Method and apparatus for validating banknotes. In some countries, genuine banknotes are provided with a security thread embedded in the banknote, but partially exposes at regularly spaced regions along its length by windows. The windows have a width greater that the security strip itself. The increased transmissivity of the banknote in the infrared region is utilized to detect the presence of such windows to validate the banknote. If the required variation in transmissivity is not detected, the banknote can be rejected as a countefeit.
|
20. A validator for security documents, said validator comprising sensor means for discriminating between valid and counterfeit security documents, switch means for activating said sensor means, and support means for said sensor means, wherein said support means comprises a first portion and a second portion separated in a first relative position by an opening for a document to be validated, said first portion being movable with respect to said second portion to a second relative position whereby said switch means is actuated.
10. A method of validating a security document comprising an embedded security device which is at least partially exposed by one or more exposure windows, the method comprising:
inspecting the document in one or more regions adjacent said security device; sensing radiation transmitted through a first region of the document to produce a first output and sensing radiation transmitted through a second region of the document to produce a second output; analyzing the outputs to judge on the presence of said one or more exposure windows, wherein said analysis involves taking a ratio of said outputs; and judging on the presence of said one or more exposure windows on the basis of said inspecting to provide a validation signal.
9. A method of validating a security document comprising an embedded security device which is at least partially exposed by one or more exposure windows, the method comprising:
inspecting the document in one or more regions adjacent said security device; sensing radiation transmitted through a first region of the document to produce a first output and sensing radiation transmitted through a second region of the document to produce a second output; analyzing the outputs to judge on the presence of said one or more exposure windows, wherein said analysis involves taking a difference between said outputs; and judging on the presence of said one or more exposure windows on the basis of said inspecting to provide a validation signal.
17. A method of validating a security document comprising an embedded security device which is at least partially exposed by one or more exposure windows, the method comprising:
inspecting the document simultaneously in at least two regions adjacent said security device, wherein said at least two regions are spaced in a direction transverse to said security device; sensing radiation transmitted through a first region of the document to produce a first output and sensing radiation transmitted through a second region of the document to produce a second output; analyzing the outputs to judge on the presence of said one or more exposure windows; and judging on the presence of said one or more exposure windows in any of said at least two regions on the basis of said inspecting to provide a validation signal.
1. A method of validating a security document comprising an embedded security device which is at least partially exposed by one or more exposure windows, the method comprising:
inspecting the document in one or more regions adjacent said security device; sensing radiation transmitted through a first region of the document to produce a first output and sensing radiation transmitted through a second region of the document to produce a second output; analyzing the outputs to judge on the presence of said one or more exposure windows; and judging on the presence of said one or more exposure windows on the basis of said inspecting to provide a validation signal; wherein said validation signal is provided when said first output indicates that the sensed radiation has passed through an exposure window and said second output indicates that the sensed radiation has not passed through an exposure window.
18. Apparatus for validating a security document comprising an embedded security device which is at least partially exposed by one or more exposure windows, the apparatus comprising:
means for inspecting the document in one or more regions, said inspecting means comprising one or more radiation emitting means and one or more radiation detecting means, at least one of said emitting means being located on a first support means and at least one of said detecting means being opposedly located on a second support means, said first and second support means being separated by an opening into which a document is to be inserted by a human operator for inspection using the apparatus; and means for judging on the presence of said one or more exposure windows, in response to an output of said inspecting means generated when inspecting said document in one or more regions adjacent said security device, to provide a validation signal.
16. A method of validating a security document comprising an embedded security device which is at least partially exposed by one or more exposure windows, the security device comprising a strip or thread, the method comprising:
inspecting the document in one or more regions adjacent said security device; sensing radiation transmitted through a first region of the document to produce a first output and sensing radiation transmitted through a second region of the document to produce a second output, said first and second regions through which the sensed radiation passes being spaced in a direction parallel to said security device, wherein said first output is produced by a first sensor and said second output is produced by a second sensor; analyzing the outputs to judge on the presence of said one or more exposure windows; and judging on the presence of said one or more exposure windows on the basis of said inspecting to provide a validation signal.
2. A method according to
3. A method according to
5. A method according to
6. A method according to
7. A method according to
8. A method according to
11. A method according to
12. A method according to
13. A method according to
14. A method according to
15. A method according to
19. Apparatus according to
21. A validator according to
22. A validator according to
23. A validator according to
24. A validator according to
25. A validator according to
26. A validator according to
27. A validator according to
|
This invention concerns validators for, and methods for validating, security documents, in particular security documents comprising an embedded security device which is at least partially exposed by one or more exposure windows. The security documents to be validated may be banknotes, cheques or similar documents of monetary value.
Banknote validators, or counterfeit detectors, of various forms are already known. Automatic banknote validators are used in machines which accent banknotes as a form of payment such as vending machines. Automatic validators use relatively sophisticated validation techniques, such as high resolution scanning of a banknote in visible light to produce a scanned image which is compared with that expected of a valid banknote.
Another type of banknote validator is that used to augment the ability of a human operator to detect counterfeits. One such device which is relatively simple and inexpensive is known from International Patent Application No. WO94/16412. The device measures the ultraviolet fluorescence and reflectance characteristics of a banknote. Excessive levels of fluorescence can be detected in a counterfeit banknote, upon which the validator signals to the operator visibly and/or audibly to alert the operator to the invalidity of the banknote.
Although such validators to be used by human operators are now in general usage, it would be desirable to provide a further test whereby counterfeit banknotes can be detected.
Banknotes contain various security devices which are designed to be reproduced only with extreme difficulty, and to offer an immediate means of recognizion of a valid banknote to the human eye. One such device is the security strip or thread which is incorporated into banknotes in a number of countries. The security thread, usually consisting of a metallised plastics strip, is embedded in a banknote in such a manner that the thread is at least partially exposed by a number of windows which are located at spaced locations in the paper substrate. As a result, when the banknote is seen in reflected light, the security strip is visible at a number of locations corresponding to the positions of the windows in the paper, and in transmitted light the whole length of the security thread is visible. Thus, although the surface printing on a banknote may be copied readily by modern colour photocopying techniques, the security thread provides a further defense against counterfeiters.
It is known to provide validators which detect the presence, or absence, of a security thread in a banknote. Unfortunately, counterfeiters can reproduce a security thread by various ingenious methods.
Banknotes which are provided with security threads may be produced in a number of different ways. EP-A-0 059 056 describes a method in which a cylinder mould is used. A web of security thread is wound around the cylinder and supported by raised portions on the cylinder such that when paper fibres are deposited on the mould to produce paper webs, windows are produced corresponding to the raised portions of the mould. Windows might also be provided by embedding a security thread between two separately formed sheets of paper which are wet laminated or dry laminated together (see for example EP-A-0-229 645). One or both of these sheets may be provided with apertures, or relatively thin regions, through which the security thread is exposed in the paper product.
It is to be noted that in a number of countries the windows, however formed, are of greater length than necessary merely to expose the security thread across its width. This is due to the fact that the location of the security strip in the banknote paper is gradually varied so as to meander across the windows. As a result, when the banknotes produced are stacked into bundles, the positions of the security thread in the bundled banknotes are not all aligned, and extreme thickness of the bundles corresponding to the location of the security threads is avoided.
In one aspect, the present invention provides a method of validating a document comprising an embedded security device which is partially exposed by one or more exposure windows, the method comprising the steps or inspecting the document in one or more regions adjacent said security device, and judging on the presence of said one or more exposure windows on the basis of said inspecting step to provide a validation signal.
The windows associated with the security thread of a banknote are a feature which is difficult to reproduce and therefore suitable to provide for the relatively simple but effective validation of banknotes and detection of counterfeits.
It is possible to judge on the presence of the one or more windows by mechanically detecting thickness variations across the document. However, such direct thickness sensing would require sensitive, and therefore relatively costly, equipment. Mechanical thickness sensing would also be difficult to employ for hand-held use. The inspecting step preferably comprises generating radiation, locating the document such that said radiation impinges on the document, and sensing radiation transmitted through the document in one or more regions adjacent said security device.
The sensed radiation preferably comprises infrared radiation. Although the windows may be sensed using other forms of radiation, such as visible light, the windows are highly visible in the infra-red region of the electromagnetic spectrum. The surface printed inks on a security document such as a banknote are generally transparent to infra-red radiation, whereas thickness or density variations cause readily detectable differences in the amount of radiation transmitted.
The presence of an exposure window in a document could theoretically be determined by sensing the intensity of radiation transmitted through a single region of the document, i.e. the window itself. However, a counterfeit could readily pass such a test and to improve reliability and effectiveness it is preferred that radiation transmitted through a first region of the document is sensed to produce a first output and radiation transmitted through a second region of the document is sensed to produce a second output, which outputs are analysed to judge on the presence of said one or more exposure windows. The validation signal may be provided when said first output indicates that the sensed radiation has passed through an exposure window and said second output indicates that the sensed radiation has not passed through an exposure window.
The outputs may be analysed in a number of ways which may be used alone or in combination. For instance, the analysis may involve taking a difference between the sensed outputs, or may involve taking a ratio of the outputs. The difference or the ratio may be subjected to predetermined criteria in order to determine whether a validation signal should be provided.
The analysis may also involve comparing at least one of said outputs with a predetermined reference value or a predetermined range of values during said analysis. Preferably, this analysis involves determining whether one of said outouts corresponds with that expected on detection of a valid window, and determining whether the other of said outputs corresponds with the detection of a valid region between, or outside, said one or more windows
In one method of the invention particularly, but not exclusively, pertaining to banknotes, the security device is a strip or thread, and said first and second regions through which the sensed radiation passes are spaced in a direction parallel to said security device.
In one embodiment, said first output is produced by a first sensor and said second output is produced by a second sensor.
In another embodiment, said inspecting step comprises moving a sensor relative to said document in a direction generally parallel to said security device, and said first and second outputs are produced sequentially during the movement. This reduces the number of sensors required in order to determine the presence or absence of the exposure windows in the security document.
The inspecting step may comprise inspecting said document along a line to produce a profile of the document along said line, said validation signal being provided in response to, or in the absence of, the detection of a desired variation in said profile indicating the presence of said one or more exposure windows. The profile is preferably that of the transmission characteristics of said document along said line or inspection. The detection preferably involves detecting one or more windowed regions, and detecting one or more non-windowed regions. Preferably, the profile is analysed to perform said judging, said analysis involving determining the geometric relationship of said detected windowed regions and said detected non-windowed regions along said line of inspection. Although the analysis may involve determining a periodic relationship between the two regions corresponding to the regular spacing of the windows, that may require an undue degree of processing. In a less complex method the analysis may involve taking a ratio of the length of one or more of the detected windowed regions along said line with the length of more or more of the detected non-windowed regions along said line.
Since the security device itself, such as in the case of the security thread of a banknote, may be substantially opaque, it may be that i the document were inspected in only one region, the security device itself would obscure the exposure windows in transmitted light. Accordingly, it is preferred that the inspecting step comprises inspecting the document simultaneously in at least two regions, said judging stem comprising judging on the presence of said one or more exposure windows in any of said at least two regions. When the security device is a thread, those at least two regions are preferably spaced in a direction transverse to the length of the thread.
The present invention also provides apparatus comprising means for performing the method of the invention. In one embodiment, such means may comprise one or more radiation emitting means and one or more radiation detecting means, at least one of said emitting means preferably being located on a first support means and at least one of said detecting means being opposedly located on a second support means, said first and second support means being separated by an opening into which a document is to be inserted by a human operator for inspection using the apparatus.
