An injection molding apparatus is provided in which the rate of material flow during the injection cycle is controlled. According to one preferred embodiment, a method is provided for use in an injection molding apparatus including a hot runner assembly comprising a manifold and at least first and second injection nozzles, the hot runner assembly to direct material injected into said manifold through said at least first and second injection nozzles through a corresponding at least first and second gates to one or more mold cavities. The method includes the steps of injecting material into the manifold, controlling, in the hot runner away from the first gate, a first rate at which material is injected through the first gate, and controlling, in the hot runner away from the second gate, a second rate at which material is injected through the second gate, independently from the first rate.
|
1. In an injection molding apparatus including a manifold and at least first and second injection nozzles, the apparatus to direct material injected into said manifold through said at least first and second injection nozzles through a corresponding at least first and second gates to one or more mold cavities, a method comprising steps of:
(A) injecting material into the manifold; (B) altering, in the apparatus away from the first gate and during an injection cycle, a first rate at which material is injected through the first gate; and (C) altering, in the apparatus away from the second gate and during an injection cycle, a second rate at which material is injected through the second gate, independently from the first rate.
25. In an injection molding apparatus including a manifold and at least first and second injection nozzles to direct material injected into the manifold and at least first and second injection nozzles and through at least first and second gates in communication therewith and into one or more mold cavities, a method comprising the steps of:
(A) injecting material into the manifold and the first and second injection nozzles; (B) sensing, in at least one of the manifold and the first injection nozzle, a first sensed condition related to a first rate at which material is injected through the first gate; (C) altering the first rate during an injection cycle based on said first sensed condition; (D) sensing, in at least one of the manifold and the second injection nozzle, a second sensed condition related to a second rate at which material is injected through the second gate and into said one or more mold cavities; and (E) altering the second rate during the injection cycle based on said second sensed condition.
3. The method of
4. The method of
5. The method of
6. The method of
8. The method of
10. The method of
11. The method of
12. The method of
15. The method of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
26. The method of
28. The method of
30. The method of
31. The method of
32. The method of
|
This application is a divisional of application Ser. No. 09/063,762, filed Apr. 21, 1998, entitled MANIFOLD SYSTEM HAVING FLOW CONTROL, and now pending.
This invention relates to injection of pressurized materials through a manifold, such as injection molding of plastic melt in a hot runner system. More specifically, this invention relates to an improved injection molding hot runner system in which the rate of melt flow is controlled through the gate during an injection molding cycle.
U.S. Pat. No. 5,556,582 discloses a multi-gate single cavity system in which the rate of melt flow through the individual gates is controlled independently via a control system according to specific target process conditions. This system enables the weld line of the part (the section of the part in which the melt from one gate meets the melt from another gate) to be selectively located. It also enables the shape of the weld line to be altered to form a stronger bond.
The '582 patent discloses controlling the rate of melt flow with a tapered valve pin at the gate to the mold cavity. It also discloses placing a pressure transducer inside the mold cavity. Placing the pressure transducer inside the mold cavity can result in the pressure transducer sensing pressure spikes which can occur when the valve pin is closed. A pressure spike sensed by the transducer can cause an unintended response from the control system, and result in a less precise control of the melt flow than desired.
The control system disclosed in the '582 patent uses the variables of valve pin position and cavity pressure to determine what position the valve pin should be in. Thus, the algorithm performed by the control system in the '582 patent utilizes two variables to control the rate of melt flow into the cavity.
An injection molding apparatus is provided in which the rate of material flow during the injection cycle is controlled. According to one preferred embodiment, a method is provided for use in an injection molding apparatus including a hot runner assembly comprising a manifold and at least first and second injection nozzles, the hot runner assembly to direct material injected into said manifold through said at least first and second injection nozzles through a corresponding at least first and second gates to one or more mold cavities. The method includes the steps of injecting material into the manifold, controlling, in the hot runner away from the first gate, a first rate at which material is injected through the first gate, and controlling, in the hot runner away from the second gate, a second rate at which material is injected through the second gate, independently from the first rate.
According to another embodiment, a method is provided for use in an injection molding apparatus including a hot runner to direct material injected into the hot runner and through a gate and into one or more mold cavities. The method includes the steps of injecting material into the hot runner assembly, sensing, in the hot runner, a sensed condition related to a rate at which material is injected through the gate, and controlling the rate based on said sensed condition.
Melt is distributed by the manifold through channels 17 and 19 and into bores 18 and 20 of nozzles 21 and 23, respectively. Melt is injected out of nozzles 21 and 23 and into cavity 5 (where the part is formed) which is formed by mold plates 25 and 27. Although a multi-gate single-cavity system is shown, the invention is not limited to this type of system, and is also applicable to, for example, multi-cavity systems, as discussed in greater detail below.
The injection nozzles 21 and 23 are received in respective wells 28 and 29 formed in the mold plate 27. The nozzles 21 and 23 are each seated in support rings 31 and 33. The support rings serve to align the nozzles with the gates 7 and 9 and insulate the nozzles from the mold. The manifold 15 sits atop the rear end of the nozzles and maintains sealing contact with the nozzles via compression forces exerted on the assembly by clamps (not shown) of the injection molding machine. An O-ring 36 is provided to prevent melt leakage between the nozzles and the manifold. A dowel 73 centers the manifold on the mold plate 27. Dowels 32 and 34 prevent the nozzle 23 and support ring 33, respectively, from rotating with respect to the mold 27.
The nozzles also include a heater 35 (FIG. 2). Although an electric band heater is shown, other heaters may be used. Furthermore, heat pipes (for example those disclosed in U.S. Pat. No. 4,389,002) may be disposed in each nozzle and used alone or in conjunction with heater 35. The heater is used to maintain the melt material at its processing temperature up to the gates 7 and 9. The nozzles 21 and 23 also include an insert 37 and a tip 39. The insert can be made of a material (for example beryllium copper) having high thermal conductivity in order to maintain the melt at its processing temperature up to the gate by imparting heat to the melt from the heater 35. The tip 39 is used to form a seal with the mold plate 27 and is preferably a material (for example titanium alloy or stainless steel) having low thermal conductivity so as to reduce heat transfer from the nozzle to the mold.
A valve pin 41 having a head 43 is used to control the rate of flow of the melt material to the respective gates 7 and 9. The valve pin reciprocates through the manifold. A valve pin bushing 44 is provided to prevent melt from leaking along stem 102 of the valve pin. The valve pin bushing is held in place by a threadably mounted cap 46. The valve pin is opened at the beginning of the injection cycle and closed at the end of the cycle. During the cycle, the valve pin can assume intermediate positions between the fully open and closed positions, in order to decrease or increase the rate of flow of the melt. The head includes a tapered portion 45 that forms a gap 81 with a surface 47 of the bore 19 of the manifold. Increasing or decreasing the size of the gap by displacing the valve pin correspondingly increases or decreases the flow of melt material to the gate. When the valve pin is closed the tapered portion 45 of the valve pin head contacts and seals with the surface 47 of the bore of the manifold.
The actuator 49 (for example, the type disclosed in U.S. Pat. No. 5,894,025) is mounted in a clamp plate 51 which covers the injection molding system 1. The actuator 49 is a hydraulic actuator, however, pneumatic or electronic actuators can be used. The actuator 49 includes a hydraulic circuit that includes a movable piston 53 in which the valve pin 41 is threadably mounted at 55. Thus, as the piston 53 moves, the valve pin 41 moves with it. The actuator 49 includes hydraulic lines 57 and 59 which are con trolled by servo valves 1 and 2. Hydraulic line 57 is energized to retract the valve pin away from the gate toward the close position. An actuator cap 61 limits longitudinal movement in the vertical direction of the piston 53. O-rings 63 provide respective seals to prevent hydraulic fluid from leaking out of the actuator. The actuator body 65 is mounted to the manifold via screws 67.
A pressure transducer 69 is used to sense the pressure in the manifold bore 19 downstream of the valve pin head 43. In operation, the conditions sensed by the pressure transducer 69 associated with each nozzle are fed back to a control system that includes controllers PID 1 and PID 2 and a CPU shown schematically in FIG. 1. The CPU executes a PID (proportional, integral, derivative) algorithm which compares the sensed pressure (at a given time) from the pressure transducer to a programmed target pressure (for the given time). The CPU instructs the PID controller to adjust the valve pin using the actuator 49 in order to mirror the target pressure for that given time. In this way a programmed target pressure profile for an injection cycle for a particular part for each gate 7 and 9 can be followed.
Although in the disclosed embodiment the sensed condition is pressure, other sensed conditions can be used which relate to melt flow rate. For example, the position of the valve pin or the load on the valve pin could be the sensed condition. If so, a position sensor or load sensor, respectively, could be used to feed back the sensed condition to the PID controller. In the same manner as explained above, the CPU would use a PID algorithm to compare the sensed condition to a programmed target position profile or load profile for the particular gate to the mold cavity, and adjust the valve pin accordingly.
Melt flow rate is directly related to the pressure sensed in bore 19. Thus, using the controllers PID 1 and PID 2, the rate at which the melt flows into the gates 7 and 9 can be adjusted during a given injection molding cycle, according to the desired pressure profile. The pressure (and rate of melt flow) is decreased by retracting the valve pin and decreasing the width of the gap 81 between the valve pin and the manifold bore, while the pressure (and rate of melt flow) is increased by displacing the valve pin toward the gate 9, and increasing the width of the gap 81. The PID controllers adjust the position of the actuator piston 51 by sending instructions to servo valves 1 and 2.
By controlling the pressure in a single cavity system (as shown in
Another advantage of the present invention is seen in a multi-cavity system in which the nozzles are injecting into cavities which form different sized parts that require different fill rates and packing profiles. In this case, different pressure profiles can be programmed for each respective controller of each respective cavity. Still another advantage is when the size of the cavity is constantly changing, i.e., when making different size parts by changing a mold insert in which the part is formed. Rather than change the hardware (e.g., the nozzle) involved in order to change the fill rate and packing profile for the new part, a new program is chosen by the user corresponding to the new part to be formed.
The embodiment of
Avoidance of the effects of a pressure spike resulting from closing the gate to the mold makes the control system behave more accurately and predictably. Controlling flow away from the gate enables accurate control using only a single sensed condition (e.g., pressure) as a variable. The '582 patent disclosed the use of two sensed conditions (valve position and pressure) to compensate for an unintended response from the pressure spike. Sensing two conditions resulted in a more complex control algorithm (which used two variables) and more complicated hardware (pressure and position sensors).
Another advantage of controlling the melt flow away from the gate is the use of a larger valve pin head 43 than would be used if the valve pin closed at the gate. A larger valve pin head can be used because it is disposed in the manifold in which the melt flow bore 19 can be made larger to accommodate the larger valve pin head. It is generally undesirable to accommodate a large size valve pin head in the gate area within the end of the nozzle 23, tip 39 and insert 37. This is because the increased size of the nozzle, tip and insert in the gate area could interfere with the construction of the mold, for example, the placement of water lines within the mold which are preferably located close to the gate. Thus, a larger valve pin head can be accommodated away from the gate.
The use of a larger valve pin head enables the use of a larger surface 45 on the valve pin head and a larger surface 47 on the bore to form the control gap 81. The more "control" surface (45 and 47) and the longer the "control" gap (81)--the more precise control of the melt flow rate and pressure can be obtained because the rate of change of melt flow per movement of the valve pin is less. In
The valve pin head includes a middle section 83 and a forward cone shaped section 95 which tapers from the middle section to a point 85. This shape assists in facilitating uniform melt flow when the melt flows past the control gap 81. The shape of the valve pin also helps eliminates dead spots in the melt flow downstream of the gap 81.
In
The rear 45 of the valve pin head 43 remains tapered at an angle from the stem 102 of the valve pin 41. Although the surface 45 performs no sealing function in this embodiment, it is still tapered from the stem to facilitate even melt flow and reduce dead spots.
As in
Despite the fact that the gap 107 performs no sealing function, its width is small enough to act as a control gap when the valve pin is open and correspondingly adjust the melt flow pressure with precision as in the embodiments of
Extending the valve pin to close the gate has several advantages. First, it shortens injection cycle time. In previous embodiments thermal gating is used. In thermal gating, plastication does not begin until the part from the previous cycle is ejected from the cavity. This prevents material from exiting the gate when the part is being ejected. When using a valve pin, however, plastication can be performed simultaneously with the opening of the mold when the valve pin is closed, thus shortening cycle time by beginning plastication sooner. Using a valve pin can also result in a smoother gate surface on the part.
The flow control area is shown enlarged in FIG. 12. In solid lines the valve pin is shown in the fully open position in which maximum melt flow is permitted. The valve pin includes a convex surface 114 that tapers from edge 128 of the stem 102 of the valve pin 41 to a throat area 116 of reduced diameter. From throat area 116, the valve pin expands in diameter in section 118 to the extension 110 which extends in a uniform diameter to the tapered end of the valve pin.
In the flow control area the manifold includes a first section defined by a surface 120 that tapers to a section of reduced diameter defined by surface 122. From the section of reduced diameter the manifold channel then expands in diameter in a section defined by surface 124 to an outlet of the manifold 126 that communicates with the bore of the nozzle 20.
As stated above, the valve pin is shown in the fully opened position in solid lines. In
To prevent melt flow from the manifold bore 19, and end the injection cycle, the valve pin is moved forward so that edge 128 of the valve pin, i.e., where the stem 102 meets the beginning of curved surface 114, will move past point 130 which is the beginning of surface 122 that defines the section of reduced diameter of the manifold bore 19. When edge 128 extends past point 130 of the manifold bore melt flow is prevented since the surface of the valve stem 102 seals with surface 122 of the manifold. The valve pin is shown in dashed lines where edge 128 is forward enough to form a seal with surface 122. At this position, however, the valve pin is not yet closed at the gate. To close the gate the valve pin moves further forward, with the surface of the stem 102 moving further along, and continuing to seal with, surface 122 of the manifold until the end 112 of the valve pin closes with the gate.
In this way, the valve pin does not need to be machined to close the gate and the flow bore 19 of the manifold simultaneously, since stem 102 forms a seal with surface 122 before the gate is closed. Further, because the valve pin is closed after the seal is formed in the manifold, the valve pin closure will not create any unwanted pressure spikes. Likewise, when the valve pin is opened at the gate, the end 112 of the valve pin will not interfere with melt flow, since once the valve pin is retracted enough to permit melt flow through gap 98, the valve pin end 112 is a predetermined distance from the gate. The valve pin can, for example, travel 6 mm. from the fully open position to where a seal is first created between stem 102 and surface 122, and another 6 mm. to close the gate. Thus, the valve pin would have 12 mm. of travel, 6 mm. for flow control, and 6 mm. with the flow prevented to close the gate. Of course, the invention is not limited to this range of travel for the valve pin, and other dimensions can be used.
Having thus described certain embodiments of the present invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only, and not intended to be limiting. The invention is limited only as defined in the following claims and the equivalents thereof.
Patent | Priority | Assignee | Title |
10843395, | Nov 21 2017 | Silgan Specialty Packaging LLC | Multi-layer injection molded container |
11298861, | Nov 21 2017 | Silgan Specialty Packaging LLC | Multi-layer injection molded container |
6514440, | Apr 21 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Apparatus and method for purging injection molding system |
6585505, | Apr 21 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Machine for proportionally controlling fluid delivery to a mold |
6589039, | Apr 21 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Controlled injection using manifold having multiple feed channels |
6599116, | Jun 13 1997 | Synventive Molding Solutions, Inc. | Valve pin actuator |
6638049, | Jun 13 1997 | SYNVENTIVE MOLDING SOLUTIONS, INC | Apparatus and method for proportionally controlling fluid delivery to readily replaceable mold inserts |
6683283, | May 10 2002 | Dynisco Hot Runners Inc. Canada | Apparatus and method for heating injection molding fluid |
6712125, | Apr 19 2001 | Alcoa Inc | Continuous pressure molten metal supply system and method for forming continuous metal articles |
6767486, | Apr 21 1998 | Synventive Molding Solutions, Inc. | Controlled injection using manifold having multiple feed channels |
6769896, | Apr 21 1998 | Synventive-Molding Solutions, Inc. | Manifold system having flow control |
6824379, | Apr 21 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Apparatus for utilizing an actuator for flow control valve gates |
6911166, | Oct 17 2001 | MIND FUSION, LLC | Method of encapsulating hard disc drive and other electrical components |
7018199, | Dec 05 2003 | Plastic Engineering & Technical Services, Inc. | Machined manifold having integral pads |
7029268, | Dec 26 2001 | SYNVENTIVE MOLDING SOLUTIONS, INC | Non-coaxial injection molding valve flow control |
7147458, | Oct 25 2002 | WESTFALL ACQUISITION III, INC | Apparatus for heating injection molding fluid |
7234505, | Aug 25 2000 | Commonwealth Scientific and Industrial Research Organisation | Aluminium pressure casting |
7234929, | Sep 21 1999 | Synventive Molding Solutions, Inc. | Injection molding flow control apparatus and method |
7270537, | Jul 31 2002 | Synventive Molding Solutions, Inc. | Non-coaxial injection molding valve flow control |
7275923, | Nov 11 2003 | Plastic Engineering & Technical Services, Inc. | Valve gate assembly |
7418775, | Dec 05 2003 | Plastic Engineering & Technical Services, Inc. | Machined manifold and method of making same |
7419625, | Sep 21 1999 | Synventive Molding Solutions, Inc. | Injection molding flow control method |
7559762, | Jun 16 2006 | MOLD-MASTERS 2007 LIMITED | Open loop pressure control for injection molding |
7569169, | Apr 21 1998 | Synventive Molding Solutions, Inc. | Injection molding flow control apparatus and method |
7588436, | Nov 11 2003 | PLASTIC ENGINEERING & TECHNICAL SERVICES, INC | Valve gate assembly |
7597828, | Dec 23 2002 | Synventive Molding Solutions, Inc. | Injection molding valve flow control |
7731489, | Dec 21 2006 | Mold-Masters (2007) Limited; MOLD-MASTERS 2007 LIMITED | Valve for co-injection molding apparatus |
7753676, | Jun 08 2007 | MOLD-MASTERS 2007 LIMITED | Multi-piece valve pin bushing |
7766647, | Jun 16 2006 | Mold-Masters (2007) Limited | Open loop pressure control for injection molding |
7802983, | Apr 07 2005 | MOLD-MASTERS 2007 LIMITED | Configurable manifold |
7845925, | Nov 11 2003 | Plastic Engineering & Technical Services, Inc. | Valve gate assembly |
7901601, | Apr 21 1998 | Synventive Molding Solutions, Inc. | Injection molding flow control apparatus and method |
7934627, | Oct 13 2005 | ARCONIC INC | Apparatus and method for high pressure extrusion with molten aluminum |
8016581, | Apr 21 1998 | Synventive Molding Solutions, Inc. | Injection molding flow control apparatus |
8091202, | May 06 2009 | SYNVENTIVE MOLDING SOLUTIONS, INC | Method and apparatus for coupling and uncoupling an injection valve pin |
8192191, | Nov 11 2003 | Plastics Engineering & Technical Services, Inc. | Valve gate assembly |
8282388, | May 06 2009 | Synventive Molding Solutions, Inc. | Apparatus for coupling and uncoupling an injection valve pin |
8349244, | Mar 25 2010 | Synventive Molding Solutions, Inc. | Actuator mount system and method of mounting an actuator |
Patent | Priority | Assignee | Title |
3535742, | |||
3718166, | |||
3780764, | |||
3820928, | |||
3861841, | |||
3952927, | Apr 26 1974 | Standard Oil Company | Injection nozzle having guides for nozzle rod |
3982440, | Aug 13 1975 | VSI CORPORATION, A CORP OF DE | Method of determining molded part profile |
4389002, | Feb 07 1980 | SYNVENTIVE MOLDING SOLUTIONS, INC | Injection molding nozzle |
4500279, | Jul 06 1983 | SYNVENTIVE MOLDING SOLUTIONS, INC | Heat pipe manifold system |
4521179, | Feb 24 1983 | Injection molding core ring gate system | |
4588367, | Jul 16 1984 | Grove Coles Limited | Hot runner manifold for injection molding machine |
4592711, | Mar 10 1983 | Apparatus for fabricating plastic parts | |
4863369, | May 12 1986 | Husky Injection Molding Systems Ltd. | Injection molding with shooting pots |
4932854, | Apr 07 1987 | Kabushiki Kaisha Komatsu Seisakusho | Apparatus for control of injection molding machine |
5078589, | Jun 15 1990 | Multicavity injection molding apparatus having precision adjustment and shut off of injection flow to individual mold cavities | |
5141696, | Jun 30 1986 | Method for injection molding using flow adjusting arrangement | |
5149547, | Jun 12 1991 | BAUER COMPRESSORS, INC | Apparatus for multi-cavity injection molding |
5288222, | Oct 16 1989 | Mould for injection moulding machines | |
5356576, | Mar 26 1991 | SUMITOMO DEMAG PLASTICS MACHINERY GMBH; SUMITOMO SHI DEMAG PLASTICS MACHINERY GMBH | Process for the manufacture of plastic moldings with decorative coating |
5389315, | Nov 04 1992 | Kasai Kogyo Co., Ltd. | Method and device for mold press forming |
5492467, | Dec 30 1993 | SYNVENTIVE MOLDING SOLUTIONS, INC | Apparatus for injection molding articles of amorphous polyethylene terephthalate |
5545028, | Aug 16 1994 | SYNVENTIVE MOLDING SOLUTIONS, INC | Bushing tip for injection molding apparatus |
5554395, | Aug 12 1993 | SYNVENTIVE MOLDING SOLUTIONS, INC | Open bore injection molding apparatus |
5556582, | Feb 17 1995 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Injection molding gate flow control |
5674439, | Dec 30 1993 | SYNVENTIVE MOLDING SOLUTIONS, INC | System and apparatus for injection molding articles of amorphous polyethylene terephthalate and similar materials |
5849236, | May 10 1996 | Siegel-Robert, Inc.; SIEGEL-ROBERT, INC | Method and apparatus for plastic injection molding flow control |
5871786, | Apr 04 1997 | SYNVENTIVE MOLDING SOLUTIONS, INC | Tip heated hot runner nozzle |
5885628, | Aug 12 1993 | SYNVENTIVE MOLDING SOLUTIONS, INC | Injection molding nozzle |
5894025, | Jun 13 1997 | SYNVENTIVE MOLDING SOLUTIONS, INC | Valve pin actuator |
5916605, | Sep 27 1996 | SYNVENTIVE MOLDING SOLUTIONS, INC | Valve actuated injection molding apparatus |
5948448, | Nov 18 1997 | SYNVENTIVE MOLDING SOLUTIONS, INC | Apparatus for controlling plastic melt flow in injection molding machines |
5948450, | Sep 27 1996 | SYNVENTIVE MOLDING SOLUTIONS, INC | Valve actuated injection molding apparatus |
5980237, | Aug 12 1993 | SYNVENTIVE MOLDING SOLUTIONS, INC | Injection molding nozzle |
6000831, | Feb 12 1997 | Husky Injection Molding Systems Ltd | Injection mold data transmission system |
6001296, | Mar 27 1997 | Lehigh University | Apparatuses and methods for controlling the fill of tooling cavities |
6027328, | Feb 26 1996 | Apparatus for injection-molding plastic material items | |
6254377, | Apr 21 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Manifold system having flow control using extended valve pin |
6261075, | Sep 02 1997 | SYNVENTIVE MOLDING SOLUTIONS, INC | Hot runner system for coinjection molding |
6294122, | Jun 26 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Electric actuator for a melt flow control pin |
6309208, | Jun 13 1997 | SYNVENTIVE MOLDING SOLUTIONS, INC | Apparatus for proportionally controlling fluid delivery to a mold |
6343921, | Apr 21 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Manifold system having flow control using separate cavities |
6343922, | Apr 21 1998 | SYNVENTIVE MOLDING SOLUTIONS, INC | Manifold system having flow control using pressure transducers |
DE2034163, | |||
DE2401168, | |||
DE29909535, | |||
EP911137, | |||
JP58142833, | |||
JP60212321, | |||
JP61633428, | |||
WO108462, | |||
WO9743105, | |||
WO9856564, | |||
WO9954109, | |||
WO9959795, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 06 1998 | MOSS, MARK D | SYNVENTIVE MOLDING SOLUTIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016480 | /0469 | |
Feb 11 2000 | Synventive Molding Solutions, Inc. | (assignment on the face of the patent) | / | |||
Dec 02 2002 | KAZMER, DAVID | SYNVENTIVE MOLDING SOLUTIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013767 | /0703 | |
Jul 29 2005 | SYNVENTIVE MOLDING SOLUTIONS, INC | THE ROYAL BANK OF SCOTLAND PLC, AS COLLATERAL AGENT | SECURITY AGREEMENT | 016621 | /0587 |
Date | Maintenance Fee Events |
Jan 17 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 22 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 20 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 20 2005 | 4 years fee payment window open |
Feb 20 2006 | 6 months grace period start (w surcharge) |
Aug 20 2006 | patent expiry (for year 4) |
Aug 20 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 20 2009 | 8 years fee payment window open |
Feb 20 2010 | 6 months grace period start (w surcharge) |
Aug 20 2010 | patent expiry (for year 8) |
Aug 20 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 20 2013 | 12 years fee payment window open |
Feb 20 2014 | 6 months grace period start (w surcharge) |
Aug 20 2014 | patent expiry (for year 12) |
Aug 20 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |