH International Implantable layers for surgical stapling devices
10271845, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10271846, Aug 31 2005 Cilag GmbH International Staple cartridge for use with a surgical stapler
10271849, Sep 30 2015 Cilag GmbH International Woven constructs with interlocked standing fibers
10278697, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10278702, Jul 28 2004 Cilag GmbH International Stapling system comprising a firing bar and a lockout
10278722, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10278780, Jan 10 2007 Cilag GmbH International Surgical instrument for use with robotic system
10285695, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways
10285699, Sep 30 2015 Cilag GmbH International Compressible adjunct
10292704, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
10292707, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a firing mechanism
10293100, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
10299787, Jun 04 2007 Cilag GmbH International Stapling system comprising rotary inputs
10299792, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
10299817, Jan 31 2006 Cilag GmbH International Motor-driven fastening assembly
10299878, Sep 25 2015 Cilag GmbH International Implantable adjunct systems for determining adjunct skew
10307160, Sep 30 2015 Cilag GmbH International Compressible adjunct assemblies with attachment layers
10307163, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10307170, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
10314589, Jun 27 2006 Cilag GmbH International Surgical instrument including a shifting assembly
10314590, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
10321907, Feb 27 2015 Cilag GmbH International System for monitoring whether a surgical instrument needs to be serviced
10321909, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple including deformable members
10327764, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
10327765, Jun 04 2007 Cilag GmbH International Drive systems for surgical instruments
10327767, Jun 20 2017 Cilag GmbH International Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
10327769, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on a drive system component
10327776, Apr 16 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
10327777, Sep 30 2015 Cilag GmbH International Implantable layer comprising plastically deformed fibers
10335145, Apr 15 2016 Cilag GmbH International Modular surgical instrument with configurable operating mode
10335148, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator for a surgical stapler
10335150, Sep 30 2010 Cilag GmbH International Staple cartridge comprising an implantable layer
10335151, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10342541, Oct 03 2006 Cilag GmbH International Surgical instruments with E-beam driver and rotary drive arrangements
10357247, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
10363031, Sep 30 2010 Cilag GmbH International Tissue thickness compensators for surgical staplers
10363033, Jun 04 2007 Cilag GmbH International Robotically-controlled surgical instruments
10363036, Sep 23 2015 Cilag GmbH International Surgical stapler having force-based motor control
10363037, Apr 18 2016 Cilag GmbH International Surgical instrument system comprising a magnetic lockout
10368863, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
10368864, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displaying motor velocity for a surgical instrument
10368865, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10368867, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a lockout
10376263, Apr 01 2016 Cilag GmbH International Anvil modification members for surgical staplers
10383630, Jun 28 2012 Cilag GmbH International Surgical stapling device with rotary driven firing member
10383633, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10383634, Jul 28 2004 Cilag GmbH International Stapling system incorporating a firing lockout
10390823, Feb 15 2008 Cilag GmbH International End effector comprising an adjunct
10390825, Mar 31 2015 Cilag GmbH International Surgical instrument with progressive rotary drive systems
10390829, Aug 26 2015 Cilag GmbH International Staples comprising a cover
10390841, Jun 20 2017 Cilag GmbH International Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
10398433, Mar 28 2007 Cilag GmbH International Laparoscopic clamp load measuring devices
10398434, Jun 29 2017 Cilag GmbH International Closed loop velocity control of closure member for robotic surgical instrument
10398436, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
10405857, Apr 16 2013 Cilag GmbH International Powered linear surgical stapler
10405859, Apr 15 2016 Cilag GmbH International Surgical instrument with adjustable stop/start control during a firing motion
10413291, Feb 09 2016 Cilag GmbH International Surgical instrument articulation mechanism with slotted secondary constraint
10413294, Jun 28 2012 Cilag GmbH International Shaft assembly arrangements for surgical instruments
10420549, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10420550, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
10420553, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10420555, Jun 28 2012 Cilag GmbH International Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
10420560, Jun 27 2006 Cilag GmbH International Manually driven surgical cutting and fastening instrument
10420561, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10426463, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
10426467, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
10426469, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a primary firing lockout and a secondary firing lockout
10426471, Dec 21 2016 Cilag GmbH International Surgical instrument with multiple failure response modes
10426476, Sep 26 2014 Cilag GmbH International Circular fastener cartridges for applying radially expandable fastener lines
10426477, Sep 26 2014 Cilag GmbH International Staple cartridge assembly including a ramp
10426478, May 27 2011 Cilag GmbH International Surgical stapling systems
10426481, Feb 24 2014 Cilag GmbH International Implantable layer assemblies
10433837, Feb 09 2016 Cilag GmbH International Surgical instruments with multiple link articulation arrangements
10433840, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a replaceable cartridge jaw
10433844, Mar 31 2015 Cilag GmbH International Surgical instrument with selectively disengageable threaded drive systems
10433845, Aug 26 2015 Cilag GmbH International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
10433846, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
10433918, Jan 10 2007 Cilag GmbH International Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
10441280, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
10441281, Aug 23 2013 Cilag GmbH International surgical instrument including securing and aligning features
10441285, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising tissue ingrowth features
10441369, Jan 10 2007 Cilag GmbH International Articulatable surgical instrument configured for detachable use with a robotic system
10448948, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10448950, Dec 21 2016 Cilag GmbH International Surgical staplers with independently actuatable closing and firing systems
10448952, Sep 29 2006 Cilag GmbH International End effector for use with a surgical fastening instrument
10456133, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10456137, Apr 15 2016 Cilag GmbH International Staple formation detection mechanisms
10463369, Aug 31 2005 Cilag GmbH International Disposable end effector for use with a surgical instrument
10463370, Feb 14 2008 Ethicon LLC Motorized surgical instrument
10463372, Sep 30 2010 Cilag GmbH International Staple cartridge comprising multiple regions
10463383, Jan 31 2006 Cilag GmbH International Stapling instrument including a sensing system
10463384, Jan 31 2006 Cilag GmbH International Stapling assembly
10470762, Mar 14 2013 Cilag GmbH International Multi-function motor for a surgical instrument
10470763, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument including a sensing system
10470764, Feb 09 2016 Cilag GmbH International Surgical instruments with closure stroke reduction arrangements
10470768, Apr 16 2014 Cilag GmbH International Fastener cartridge including a layer attached thereto
10478181, Apr 18 2016 Cilag GmbH International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
10478188, Sep 30 2015 Cilag GmbH International Implantable layer comprising a constricted configuration
10485536, Sep 30 2010 Cilag GmbH International Tissue stapler having an anti-microbial agent
10485537, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10485539, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
10485541, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
10485543, Dec 21 2016 Cilag GmbH International Anvil having a knife slot width
10485546, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10485547, Jul 28 2004 Cilag GmbH International Surgical staple cartridges
10492783, Apr 15 2016 Cilag GmbH International Surgical instrument with improved stop/start control during a firing motion
10492785, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
10499890, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
10499914, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements
10517590, Jan 10 2007 Cilag GmbH International Powered surgical instrument having a transmission system
10517594, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
10517595, Dec 21 2016 Cilag GmbH International Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
10517596, Dec 21 2016 Cilag GmbH International Articulatable surgical instruments with articulation stroke amplification features
10517682, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
10524787, Mar 06 2015 Cilag GmbH International Powered surgical instrument with parameter-based firing rate
10524788, Sep 30 2015 Cilag GmbH International Compressible adjunct with attachment regions
10524789, Dec 21 2016 Cilag GmbH International Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
10524790, May 27 2011 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
10531887, Mar 06 2015 Cilag GmbH International Powered surgical instrument including speed display
10537325, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
10542974, Feb 14 2008 Cilag GmbH International Surgical instrument including a control system
10542982, Dec 21 2016 Cilag GmbH International Shaft assembly comprising first and second articulation lockouts
10542988, Apr 16 2014 Cilag GmbH International End effector comprising an anvil including projections extending therefrom
10548504, Mar 06 2015 Cilag GmbH International Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
10548600, Sep 30 2010 Cilag GmbH International Multiple thickness implantable layers for surgical stapling devices
10561420, Sep 30 2015 Cilag GmbH International Tubular absorbable constructs
10561422, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising deployable tissue engaging members
10568624, Dec 21 2016 Cilag GmbH International Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
10568625, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10568626, Dec 21 2016 Cilag GmbH International Surgical instruments with jaw opening features for increasing a jaw opening distance
10568629, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument
10568652, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
10575868, Mar 01 2013 Cilag GmbH International Surgical instrument with coupler assembly
10582928, Dec 21 2016 Cilag GmbH International Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
10588623, Sep 30 2010 Cilag GmbH International Adhesive film laminate
10588625, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with off-axis firing beam arrangements
10588626, Mar 26 2014 Cilag GmbH International Surgical instrument displaying subsequent step of use
10588630, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
10588631, Dec 21 2016 Cilag GmbH International Surgical instruments with positive jaw opening features
10588632, Dec 21 2016 Cilag GmbH International Surgical end effectors and firing members thereof
10588633, Jun 28 2017 Cilag GmbH International Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
10595862, Sep 29 2006 Cilag GmbH International Staple cartridge including a compressible member
10595882, Jun 20 2017 Cilag GmbH International Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
10603036, Dec 21 2016 Cilag GmbH International Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
10603039, Sep 30 2015 Cilag GmbH International Progressively releasable implantable adjunct for use with a surgical stapling instrument
10610224, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
10617412, Mar 06 2015 Cilag GmbH International System for detecting the mis-insertion of a staple cartridge into a surgical stapler
10617413, Apr 01 2016 Cilag GmbH International Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
10617414, Dec 21 2016 Cilag GmbH International Closure member arrangements for surgical instruments
10617416, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
10617417, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
10617418, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
10617420, May 27 2011 Cilag GmbH International Surgical system comprising drive systems
10624633, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
10624634, Aug 23 2013 Cilag GmbH International Firing trigger lockout arrangements for surgical instruments
10624635, Dec 21 2016 Cilag GmbH International Firing members with non-parallel jaw engagement features for surgical end effectors
10624861, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
10631859, Jun 27 2017 Cilag GmbH International Articulation systems for surgical instruments
10639034, Dec 21 2016 Cilag GmbH International Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
10639035, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and replaceable tool assemblies thereof
10639036, Feb 14 2008 Cilag GmbH International Robotically-controlled motorized surgical cutting and fastening instrument
10639037, Jun 28 2017 Cilag GmbH International Surgical instrument with axially movable closure member
10639115, Jun 28 2012 Cilag GmbH International Surgical end effectors having angled tissue-contacting surfaces
10646220, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displacement member velocity for a surgical instrument
10653413, Feb 09 2016 Cilag GmbH International Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
10653417, Jan 31 2006 Cilag GmbH International Surgical instrument
10653435, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
10653570, Jun 28 2012 The Procter & Gamble Company Absorbent articles with improved core
10660640, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
10667808, Mar 28 2012 Cilag GmbH International Staple cartridge comprising an absorbable adjunct
10667809, Dec 21 2016 Cilag GmbH International Staple cartridge and staple cartridge channel comprising windows defined therein
10667810, Dec 21 2016 Cilag GmbH International Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
10667811, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
10675025, Dec 21 2016 Cilag GmbH International Shaft assembly comprising separately actuatable and retractable systems
10675026, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
10675028, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
10682134, Dec 21 2017 Cilag GmbH International Continuous use self-propelled stapling instrument
10682138, Dec 21 2016 Cilag GmbH International Bilaterally asymmetric staple forming pocket pairs
10682141, Feb 14 2008 Cilag GmbH International Surgical device including a control system
10682142, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus including an articulation system
10687806, Mar 06 2015 Cilag GmbH International Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
10687809, Dec 21 2016 Cilag GmbH International Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
10687812, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
10687813, Dec 15 2017 Cilag GmbH International Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
10687817, Jul 28 2004 Cilag GmbH International Stapling device comprising a firing member lockout
10695055, Dec 21 2016 Cilag GmbH International Firing assembly comprising a lockout
10695057, Jun 28 2017 Cilag GmbH International Surgical instrument lockout arrangement
10695058, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
10695062, Oct 01 2010 Cilag GmbH International Surgical instrument including a retractable firing member
10695063, Feb 13 2012 Cilag GmbH International Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
10702266, Apr 16 2013 Cilag GmbH International Surgical instrument system
10702267, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
10709468, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10716563, Jul 28 2004 Cilag GmbH International Stapling system comprising an instrument assembly including a lockout
10716565, Dec 19 2017 Cilag GmbH International Surgical instruments with dual articulation drivers
10716568, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features operable with one hand
10716614, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with slip ring assemblies with increased contact pressure
10722232, Feb 14 2008 Cilag GmbH International Surgical instrument for use with different cartridges
10729432, Mar 06 2015 Cilag GmbH International Methods for operating a powered surgical instrument
10729436, Aug 31 2005 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
10729501, Sep 29 2017 Cilag GmbH International Systems and methods for language selection of a surgical instrument
10729509, Dec 19 2017 Cilag GmbH International Surgical instrument comprising closure and firing locking mechanism
10736628, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10736629, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
10736630, Oct 13 2014 Cilag GmbH International Staple cartridge
10736633, Sep 30 2015 Cilag GmbH International Compressible adjunct with looping members
10736634, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument including a drive system
10736636, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
10743849, Jan 31 2006 Cilag GmbH International Stapling system including an articulation system
10743851, Feb 14 2008 Cilag GmbH International Interchangeable tools for surgical instruments
10743868, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a pivotable distal head
10743870, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
10743872, Sep 29 2017 Cilag GmbH International System and methods for controlling a display of a surgical instrument
10743873, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
10743874, Dec 15 2017 Cilag GmbH International Sealed adapters for use with electromechanical surgical instruments
10743875, Dec 15 2017 Cilag GmbH International Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
10743877, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
10750266, Feb 02 2017 Shure Acquisition Holdings, Inc. Microphone connector, assembly and system
10751053, Sep 26 2014 Cilag GmbH International Fastener cartridges for applying expandable fastener lines
10751076, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
10751138, Jan 10 2007 Cilag GmbH International Surgical instrument for use with a robotic system
10758229, Dec 21 2016 Cilag GmbH International Surgical instrument comprising improved jaw control
10758230, Dec 21 2016 Cilag GmbH International Surgical instrument with primary and safety processors
10758232, Jun 28 2017 Cilag GmbH International Surgical instrument with positive jaw opening features
10758233, Feb 05 2009 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
10765425, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10765427, Jun 28 2017 Cilag GmbH International Method for articulating a surgical instrument
10765429, Sep 29 2017 Cilag GmbH International Systems and methods for providing alerts according to the operational state of a surgical instrument
10765432, Feb 14 2008 Cilag GmbH International Surgical device including a control system
10772625, Mar 06 2015 Cilag GmbH International Signal and power communication system positioned on a rotatable shaft
10772629, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10779820, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor speed according to user input for a surgical instrument
10779821, Aug 20 2018 Cilag GmbH International Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
10779822, Feb 14 2008 Cilag GmbH International System including a surgical cutting and fastening instrument
10779823, Dec 21 2016 Cilag GmbH International Firing member pin angle
10779824, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system lockable by a closure system
10779825, Dec 15 2017 Cilag GmbH International Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
10779826, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
10779903, Oct 31 2017 Cilag GmbH International Positive shaft rotation lock activated by jaw closure
10780539, May 27 2011 Cilag GmbH International Stapling instrument for use with a robotic system
10786253, Jun 28 2017 Cilag GmbH International Surgical end effectors with improved jaw aperture arrangements
10796471, Sep 29 2017 Cilag GmbH International Systems and methods of displaying a knife position for a surgical instrument
10799240, Jul 28 2004 Cilag GmbH International Surgical instrument comprising a staple firing lockout
10806448, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
10806449, Nov 09 2005 Cilag GmbH International End effectors for surgical staplers
10806450, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument having a control system
10806479, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
10813638, Dec 21 2016 Cilag GmbH International Surgical end effectors with expandable tissue stop arrangements
10813639, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
10813641, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10828028, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
10828032, Aug 23 2013 Cilag GmbH International End effector detection systems for surgical instruments
10828033, Dec 15 2017 Cilag GmbH International Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
10835245, Dec 21 2016 Cilag GmbH International Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
10835247, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors
10835249, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
10835251, Sep 30 2010 Cilag GmbH International Surgical instrument assembly including an end effector configurable in different positions
10835330, Dec 19 2017 Cilag GmbH International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
10842488, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
10842489, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10842490, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
10842491, Jan 31 2006 Cilag GmbH International Surgical system with an actuation console
10842492, Aug 20 2018 Cilag GmbH International Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
10856866, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
10856868, Dec 21 2016 Cilag GmbH International Firing member pin configurations
10856869, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10856870, Aug 20 2018 Cilag GmbH International Switching arrangements for motor powered articulatable surgical instruments
10863981, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
10863986, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
10869664, Aug 31 2005 Cilag GmbH International End effector for use with a surgical stapling instrument
10869665, Aug 23 2013 Cilag GmbH International Surgical instrument system including a control system
10869666, Dec 15 2017 Cilag GmbH International Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
10869669, Sep 30 2010 Cilag GmbH International Surgical instrument assembly
10874391, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
10874396, Feb 14 2008 Cilag GmbH International Stapling instrument for use with a surgical robot
10881396, Jun 20 2017 Cilag GmbH International Surgical instrument with variable duration trigger arrangement
10881399, Jun 20 2017 Cilag GmbH International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
10881401, Dec 21 2016 Cilag GmbH International Staple firing member comprising a missing cartridge and/or spent cartridge lockout
10888318, Apr 16 2013 Cilag GmbH International Powered surgical stapler
10888321, Jun 20 2017 Cilag GmbH International Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
10888322, Dec 21 2016 Cilag GmbH International Surgical instrument comprising a cutting member
10888328, Sep 30 2010 Cilag GmbH International Surgical end effector
10888329, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10888330, Feb 14 2008 Cilag GmbH International Surgical system
10893853, Jan 31 2006 Cilag GmbH International Stapling assembly including motor drive systems
10893864, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10893867, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10898183, Jun 29 2017 Cilag GmbH International Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
10898184, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10898185, Mar 26 2014 Cilag GmbH International Surgical instrument power management through sleep and wake up control
10898186, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
10898190, Aug 23 2013 Cilag GmbH International Secondary battery arrangements for powered surgical instruments
10898193, Sep 30 2010 Cilag GmbH International End effector for use with a surgical instrument
10898194, May 27 2011 Cilag GmbH International Detachable motor powered surgical instrument
10898195, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10903685, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with slip ring assemblies forming capacitive channels
10905418, Oct 16 2014 Cilag GmbH International Staple cartridge comprising a tissue thickness compensator
10905422, Dec 21 2016 Cilag GmbH International Surgical instrument for use with a robotic surgical system
10905423, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
10905426, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10905427, Feb 14 2008 Cilag GmbH International Surgical System
10912559, Aug 20 2018 Cilag GmbH International Reinforced deformable anvil tip for surgical stapler anvil
10912575, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
10918380, Jan 31 2006 Cilag GmbH International Surgical instrument system including a control system
10918385, Dec 21 2016 Cilag GmbH International Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
10918386, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
10925605, Feb 14 2008 Cilag GmbH International Surgical stapling system
10932772, Jun 29 2017 Cilag GmbH International Methods for closed loop velocity control for robotic surgical instrument
10932774, Aug 30 2005 Cilag GmbH International Surgical end effector for forming staples to different heights
10932775, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
10932778, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
10932779, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
10945728, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
10945729, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
10945731, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
10952727, Jan 10 2007 Cilag GmbH International Surgical instrument for assessing the state of a staple cartridge
10952728, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
10959722, Jan 31 2006 Cilag GmbH International Surgical instrument for deploying fasteners by way of rotational motion
10959725, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
10959727, Dec 21 2016 Cilag GmbH International Articulatable surgical end effector with asymmetric shaft arrangement
10966627, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10966718, Dec 15 2017 Cilag GmbH International Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
10973516, Dec 21 2016 Cilag GmbH International Surgical end effectors and adaptable firing members therefor
10980534, May 27 2011 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10980535, Sep 23 2008 Cilag GmbH International Motorized surgical instrument with an end effector
10980536, Dec 21 2016 Cilag GmbH International No-cartridge and spent cartridge lockout arrangements for surgical staplers
10980537, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
10980539, Sep 30 2015 Cilag GmbH International Implantable adjunct comprising bonded layers
10987102, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
10993713, Nov 09 2005 Cilag GmbH International Surgical instruments
10993716, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10993717, Jan 31 2006 Cilag GmbH International Surgical stapling system comprising a control system
11000274, Aug 23 2013 Cilag GmbH International Powered surgical instrument
11000275, Jan 31 2006 Cilag GmbH International Surgical instrument
11000277, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11000279, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system ratio
11006951, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11006955, Dec 15 2017 Cilag GmbH International End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
11007004, Jun 28 2012 Cilag GmbH International Powered multi-axial articulable electrosurgical device with external dissection features
11007022, Jun 29 2017 Cilag GmbH International Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
11013511, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
11020112, Dec 19 2017 Cilag GmbH International Surgical tools configured for interchangeable use with different controller interfaces
11020113, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
11020114, Jun 28 2017 Cilag GmbH International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
11020115, Feb 12 2014 Cilag GmbH International Deliverable surgical instrument
11026678, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
11026680, Aug 23 2013 Cilag GmbH International Surgical instrument configured to operate in different states
11026684, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
11033267, Dec 15 2017 Cilag GmbH International Systems and methods of controlling a clamping member firing rate of a surgical instrument
11039834, Aug 20 2018 Cilag GmbH International Surgical stapler anvils with staple directing protrusions and tissue stability features
11039836, Jan 11 2007 Cilag GmbH International Staple cartridge for use with a surgical stapling instrument
11039837, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
11045189, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11045192, Aug 20 2018 Cilag GmbH International Fabricating techniques for surgical stapler anvils
11045270, Dec 19 2017 Cilag GmbH International Robotic attachment comprising exterior drive actuator
11051807, Jun 28 2019 Cilag GmbH International Packaging assembly including a particulate trap
11051810, Apr 15 2016 Cilag GmbH International Modular surgical instrument with configurable operating mode
11051811, Jan 31 2006 Cilag GmbH International End effector for use with a surgical instrument
11051813, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
11058418, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
11058420, Jan 31 2006 Cilag GmbH International Surgical stapling apparatus comprising a lockout system
11058422, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
11058423, Jun 28 2012 Cilag GmbH International Stapling system including first and second closure systems for use with a surgical robot
11058424, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an offset articulation joint
11058425, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
11064998, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
11071543, Dec 15 2017 Cilag GmbH International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
11071545, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11071554, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
11076853, Dec 21 2017 Cilag GmbH International Systems and methods of displaying a knife position during transection for a surgical instrument
11076854, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11076929, Sep 25 2015 Cilag GmbH International Implantable adjunct systems for determining adjunct skew
11083452, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator
11083453, Dec 18 2014 Cilag GmbH International Surgical stapling system including a flexible firing actuator and lateral buckling supports
11083454, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11083455, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system ratio
11083456, Jul 28 2004 Cilag GmbH International Articulating surgical instrument incorporating a two-piece firing mechanism
11083457, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11083458, Aug 20 2018 Cilag GmbH International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
11090045, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11090046, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
11090048, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11090049, Jun 27 2017 Cilag GmbH International Staple forming pocket arrangements
11090075, Oct 30 2017 Cilag GmbH International Articulation features for surgical end effector
11096689, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
11103241, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11103269, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11109858, Aug 23 2012 Cilag GmbH International Surgical instrument including a display which displays the position of a firing element
11109859, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
11109860, Jun 28 2012 Cilag GmbH International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
11116502, Jul 28 2004 Cilag GmbH International Surgical stapling instrument incorporating a two-piece firing mechanism
11129613, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
11129615, Feb 05 2009 Cilag GmbH International Surgical stapling system
11129616, May 27 2011 Cilag GmbH International Surgical stapling system
11129680, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a projector
11133106, Aug 23 2013 Cilag GmbH International Surgical instrument assembly comprising a retraction assembly
11134938, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11134940, Aug 23 2013 Cilag GmbH International Surgical instrument including a variable speed firing member
11134942, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
11134943, Jan 10 2007 Cilag GmbH International Powered surgical instrument including a control unit and sensor
11134944, Oct 30 2017 Cilag GmbH International Surgical stapler knife motion controls
11134947, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
11135352, Jul 28 2004 Cilag GmbH International End effector including a gradually releasable medical adjunct
11141153, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11141154, Jun 27 2017 Cilag GmbH International Surgical end effectors and anvils
11141155, Jun 28 2012 Cilag GmbH International Drive system for surgical tool
11141156, Jun 28 2012 Cilag GmbH International Surgical stapling assembly comprising flexible output shaft
11147549, Jun 04 2007 Cilag GmbH International Stapling instrument including a firing system and a closure system
11147551, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11147553, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11147554, Apr 18 2016 Cilag GmbH International Surgical instrument system comprising a magnetic lockout
11154296, Mar 28 2012 Cilag GmbH International Anvil layer attached to a proximal end of an end effector
11154297, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11154298, Jun 04 2007 Cilag GmbH International Stapling system for use with a robotic surgical system
11154299, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing lockout
11154301, Feb 27 2015 Cilag GmbH International Modular stapling assembly
11160551, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11160553, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11166717, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
11166720, Jan 10 2007 Cilag GmbH International Surgical instrument including a control module for assessing an end effector
11172927, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11172929, Mar 25 2019 Cilag GmbH International Articulation drive arrangements for surgical systems
11179150, Apr 15 2016 Cilag GmbH International Systems and methods for controlling a surgical stapling and cutting instrument
11179151, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a display
11179152, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a tissue grasping system
11179153, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11179155, Dec 21 2016 Cilag GmbH International Anvil arrangements for surgical staplers
11185325, Oct 16 2014 Cilag GmbH International End effector including different tissue gaps
11185330, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11191539, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
11191540, Dec 21 2016 Cilag GmbH International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
11191543, Dec 21 2016 Cilag GmbH International Assembly comprising a lock
11191545, Apr 15 2016 Cilag GmbH International Staple formation detection mechanisms
11197670, Dec 15 2017 Cilag GmbH International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
11197671, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a lockout
11202631, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing lockout
11202633, Sep 26 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
11207064, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
11207065, Aug 20 2018 Cilag GmbH International Method for fabricating surgical stapler anvils
11213293, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11213302, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
11219455, Jun 28 2019 Cilag GmbH International Surgical instrument including a lockout key
11222648, May 11 2019 Positive pressure ventilation microphone system, nebulizer, and related methods
11224423, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
11224426, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11224427, Jan 31 2006 Cilag GmbH International Surgical stapling system including a console and retraction assembly
11224428, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11224454, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11224497, Jun 28 2019 Cilag GmbH International Surgical systems with multiple RFID tags
11229437, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11234698, Dec 19 2019 Cilag GmbH International Stapling system comprising a clamp lockout and a firing lockout
11241229, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11241230, Jun 28 2012 Cilag GmbH International Clip applier tool for use with a robotic surgical system
11241235, Jun 28 2019 Cilag GmbH International Method of using multiple RFID chips with a surgical assembly
11246590, Aug 31 2005 Cilag GmbH International Staple cartridge including staple drivers having different unfired heights
11246592, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system lockable to a frame
11246616, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11246618, Mar 01 2013 Cilag GmbH International Surgical instrument soft stop
11246678, Jun 28 2019 Cilag GmbH International Surgical stapling system having a frangible RFID tag
11253254, Apr 30 2019 Cilag GmbH International Shaft rotation actuator on a surgical instrument
11253256, Aug 20 2018 Cilag GmbH International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
11259799, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
11259803, Jun 28 2019 Cilag GmbH International Surgical stapling system having an information encryption protocol
11259805, Jun 28 2017 Cilag GmbH International Surgical instrument comprising firing member supports
11266405, Jun 27 2017 Cilag GmbH International Surgical anvil manufacturing methods
11266406, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
11266409, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising a sled including longitudinally-staggered ramps
11266410, May 27 2011 Cilag GmbH International Surgical device for use with a robotic system
11272927, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11272928, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11272938, Jun 27 2006 Cilag GmbH International Surgical instrument including dedicated firing and retraction assemblies
11278279, Jan 31 2006 Cilag GmbH International Surgical instrument assembly
11278284, Jun 28 2012 Cilag GmbH International Rotary drive arrangements for surgical instruments
11284891, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
11284898, Sep 18 2014 Cilag GmbH International Surgical instrument including a deployable knife
11284953, Dec 19 2017 Cilag GmbH International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
11291440, Aug 20 2018 Cilag GmbH International Method for operating a powered articulatable surgical instrument
11291441, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11291447, Dec 19 2019 Cilag GmbH International Stapling instrument comprising independent jaw closing and staple firing systems
11291449, Dec 24 2009 Cilag GmbH International Surgical cutting instrument that analyzes tissue thickness
11291451, Jun 28 2019 Cilag GmbH International Surgical instrument with battery compatibility verification functionality
11298125, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator
11298127, Jun 28 2019 Cilag GmbH International Surgical stapling system having a lockout mechanism for an incompatible cartridge
11298132, Jun 28 2019 Cilag GmbH International Staple cartridge including a honeycomb extension
11298134, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
11304695, Aug 03 2017 Cilag GmbH International Surgical system shaft interconnection
11304696, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a powered articulation system
11311290, Dec 21 2017 Cilag GmbH International Surgical instrument comprising an end effector dampener
11311292, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11311294, Sep 05 2014 Cilag GmbH International Powered medical device including measurement of closure state of jaws
11317910, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11317913, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
11317917, Apr 18 2016 Cilag GmbH International Surgical stapling system comprising a lockable firing assembly
11324501, Aug 20 2018 Cilag GmbH International Surgical stapling devices with improved closure members
11324503, Jun 27 2017 Cilag GmbH International Surgical firing member arrangements
11324506, Feb 27 2015 Cilag GmbH International Modular stapling assembly
11337691, Dec 21 2017 Cilag GmbH International Surgical instrument configured to determine firing path
11337693, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
11337698, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
11344299, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
11344303, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11350843, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
11350916, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
11350928, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a tissue thickness lockout and speed control system
11350929, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11350932, Apr 15 2016 Cilag GmbH International Surgical instrument with improved stop/start control during a firing motion
11350934, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
11350935, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
11350938, Jun 28 2019 Cilag GmbH International Surgical instrument comprising an aligned rfid sensor
11364027, Dec 21 2017 Cilag GmbH International Surgical instrument comprising speed control
11364046, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11369368, Dec 21 2017 Cilag GmbH International Surgical instrument comprising synchronized drive systems
11369376, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11373755, Aug 23 2012 Cilag GmbH International Surgical device drive system including a ratchet mechanism
11376001, Aug 23 2013 Cilag GmbH International Surgical stapling device with rotary multi-turn retraction mechanism
11376098, Jun 28 2019 Cilag GmbH International Surgical instrument system comprising an RFID system
11382625, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
11382626, Oct 03 2006 Cilag GmbH International Surgical system including a knife bar supported for rotational and axial travel
11382627, Apr 16 2014 Cilag GmbH International Surgical stapling assembly comprising a firing member including a lateral extension
11382628, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
11382638, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
11389160, Aug 23 2013 Cilag GmbH International Surgical system comprising a display
11389161, Jun 28 2017 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
11389162, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11395651, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11395652, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11399828, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
11399829, Sep 29 2017 Cilag GmbH International Systems and methods of initiating a power shutdown mode for a surgical instrument
11399831, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
11399837, Jun 28 2019 Cilag GmbH International Mechanisms for motor control adjustments of a motorized surgical instrument
11401017, Aug 03 2017 MESTEL SAFETY S R L Mask for underwater use, in particular of the full face type, provided with a communication device
11406377, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11406378, Mar 28 2012 Cilag GmbH International Staple cartridge comprising a compressible tissue thickness compensator
11406380, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
11406381, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11406386, Sep 05 2014 Cilag GmbH International End effector including magnetic and impedance sensors
11419606, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
11426160, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
11426167, Jun 28 2019 Cilag GmbH International Mechanisms for proper anvil attachment surgical stapling head assembly
11426251, Apr 30 2019 Cilag GmbH International Articulation directional lights on a surgical instrument
11432816, Apr 30 2019 Cilag GmbH International Articulation pin for a surgical instrument
11439470, May 27 2011 Cilag GmbH International Robotically-controlled surgical instrument with selectively articulatable end effector
11446029, Dec 19 2019 Cilag GmbH International Staple cartridge comprising projections extending from a curved deck surface
11446034, Feb 14 2008 Cilag GmbH International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
11452526, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a staged voltage regulation start-up system
11452528, Apr 30 2019 Cilag GmbH International Articulation actuators for a surgical instrument
11457918, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
11464512, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a curved deck surface
11464513, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11464514, Feb 14 2008 Cilag GmbH International Motorized surgical stapling system including a sensing array
11464601, Jun 28 2019 Cilag GmbH International Surgical instrument comprising an RFID system for tracking a movable component
11471155, Aug 03 2017 Cilag GmbH International Surgical system bailout
11471157, Apr 30 2019 Cilag GmbH International Articulation control mapping for a surgical instrument
11478241, Jun 28 2019 Cilag GmbH International Staple cartridge including projections
11478242, Jun 28 2017 Cilag GmbH International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
11478244, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
11478247, Jul 30 2010 Cilag GmbH International Tissue acquisition arrangements and methods for surgical stapling devices
11484307, Feb 14 2008 Cilag GmbH International Loading unit coupleable to a surgical stapling system
11484309, Dec 30 2015 Cilag GmbH International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
11484310, Jun 28 2017 Cilag GmbH International Surgical instrument comprising a shaft including a closure tube profile
11484311, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
11484312, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
11490889, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
11497488, Mar 26 2014 Cilag GmbH International Systems and methods for controlling a segmented circuit
11497492, Jun 28 2019 Cilag GmbH International Surgical instrument including an articulation lock
11497499, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11504116, Mar 28 2012 Cilag GmbH International Layer of material for a surgical end effector
11504119, Aug 23 2013 Cilag GmbH International Surgical instrument including an electronic firing lockout
11504122, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a nested firing member
11510671, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
11517304, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11517306, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11517311, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
11517315, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11517325, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
11517390, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a limited travel switch
11523821, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
11523822, Jun 28 2019 Cilag GmbH International Battery pack including a circuit interrupter
11523823, Feb 09 2016 Cilag GmbH International Surgical instruments with non-symmetrical articulation arrangements
11529137, Dec 19 2019 Cilag GmbH International Staple cartridge comprising driver retention members
11529138, Mar 01 2013 Cilag GmbH International Powered surgical instrument including a rotary drive screw
11529139, Dec 19 2019 Cilag GmbH International Motor driven surgical instrument
11529140, Jun 28 2017 Cilag GmbH International Surgical instrument lockout arrangement
11529142, Oct 01 2010 Cilag GmbH International Surgical instrument having a power control circuit
11534162, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
11534259, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an articulation indicator
11540824, Sep 30 2010 Cilag GmbH International Tissue thickness compensator
11540829, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11547403, Dec 18 2014 Cilag GmbH International Surgical instrument having a laminate firing actuator and lateral buckling supports
11547404, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
11553911, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
11553916, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11553919, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11553971, Jun 28 2019 Cilag GmbH International Surgical RFID assemblies for display and communication
11559302, Jun 04 2007 Cilag GmbH International Surgical instrument including a firing member movable at different speeds
11559303, Apr 18 2016 Cilag GmbH International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
11559304, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a rapid closure mechanism
11559496, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
11564679, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11564682, Jun 04 2007 Cilag GmbH International Surgical stapler device
11564686, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with flexible interfaces
11564688, Dec 21 2016 Cilag GmbH International Robotic surgical tool having a retraction mechanism
11571207, Dec 18 2014 Cilag GmbH International Surgical system including lateral supports for a flexible drive member
11571210, Dec 21 2016 Cilag GmbH International Firing assembly comprising a multiple failed-state fuse
11571212, Feb 14 2008 Cilag GmbH International Surgical stapling system including an impedance sensor
11571215, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11571231, Sep 29 2006 Cilag GmbH International Staple cartridge having a driver for driving multiple staples
11576668, Dec 21 2017 Cilag GmbH International Staple instrument comprising a firing path display
11576672, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
11576673, Aug 31 2005 Cilag GmbH International Stapling assembly for forming staples to different heights
11583274, Dec 21 2017 Cilag GmbH International Self-guiding stapling instrument
11583277, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11583278, May 27 2011 Cilag GmbH International Surgical stapling system having multi-direction articulation
11583279, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
11596406, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11602340, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11602346, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
11607219, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a detachable tissue cutting knife
11607239, Apr 15 2016 Cilag GmbH International Systems and methods for controlling a surgical stapling and cutting instrument
11612393, Jan 31 2006 Cilag GmbH International Robotically-controlled end effector
11612394, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
11612395, Feb 14 2008 Cilag GmbH International Surgical system including a control system having an RFID tag reader
11617575, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11617576, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11617577, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
11622763, Apr 16 2013 Cilag GmbH International Stapling assembly comprising a shiftable drive
11622766, Jun 28 2012 Cilag GmbH International Empty clip cartridge lockout
11622785, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers and stapling instruments for deploying the same
11627959, Jun 28 2019 Cilag GmbH International Surgical instruments including manual and powered system lockouts
11627960, Dec 02 2020 Cilag GmbH International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
11633183, Apr 16 2013 Cilag International GmbH Stapling assembly comprising a retraction drive
11638581, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11638582, Jul 28 2020 Cilag GmbH International Surgical instruments with torsion spine drive arrangements
11638583, Feb 14 2008 Cilag GmbH International Motorized surgical system having a plurality of power sources
11638587, Jun 28 2019 Cilag GmbH International RFID identification systems for surgical instruments
11642125, Apr 15 2016 Cilag GmbH International Robotic surgical system including a user interface and a control circuit
11642128, Jun 28 2017 Cilag GmbH International Method for articulating a surgical instrument
11648005, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11648006, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11648008, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
11648009, Apr 30 2019 Cilag GmbH International Rotatable jaw tip for a surgical instrument
11648024, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with position feedback
11653914, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
11653915, Dec 02 2020 Cilag GmbH International Surgical instruments with sled location detection and adjustment features
11653917, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11653918, Sep 05 2014 Cilag GmbH International Local display of tissue parameter stabilization
11653920, Dec 02 2020 Cilag GmbH International Powered surgical instruments with communication interfaces through sterile barrier
11660090, Jul 28 2020 Cilag GmbH International Surgical instruments with segmented flexible drive arrangements
11660110, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11660163, Jun 28 2019 Cilag GmbH International Surgical system with RFID tags for updating motor assembly parameters
11666332, Jan 10 2007 Cilag GmbH International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
11667362, Apr 21 2015 Decathlon Diving mask provided with a telecommunications device
11672531, Jun 04 2007 Cilag GmbH International Rotary drive systems for surgical instruments
11672532, Jun 20 2017 Cilag GmbH International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
11672536, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11678877, Dec 18 2014 Cilag GmbH International Surgical instrument including a flexible support configured to support a flexible firing member
11678880, Jun 28 2017 Cilag GmbH International Surgical instrument comprising a shaft including a housing arrangement
11678882, Dec 02 2020 Cilag GmbH International Surgical instruments with interactive features to remedy incidental sled movements
11684360, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a variable thickness compressible portion
11684361, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11684365, Jul 28 2004 Cilag GmbH International Replaceable staple cartridges for surgical instruments
11684369, Jun 28 2019 Cilag GmbH International Method of using multiple RFID chips with a surgical assembly
11684434, Jun 28 2019 Cilag GmbH International Surgical RFID assemblies for instrument operational setting control
11690615, Apr 16 2013 Cilag GmbH International Surgical system including an electric motor and a surgical instrument
11690623, Sep 30 2015 Cilag GmbH International Method for applying an implantable layer to a fastener cartridge
11696757, Feb 26 2021 Cilag GmbH International Monitoring of internal systems to detect and track cartridge motion status
11696759, Jun 28 2017 Cilag GmbH International Surgical stapling instruments comprising shortened staple cartridge noses
11696761, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11701110, Aug 23 2013 Cilag GmbH International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
11701111, Dec 19 2019 Cilag GmbH International Method for operating a surgical stapling instrument
11701113, Feb 26 2021 Cilag GmbH International Stapling instrument comprising a separate power antenna and a data transfer antenna
11701114, Oct 16 2014 Cilag GmbH International Staple cartridge
11701115, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
11707273, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
11712244, Sep 30 2015 Cilag GmbH International Implantable layer with spacer fibers
11717285, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument having RF electrodes
11717289, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
11717291, Mar 22 2021 Cilag GmbH International Staple cartridge comprising staples configured to apply different tissue compression
11717294, Apr 16 2014 Cilag GmbH International End effector arrangements comprising indicators
11717297, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11723657, Feb 26 2021 Cilag GmbH International Adjustable communication based on available bandwidth and power capacity
11723658, Mar 22 2021 Cilag GmbH International Staple cartridge comprising a firing lockout
11723662, May 28 2021 Cilag GmbH International Stapling instrument comprising an articulation control display
11730471, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11730473, Feb 26 2021 Cilag GmbH International Monitoring of manufacturing life-cycle
11730474, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
11730477, Oct 10 2008 Cilag GmbH International Powered surgical system with manually retractable firing system
11737748, Jul 28 2020 Cilag GmbH International Surgical instruments with double spherical articulation joints with pivotable links
11737749, Mar 22 2021 Cilag GmbH International Surgical stapling instrument comprising a retraction system
11737751, Dec 02 2020 Cilag GmbH International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
11737754, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
11744581, Dec 02 2020 Cilag GmbH International Powered surgical instruments with multi-phase tissue treatment
11744583, Feb 26 2021 Cilag GmbH International Distal communication array to tune frequency of RF systems
11744588, Feb 27 2015 Cilag GmbH International Surgical stapling instrument including a removably attachable battery pack
11744593, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11744603, Mar 24 2021 Cilag GmbH International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
11749877, Feb 26 2021 Cilag GmbH International Stapling instrument comprising a signal antenna
11751867, Dec 21 2017 Cilag GmbH International Surgical instrument comprising sequenced systems
11751869, Feb 26 2021 Cilag GmbH International Monitoring of multiple sensors over time to detect moving characteristics of tissue
11759202, Mar 22 2021 Cilag GmbH International Staple cartridge comprising an implantable layer
11759208, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
11766258, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
11766259, Dec 21 2016 Cilag GmbH International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
11766260, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
11771419, Jun 28 2019 Cilag GmbH International Packaging for a replaceable component of a surgical stapling system
11771425, Aug 31 2005 Cilag GmbH International Stapling assembly for forming staples to different formed heights
11771426, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication
11771454, Apr 15 2016 Cilag GmbH International Stapling assembly including a controller for monitoring a clamping laod
11779330, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a jaw alignment system
11779336, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11779420, Jun 28 2012 Cilag GmbH International Robotic surgical attachments having manually-actuated retraction assemblies
11786239, Mar 24 2021 Cilag GmbH International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
11786243, Mar 24 2021 Cilag GmbH International Firing members having flexible portions for adapting to a load during a surgical firing stroke
11793509, Mar 28 2012 Cilag GmbH International Staple cartridge including an implantable layer
11793511, Nov 09 2005 Cilag GmbH International Surgical instruments
11793512, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11793513, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor speed according to user input for a surgical instrument
11793514, Feb 26 2021 Cilag GmbH International Staple cartridge comprising sensor array which may be embedded in cartridge body
11793516, Mar 24 2021 Cilag GmbH International Surgical staple cartridge comprising longitudinal support beam
11793518, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
11793521, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
11793522, Sep 30 2015 Cilag GmbH International Staple cartridge assembly including a compressible adjunct
11801047, Feb 14 2008 Cilag GmbH International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
11801051, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
11806011, Mar 22 2021 Cilag GmbH International Stapling instrument comprising tissue compression systems
11806013, Jun 28 2012 Cilag GmbH International Firing system arrangements for surgical instruments
11811253, Apr 18 2016 Cilag GmbH International Surgical robotic system with fault state detection configurations based on motor current draw
11812954, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11812958, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
11812960, Jul 28 2004 Cilag GmbH International Method of segmenting the operation of a surgical stapling instrument
11812961, Jan 10 2007 Cilag GmbH International Surgical instrument including a motor control system
11812964, Feb 26 2021 Cilag GmbH International Staple cartridge comprising a power management circuit
11812965, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11826012, Mar 22 2021 Cilag GmbH International Stapling instrument comprising a pulsed motor-driven firing rack
11826013, Jul 28 2020 Cilag GmbH International Surgical instruments with firing member closure features
11826042, Mar 22 2021 Cilag GmbH International Surgical instrument comprising a firing drive including a selectable leverage mechanism
11826045, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11826047, May 28 2021 Cilag GmbH International Stapling instrument comprising jaw mounts
11826048, Jun 28 2017 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
11826132, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
11832816, Mar 24 2021 Cilag GmbH International Surgical stapling assembly comprising nonplanar staples and planar staples
11839352, Jan 11 2007 Cilag GmbH International Surgical stapling device with an end effector
11839375, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising an anvil and different staple heights
11844518, Oct 29 2020 Cilag GmbH International Method for operating a surgical instrument
11844520, Dec 19 2019 Cilag GmbH International Staple cartridge comprising driver retention members
11844521, Jan 10 2007 Cilag GmbH International Surgical instrument for use with a robotic system
11849939, Dec 21 2017 Cilag GmbH International Continuous use self-propelled stapling instrument
11849941, Jun 29 2007 Cilag GmbH International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
11849943, Dec 02 2020 Cilag GmbH International Surgical instrument with cartridge release mechanisms
11849944, Mar 24 2021 Cilag GmbH International Drivers for fastener cartridge assemblies having rotary drive screws
11849945, Mar 24 2021 Cilag GmbH International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
11849946, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
11849947, Jan 10 2007 Cilag GmbH International Surgical system including a control circuit and a passively-powered transponder
11849948, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11849952, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
11850310, Sep 30 2010 INTERNATIONAL, CILAG GMBH; Cilag GmbH International Staple cartridge including an adjunct
11857181, May 27 2011 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11857182, Jul 28 2020 Cilag GmbH International Surgical instruments with combination function articulation joint arrangements
11857183, Mar 24 2021 Cilag GmbH International Stapling assembly components having metal substrates and plastic bodies
11857187, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
11857189, Jun 28 2012 Cilag GmbH International Surgical instrument including first and second articulation joints
11864756, Jul 28 2020 Cilag GmbH International Surgical instruments with flexible ball chain drive arrangements
11864760, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11871923, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
11871925, Jul 28 2020 Cilag GmbH International Surgical instruments with dual spherical articulation joint arrangements
11871939, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
11877745, Oct 18 2021 Cilag GmbH International Surgical stapling assembly having longitudinally-repeating staple leg clusters
11877748, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument with E-beam driver
11882987, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
11883019, Dec 21 2017 Cilag GmbH International Stapling instrument comprising a staple feeding system
11883020, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
11883024, Jul 28 2020 Cilag GmbH International Method of operating a surgical instrument
11883025, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
11883026, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11890005, Jun 29 2017 Cilag GmbH International Methods for closed loop velocity control for robotic surgical instrument
11890008, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
11890010, Dec 02 2020 Cilag GmbH International Dual-sided reinforced reload for surgical instruments
11890012, Jul 28 2004 Cilag GmbH International Staple cartridge comprising cartridge body and attached support
11890015, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11890029, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
11896217, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an articulation lock
11896218, Mar 24 2021 Cilag GmbH International; INTERNATIONAL, CILAG GMBH Method of using a powered stapling device
11896219, Mar 24 2021 Cilag GmbH International Mating features between drivers and underside of a cartridge deck
11896222, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
11896225, Jul 28 2004 Cilag GmbH International Staple cartridge comprising a pan
11903581, Apr 30 2019 Cilag GmbH International Methods for stapling tissue using a surgical instrument
11903582, Mar 24 2021 Cilag GmbH International Leveraging surfaces for cartridge installation
11903586, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11911027, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11911028, Jun 04 2007 Cilag GmbH International Surgical instruments for use with a robotic surgical system
11911032, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a seating cam
6978034, Nov 16 1999 Helmet headset mounting assembly and method
7302072, May 16 2003 UNDERSEA SENSOR SYSTEMS, INC Electronic device mount for mask
7464705, Oct 07 2004 SHIGEMATSU WORKS CO , LTD Powered respirator
7616774, Nov 16 1999 Clampless headset mounting assembly
9498658, Feb 01 2013 3M Innovative Properties Company Respirator mask speech enhancement apparatus and method
9517366, Feb 01 2013 3M Innovative Properties Company Respirator mask speech enhancement apparatus and method
9554794, Mar 01 2013 Cilag GmbH International Multiple processor motor control for modular surgical instruments
9561032, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
9574644, May 30 2013 Cilag GmbH International Power module for use with a surgical instrument
9585657, Feb 15 2008 Cilag GmbH International Actuator for releasing a layer of material from a surgical end effector
9585658, Jun 04 2007 Cilag GmbH International Stapling systems
9585663, Jul 28 2004 Cilag GmbH International Surgical stapling instrument configured to apply a compressive pressure to tissue
9592050, Mar 28 2012 Cilag GmbH International End effector comprising a distal tissue abutment member
9592053, Sep 30 2010 Cilag GmbH International Staple cartridge comprising multiple regions
9592054, Sep 23 2011 Cilag GmbH International Surgical stapler with stationary staple drivers
9629623, Mar 14 2013 Cilag GmbH International Drive system lockout arrangements for modular surgical instruments
9629629, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
9629814, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
9649110, Apr 16 2013 Cilag GmbH International Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
9655624, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9687237, Sep 23 2011 Cilag GmbH International Staple cartridge including collapsible deck arrangement
9690362, Mar 26 2014 Cilag GmbH International Surgical instrument control circuit having a safety processor
9693777, Feb 24 2014 Cilag GmbH International Implantable layers comprising a pressed region
9700310, Aug 23 2013 Cilag GmbH International Firing member retraction devices for powered surgical instruments
9706991, Sep 29 2006 Cilag GmbH International Staple cartridge comprising staples including a lateral base
9724094, Sep 05 2014 Cilag GmbH International Adjunct with integrated sensors to quantify tissue compression
9724098, Mar 28 2012 Cilag GmbH International Staple cartridge comprising an implantable layer
9730697, Feb 13 2012 Cilag GmbH International Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
9737301, Sep 05 2014 Cilag GmbH International Monitoring device degradation based on component evaluation
9737302, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a restraining member
9737303, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
9743929, Mar 26 2014 Cilag GmbH International Modular powered surgical instrument with detachable shaft assemblies
9750498, Jun 04 2007 Cilag GmbH International Drive systems for surgical instruments
9750499, Mar 26 2014 Cilag GmbH International Surgical stapling instrument system
9750501, Jan 11 2007 Cilag GmbH International Surgical stapling devices having laterally movable anvils
9757123, Jan 10 2007 Cilag GmbH International Powered surgical instrument having a transmission system
9757124, Feb 24 2014 Cilag GmbH International Implantable layer assemblies
9757128, Sep 05 2014 Cilag GmbH International Multiple sensors with one sensor affecting a second sensor's output or interpretation
9775608, Feb 24 2014 Cilag GmbH International Fastening system comprising a firing member lockout
9775609, Aug 23 2013 Cilag GmbH International Tamper proof circuit for surgical instrument battery pack
9775613, Jan 11 2007 Cilag GmbH International Surgical stapling device with a curved end effector
9775614, May 27 2011 Cilag GmbH International Surgical stapling instruments with rotatable staple deployment arrangements
9788834, Mar 28 2012 Cilag GmbH International Layer comprising deployable attachment members
9788836, Sep 05 2014 Cilag GmbH International Multiple motor control for powered medical device
9795381, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
9795383, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising resilient members
9801626, Apr 16 2013 Cilag GmbH International Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
9801627, Sep 26 2014 Cilag GmbH International Fastener cartridge for creating a flexible staple line
9801628, Sep 26 2014 Cilag GmbH International Surgical staple and driver arrangements for staple cartridges
9801634, Sep 30 2010 Cilag GmbH International Tissue thickness compensator for a surgical stapler
9808246, Mar 06 2015 Cilag GmbH International Method of operating a powered surgical instrument
9808249, Aug 23 2013 Cilag GmbH International Attachment portions for surgical instrument assemblies
9814460, Apr 16 2013 Cilag GmbH International Modular motor driven surgical instruments with status indication arrangements
9814462, Sep 30 2010 Cilag GmbH International Assembly for fastening tissue comprising a compressible layer
9820738, Mar 26 2014 Cilag GmbH International Surgical instrument comprising interactive systems
9826976, Apr 16 2013 Cilag GmbH International Motor driven surgical instruments with lockable dual drive shafts
9826977, Mar 26 2014 Cilag GmbH International Sterilization verification circuit
9826978, Sep 30 2010 Cilag GmbH International End effectors with same side closure and firing motions
9833236, Sep 30 2010 Cilag GmbH International Tissue thickness compensator for surgical staplers
9833238, Sep 30 2010 Cilag GmbH International Retainer assembly including a tissue thickness compensator
9833241, Apr 16 2014 Cilag GmbH International Surgical fastener cartridges with driver stabilizing arrangements
9833242, Sep 30 2010 Cilag GmbH International Tissue thickness compensators
9839422, Feb 24 2014 Cilag GmbH International Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
9839423, Feb 24 2014 Cilag GmbH International Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
9844368, Apr 16 2013 Cilag GmbH International Surgical system comprising first and second drive systems
9844369, Apr 16 2014 Ethicon LLC Surgical end effectors with firing element monitoring arrangements
9844374, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
9844375, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
9844376, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
9844379, Jul 28 2004 Ethicon LLC Surgical stapling instrument having a clearanced opening
9848873, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a driver and staple cavity arrangement
9867612, Apr 16 2013 Cilag GmbH International Powered surgical stapler
9867618, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus including firing force regulation
9872682, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
9872684, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus including firing force regulation
9877721, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising tissue control features
9877723, Feb 14 2008 Cilag GmbH International Surgical stapling assembly comprising a selector arrangement
9883860, Mar 14 2013 Cilag GmbH International Interchangeable shaft assemblies for use with a surgical instrument
9884456, Feb 24 2014 Cilag GmbH International Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
9895147, Nov 09 2005 Cilag GmbH International End effectors for surgical staplers
9895148, Mar 06 2015 Cilag GmbH International Monitoring speed control and precision incrementing of motor for powered surgical instruments
9901342, Mar 06 2015 Cilag GmbH International Signal and power communication system positioned on a rotatable shaft
9901344, Feb 14 2008 Cilag GmbH International Stapling assembly
9901345, Feb 14 2008 Cilag GmbH International Stapling assembly
9901346, Feb 14 2008 Cilag GmbH International Stapling assembly
9907620, Jun 28 2012 Cilag GmbH International Surgical end effectors having angled tissue-contacting surfaces
9913642, Mar 26 2014 Cilag GmbH International Surgical instrument comprising a sensor system
9913648, May 27 2011 Cilag GmbH International Surgical system
9918716, Mar 28 2012 Cilag GmbH International Staple cartridge comprising implantable layers
9924942, Aug 23 2013 Cilag GmbH International Motor-powered articulatable surgical instruments
9924944, Oct 16 2014 Cilag GmbH International Staple cartridge comprising an adjunct material
9924947, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a compressible portion
9924961, Mar 06 2015 Cilag GmbH International Interactive feedback system for powered surgical instruments
9931118, Feb 27 2015 Cilag GmbH International Reinforced battery for a surgical instrument
9943309, Dec 18 2014 Cilag GmbH International Surgical instruments with articulatable end effectors and movable firing beam support arrangements
9950201, Jan 04 2007 SAFRAN AEROTECHNICS SAS; SAFRAN AEROTECHNICS Acoustic sensor for use in breathing masks
9962158, Feb 14 2008 Cilag GmbH International Surgical stapling apparatuses with lockable end effector positioning systems
9962161, Feb 12 2014 Cilag GmbH International Deliverable surgical instrument
9968355, Dec 18 2014 Cilag GmbH International Surgical instruments with articulatable end effectors and improved firing beam support arrangements
9968356, Nov 09 2005 Cilag GmbH International Surgical instrument drive systems
9974538, Mar 28 2012 Cilag GmbH International Staple cartridge comprising a compressible layer
9980729, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9987000, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
9987003, Jun 04 2007 Cilag GmbH International Robotic actuator assembly
9987006, Aug 23 2013 Cilag GmbH International Shroud retention arrangement for sterilizable surgical instruments
9993248, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
9993258, Feb 27 2015 Cilag GmbH International Adaptable surgical instrument handle
9999426, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
9999431, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
D851762, Jun 28 2017 Cilag GmbH International Anvil
D854151, Jun 28 2017 Cilag GmbH International Surgical instrument shaft
D869655, Jun 28 2017 Cilag GmbH International Surgical fastener cartridge
D879808, Jun 20 2017 Cilag GmbH International Display panel with graphical user interface
D879809, Jun 20 2017 Cilag GmbH International Display panel with changeable graphical user interface
D890784, Jun 20 2017 Cilag GmbH International Display panel with changeable graphical user interface
D906355, Jun 28 2017 Cilag GmbH International Display screen or portion thereof with a graphical user interface for a surgical instrument
D907647, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with animated graphical user interface
D907648, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with animated graphical user interface
D910847, Dec 19 2017 Cilag GmbH International Surgical instrument assembly
D914878, Aug 20 2018 Cilag GmbH International Surgical instrument anvil
D917500, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with graphical user interface
D966512, Jun 02 2020 Cilag GmbH International Staple cartridge
D967421, Jun 02 2020 Cilag GmbH International Staple cartridge
D974560, Jun 02 2020 Cilag GmbH International Staple cartridge
D975278, Jun 02 2020 Cilag GmbH International Staple cartridge
D975850, Jun 02 2020 Cilag GmbH International Staple cartridge
D975851, Jun 02 2020 Cilag GmbH International Staple cartridge
D976401, Jun 02 2020 Cilag GmbH International Staple cartridge
D980425, Oct 29 2020 Cilag GmbH International Surgical instrument assembly
ER1904,
Patent Priority Assignee Title
2950360,
2953129,
3180333,
3314424,
4072831, Sep 10 1976 Instrument Systems Corporation Voice transmitting apparatus for a breathing mask
4116237, Feb 07 1977 Emergency breathing apparatus
4491699, Apr 15 1981 BAROID TECHNOLOGY, INC Communication apparatus for hostile environments
4508936, Jul 16 1980 Gentex Corporation Local external communication system
4537276, Sep 07 1984 American Sterilizer Company Mask/microphone system for voice actuated control
4885796, Apr 19 1985 SHELLEY, NANCY L Communication apparatus for use in hazardous environments
4980926, Jan 05 1989 LASER TECH COMMUNICATIONS INC Voice communication unit
5060308, Jan 23 1989 SAFETY TECH INDUSTRIES, INC Firefighters mask communication system
5138666, Dec 18 1987 UNDERSEA SENSOR SYSTEMS, INC Voice transmission system
5159641, Jul 31 1991 SCOTT TECHNOLOGIES, INC Microphone circuit control mechanism for breathing apparatus
5224473, Mar 04 1991 UNDERSEA SENSOR SYSTEMS, INC Retrofitting gas mask voice amplifier unit with easily actuated switch means
5307793, Jun 29 1992 BE INTELLECTUAL PROPERTY, INC Microphone signal attenuating apparatus for oxygen masks
5428688, Mar 29 1993 UNDERSEA SENSOR SYSTEMS, INC Voice transmission system with remote microphone
5503141, Jan 13 1995 KETTL, LONNIE J Microphone mounting structure for a sound amplifying respirator
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 20 2004KETTL, LONNIE J CLOSED LOOP COMMUNICATIONSASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0150270981 pdf
Feb 20 2004MIKRONIS, JAMES C CLOSED LOOP COMMUNICATIONSASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0150270981 pdf
May 23 2005CLOSED LOOP COMMUNICATIONSKETTL, LONNIE J ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0163010331 pdf
Date Maintenance Fee Events
Sep 22 2005M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Feb 05 2010M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Mar 14 2014REM: Maintenance Fee Reminder Mailed.
Aug 06 2014EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Aug 06 20054 years fee payment window open
Feb 06 20066 months grace period start (w surcharge)
Aug 06 2006patent expiry (for year 4)
Aug 06 20082 years to revive unintentionally abandoned end. (for year 4)
Aug 06 20098 years fee payment window open
Feb 06 20106 months grace period start (w surcharge)
Aug 06 2010patent expiry (for year 8)
Aug 06 20122 years to revive unintentionally abandoned end. (for year 8)
Aug 06 201312 years fee payment window open
Feb 06 20146 months grace period start (w surcharge)
Aug 06 2014patent expiry (for year 12)
Aug 06 20162 years to revive unintentionally abandoned end. (for year 12)