To reduce complexity and cost, the sensor pairs are preferably small in number (these may be less than ten) and arranged to inspect only a portion of the document. The apparatus may further comprise means for indicating to a human operator a desired disposition of the security device during inspection. This should ensure reliable sensing of the exposure windows, which are located in the area of the security device.
According to a further aspect of the invention, a validator for security documents is provided, said validator comprising sensor means for discriminating between valid and counterfeit security documents, switch means for activating said sensor means, and support means for said sensor means, wherein said support means comprise a first portion and a second portion separated by an opening for a document to be validated, said first portion being movable with respect to said second portion to actuate said switch means.
Said sensor means preferably comprises radiation emitting means located on said first portion of the support means, and radiation sensing means located on said second portion of the support means.
Said radiation sensing means may comprise an infra-red radiation sensor.
The validator preferably comprises a plurality of radiation sensors providing a plurality or outputs to a processing means for analysing said plurality of outputs to provide a validation signal.
Said processing means preferably analyses two or more of said outputs in combination to determine whether said validation signal should be given.
The validator is preferably adapted so that when said support means is in said second relative position, a said sensor means may be moved relative to a document to be validated located between said first and second portions of the support means.
In said second relative position, said first and second portions preferably remain separated by an opening allowing a document to be validated to be moved relative to said sensor means.
Preferred embodiments of the invention will now be described, by way of example only, with reference to the accompanying set of drawings in which:
A banknote similar to that currently in circulation in the United Kingdom is illustrated in FIG. 1. The banknote 2 comprises a partially embedded security thread 4 exposed at a plurality of locations across the banknote 2 by a plurality of regularly spaced windows 6. The windows 6 are not readily visible by the human eye in reflected light, but are sometimes discernable by the human eye in strong transmitted, light. The paper of the banknote is slightly thinner at the windows 6, and/or of lesser density in those windows 6. On the other hand, the regions of paper located immediately between the windows, herein referred to as "rungs" 8 are of equal or even slightly greater thickness and density as, or than, the remainder of the banknote 2. The width of the security thread 4 is approximately 1 nm whereas the length of the windows 6 is approximately 2 cm. Although the security thread 4 is shown located at the centre of the windows 6, it may be located at any point along their lengths.
Referring now to
The validator 2 is activated by squeezing the upper and lower arms 34,36 together. To this end, hand grips 20,22 are provided on the hinged end of the validator 32. The validator 32 is biassed to an open position, illustrated in
The LEDs 10 may each be provided with a lens and/or a collimating slit, and the photodiodes 12-15 may be provided with similar optical means to ensure the sensing of a beam of a desired resolution. Since the windows to be detected may have a width for example of 4 millimetres, it is preferred that the beams sensed are correspondingly narrow to produce the desired resolution. In cases where the validator 32 is intended for use with banknotes having windows of different dimensions, the dimensions of the beams sensed should also correspond to give sufficient resolution. The LEDs 10 and/or chotodiodes 12-15 may also be provided with filters to ensure sensing at a predetermined wavelength or wavelengths.
In order to validate a banknote, the banknote 2 is inserted between the validator arms 34,36 such that the security thread 4 lies parallel to, and between, the validator arms 34,36 as shown in FIG. 5. It should be noted that the sensor pairs 10,12-15 are spaced in a direction parallel to the length of the arms 34,36. The spacing is chosen so that when one photodiode 12 is located directly above a window 6 on the banknote 2, adjacent photodiodes 13 is located above a rung a between the windows 6 on the banknote. Furthermore, the other two pihotodiodes 14,15 have a similar relationship to one another and are arranged in an offset relation to photodiodes 12,13 so that when a window/rung combination is not clearly detectable by the two photodiodes 12,13, it is nevertheless ensured that a window/rung combination is detected by the two photodiodes 14,15 when the validator 32 is properly located over the security strip. The two photodiodes 14,15 are also spaced from the other photodiodes 12,13 in a direction transverse to the length of the arms 34,36 so that, should two of the photodiodes be obscured by the opaque security strip 4, the rungs and windows can still be sensed by the other two photodiodes. Of course, other arrangements of sensor pairs 10,12-15 than that shown could be utilised to similar effect.
When the validator is switched on, the LEDs 10 generate infra-red beams which are transmitted through the banknote to a greater or lesser degree according to the location of the windows 6 and rungs 8, and the photodiodes 12-15 sense the intensity of the transmitted radiation. The outputs of the photodiodes 12,13 are compared by the processing unit 16, by taking a ratio, to determine whether the ratio of intensities sensed corresponds to a predetermined value indicating the sensing of a window/rung combination. A similar operation could be performed by the use of comparators in addition to the processing unit 16. The processing unit 16 performs a similar analysis of the outputs of photodiodes 14,15. If the sensed output ratio falls within a predetermined range of values for either the two photodiodes 12,13 or the two photodiodes 14,15, a validation signal indicating the genuine nature of a banknote 2 is generated, and a "valid" indication is given by the indicator unit 18 in response to a validation signal sent by processing unit 16. However, if the banknote is a counterfeit, the windows 6 will not be present or will be likely to have an incorrect level of transmission compared to that of the rungs 8, and no "valid" indication will be generated by indicating unit 18. In addition or in the alternative, the indicating unit 18 may be caused to provide an alarm signal should the sensing not produce the desired variation in intensity of transmitted lit across the banknote. Such an alarm signal may be produced upon reopening of switch 24 when the validator is released and returned to its open position shown in FIG. 2.
The processing unit 16 may analyse the outputs from the photodiodes in ways other than simply taking the ratios of the outputs of photodiodes 12,13 or 14,15. For instance the circuitry 16 may analyse the outputs of the photodiodes to determine whether he absolute intensity of transmitted light sensed at one photodiode falls within a predetermined range of values corresponding to the presence of a window 6, and/or whether the absolute intensity of transmitted light sensed at a different photodiode corresponds with the presence of a rung 8. A difference between the outputs of two photodiodes could also be taken, to determine whether the difference falls within a range of predetermined values which indicate the detection of a window/rung combination.
It is of course not necessary to use four sensor pairs 10,12-15. Two sensor pairs could be employed to take ratios and/or differences. Indeed, one or more sensor pairs might be employed if absolute transmissivity is taken as an indication of the presence of a window 6.
It is also to be mentioned that the sensors having outputs to be taken in combination need not be aligned in a parallel fashion, since the transmissivity of the banknote 2 could also be sensed not only in the region of windows 6 but also in any other region of the banknotes 2.
It may be necessary for the operator to move the banknote 2 in relation to the validator 32 before registration of the windows 6, or rungs 3, with the detecting sensors is achieved. In fact, rather than attempting to correctly position the validator 2 directly over the security thread, an operator could instead swipe the validator relative to the banknote in a direction transverse to the security thread 4. Registration will then certainly be achieved during the course of the swipe.
A further embodiment of the invention is illustrated in
In use, a banknote 2 is inserted between the upper and lower arms 36,34 of the validator 40 as shown in FIG. 8. The banknote is inserted such that the security thread 4 registers at least approximately with arrows 50,52 indicating the general location of the sensor pairs 44,48 and 46,50. The activated validator 40 is then swiped relative to the banknote 2 in a direction generally parallel to the security thread 4. The profile of an output generated by photodiode 44 when a valid banknote is swiped through the validator 40, or the validator is swiped across the banknote, is as illustrated in FIG. 9. The output (V) is plotted against time (t). Before any part of the banknote rasses between the sensor pair 44,48 the output is at a high level H. Once the banknote first passes between the sensors, the intensity of transmitted light falls to a low level L. When a windowed region 6 passes between the sensor pair 44,48 the transmissivity of the material increases due to the reduced thickness and/or density of the paper 5 is in the windowed region 6. The output of photodiode 44 then increases to an intermediate level W slightly above the low level L. After passing the first windowed corion 6, the output falls again to the low level L corresponding to the rung region 3, and thereafter the output varies periodically in a regular fashion between the intermediate level W and the low level L as more windows 6 and rungs 8 pass below the photodiode 44.
The sensor pair 46,50 which is displaced from the sensor pair 44,48 in a direction perpendicular to the security thread 4 of a correctly inserted banknote (as shown in
The processing unit 42 could process the output of one or both sensor pairs in a number of different ways. For instance, the circuitry 42 may determine whether the output during activation of the validator 40 reaches a value within a range of allowed values centred on the low level L, and whether the output reaches one of a range or allowed values centred on the intermediate value W. A validation signal could be provided if both those conditions are met. To provide increased certainty, the number of times at which the output enters each, or one of, those ranges of values may be counted as the banknote is swiped through the validator. When a predetermined count is reached, a validation signal would be generated.
The high output signal H may be utiilised in order to calibrate the output of the photodiodes 44,46 which may vary due to various factors such as battery output power and LED efficiency.
The profile illustrated in
A further mode of validation could be provided by using a relatively constant velocity swipe and detecting the leading edge and trailing edge of the banknote 2. The frequency of the detected window portions could then be compared with a predetermined range of frequencies attributed to genuine banknotes.
Other embodiments of the invention might include the utilisation of a linear CCD array and an associated illuminating source, which may be moved across the banknote in any direction and the signals appropriately processed to provide validation signals. To reduce processing requirements, the CCD array could be swiped in a direction either parallel with the security strip 4 or the perpendicular to the security strip 4. When the CCD array is swiped in a direction perpendicular to he security thread 4, or the CCD array is located directly above the windows 6, an array of outputs having a profile as illustrated in
It will be appreciated that any or all of the methods of validation described in relation to the illustrated embodiments may be used singly or in combination. The validator may not need to be intermittently actuable, but may have a simple on/off switch. Furthermore, there are doubtless many other ways of detecting the thread exposure windows 6 in a banknote, or other security document. In fact, in the case of banknotes which have increased thickness and/or density in the region of the rungs 8, it may not be necessary to detect radiation transmitted through windows at all, since validation could be achieved by sensing only the transmissivity of the rung portions and that of the remainder of the banknote. As previously mentioned, mechanical sensing of thickness variations in the area of the window portions of a banknote might also be employed.
Various other modifications or variations could be employed without departing from the scope or spirit of the invention.
Herein, it will be appreciated, at least in relation to the preferred embodiments, the term "window" includes apertures in the security document, and regions of reduced density or thickness in the document. The term "exposed" meanwhile includes the possibility that a transparent or relatively thin layer is present over the security device in the area of a window.
The invention is applicable not only to hand-held banknote validators, but also other human operated devices such as stationarily-mounted swipe-through validators, and automatic banknote validators.
Bernardini, Ronald, Gorczyca, John, Skipper, Phil
Patent | Priority | Assignee | Title |
10344431, | Feb 23 2011 | Crane & Co., Inc.; CRANE SECURITY TECHNOLOGIES, INC.; Crane AB | Security sheet or document having one or more enhanced watermarks |
10346904, | Jan 18 2011 | Innovative Technology Limited | Apparatus and method for generating a dataset for items of currency |
6590641, | Dec 05 2001 | Counterfeit money detector with front hood | |
6782987, | Jun 02 2000 | Billcon Corporation | Paper identification counter and paper identification and counting method |
6938892, | Jun 02 2000 | Billcon Corporation | Paper identification counter and paper identification and counting method |
7305113, | Apr 17 2003 | HITACHI-OMRON TERMINAL SOLUTIONS CORP | Paper-like sheet discriminator |
7487919, | Oct 08 2003 | GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH | System for checking the security features of documents of value |
7650027, | Mar 08 2004 | Council of Scientific & Industrial Research | Fake document including fake currency detector using integrated transmission and reflective spectral response |
7715610, | Jun 25 2002 | CRANE PAYMENT INNOVATIONS, INC | Method and apparatus for processing signals in testing currency items |
7912272, | Mar 08 2004 | Council of Scientific & Industrial Research | Fake document including fake currency detector using integrated transmission and reflective spectral response |
8464875, | Jun 06 2007 | De La Rue International Limited | Apparatus for analysing a security document |
8472676, | Jun 06 2007 | De La Rue International Limited | Apparatus and method for analysing a security document |
8542866, | Oct 14 2004 | GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH | Device and method for the visual representation of measured values |
9708773, | Feb 23 2011 | Crane AB | Security sheet or document having one or more enhanced watermarks |
Patent | Priority | Assignee | Title |
3782543, | |||
4068385, | Jul 15 1975 | G.A.O. Gesellschaft fur Automation und Organisation m.b.H. | Apparatus for measuring thickness differences in record carriers, such as bank notes and the like |
4186943, | Sep 24 1976 | The Governor and Company of the Bank of England | Security devices |
4524276, | Apr 06 1982 | Tokyo Shibaura Denki Kabushiki Kaisha | Apparatus for detecting a security thread embedded in a paper-like material |
4558224, | May 26 1983 | Imperial Inc. | Counterfeit bill warning device |
4650320, | Apr 29 1983 | De La Rue Systems Limited | Detecting luminescent security features |
5388862, | Dec 04 1990 | Portals Limited | Security articles |
5483363, | Sep 10 1990 | De La Rue International Limited | Security device |
5639126, | Jun 06 1995 | CRANE & CO , INC ; Scientific Generics Limited | Machine readable and visually verifiable security threads and security papers employing same |
EP21093, | |||
EP59056, | |||
EP229645, | |||
EP253935, | |||
EP319157, | |||
EP400902, | |||
EP518740, | |||
EP690421, | |||
GB1552853, | |||
GB1604463, | |||
GB2107911, | |||
GB2159268, | |||
GB2221030, | |||
WO9416412, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 14 1999 | Mars Incorporated | (assignment on the face of the patent) | / | |||
Jun 19 2006 | MARS, INCORPORATED | MEI, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017882 | /0715 | |
Jun 19 2006 | MEI, INC | CITIBANK, N A , TOKYO BRANCH | SECURITY AGREEMENT | 017811 | /0716 | |
Jul 01 2007 | CITIBANK, N A , TOKYO BRANCH | CITIBANK JAPAN LTD | CHANGE OF SECURITY AGENT | 019699 | /0342 | |
Aug 22 2013 | MEI, INC | GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT | SECURITY AGREEMENT | 031095 | /0513 | |
Aug 23 2013 | CITIBANK JAPAN LTD | MEI, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 031074 | /0602 | |
Dec 11 2013 | GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT | MEI, INC | RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY COLLATERAL RECORDED AT REEL FRAME 031095 0513 | 031796 | /0123 |
Date | Maintenance Fee Events |
Jan 27 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 29 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 28 2014 | REM: Maintenance Fee Reminder Mailed. |
Aug 20 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 20 2005 | 4 years fee payment window open |
Feb 20 2006 | 6 months grace period start (w surcharge) |
Aug 20 2006 | patent expiry (for year 4) |
Aug 20 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 20 2009 | 8 years fee payment window open |
Feb 20 2010 | 6 months grace period start (w surcharge) |
Aug 20 2010 | patent expiry (for year 8) |
Aug 20 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 20 2013 | 12 years fee payment window open |
Feb 20 2014 | 6 months grace period start (w surcharge) |
Aug 20 2014 | patent expiry (for year 12) |
Aug 20 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |