Described is a distance-measuring device and a method for determining a distance, which uses a sensor in the form of a cavity resonator to continuously perform a distance determination and allows diverse possible uses.
|
2. distance-measuring device with a sensor and an evaluation electronics unit for measuring distance to an object, wherein the sensor has a resonator in the form of a cavity resonator with a resonator housing, the resonator having a first surface for facing the object, a second surface being metallized, and a microstrip line for the in-coupling, the microstrip line being terminated at the resonator housing.
1. distance-measuring device with a sensor and an evaluation electronics unit for measuring distance to an object, wherein the sensor has a resonator in the form of a cavity resonator with a resonator housing, the resonator having a first surface for facing the object, a second surface being metallized, and a coplanar slot coupling with in-coupling line, and the in-coupling line being terminated at the resonator housing.
26. A device for measuring the distance to a conductive object, comprising:
(a) a resonator including a housing and a dielectric for detecting generating an electromagnetic wave in the presence of the conductive object, having a first surface for facing the object for measurement and a second surface being metallized; and (b) an electronics unit attached to resonator and including a substrate adapted to couple electromagnetic waves generated by the resonator.
21. Method for determining a distance to an object, comprising:
(a) providing a sensor and an evaluation electronics unit, the sensor including a cavity resonator with a resonator housing, the resonator having a first surface for facing the object. a second surface being metallized, and a coplanar slot coupling with in-coupling line, the in-coupling line being terminated at the resonator housing; and (b) determining the resonance frequency of the cavity resonator in order to determine the distance to the object.
3. distance-measuring device according to
4. distance-measuring device according to
5. distance-measuring device according to
6. distance-measuring device according to
7. distance-measuring device according to
8. distance-measuring device according to
9. distance-measuring device according to
10. distance-measuring device according to
11. distance-measuring device according to
12. distance-measuring device according to
13. distance-measuring device according to
14. distance-measuring device according to
15. distance-measuring device according to
16. distance-measuring device according to
17. distance-measuring device according to
18. distance-measuring device according to
19. distance-measuring device according to
20. distance-measuring device according to
22. Method according to
23. Method according to
24. Method according to
25. Method according to
27. The device of
28. The device of
29. The device of
30. The device of
31. The device of
33. The device of
34. The device of
35. The device of
|
The present invention relates to a distance-measuring device according to the preamble of claim 1 or 2.
Conventional distance-measuring devices preferably operate in the near range using inductive, capacitive or ultrasonic sensors. For a measurement with inductive sensors, the calibration curve must be established and also the material of an object to be measured must be known. Furthermore, the inductive sensors have a measuring range of, for example, 180°C, so that two sensors located next to each other mutually influence each other and thus the calibration curves of the respective sensors can vary. Moreover, such sensors are available commercially only in embodiments that have a diameter greater than 4 mm (M4).
The disadvantage of a measurement with capacitive sensors is that the distance between the capacitor plates must be known exactly. Furthermore, the measurement is subject to influence by atmospheric humidity, general electromagnetic compatibilities or temperature. In order to be able to perform the measurement independently of those parameters it is necessary, depending on the requirement, to perform a reference measurement by means of which the interfering influence can then be eliminated.
Further known from U.S. Pat. No. 3,522,527 are two cavity resonators with which the distance to corresponding surfaces is measured, the distance and thus the thickness between the two surfaces being determined indirectly by placing the two cavity resonators opposite each other. To perform this measurement, each of the cavity resonators must have a separate sensor, which conventionally is connected to the cavity resonator in a complicated manner and hence is associated with a correspondingly large expense for equipment.
Hence the problem addressed by the present invention is to create a distance-measuring device for determining the distance which overcomes the above-cited disadvantages and allows a continuous determination of distance, easy handling and diverse possible uses.
That problem is solved with the device features of claim 1 or 2.
According to the invention, the sensor has a resonator with a coplanar slot coupling, and specifically in the form of a cavity resonator. With this measure the advantage is achieved that extremely small embodiments, for example <M4, are realizable and the possible uses are increased by a multiple. Owing to the basic geometry of a cavity resonator, small distances between several parallel sensors are possible, because the sensor has a laterally sharply limited measuring range and thus its measuring behavior is not influenced by parallel sensors. As a field of application it is conceivable that the distance-measuring device according to the invention could be used to detect the direction of moving objects or for a space-saving configuration, e.g., by means of parallel configuration.
The sensor according to the invention can also be used as a switch with which changes of the switching point are possible without any redimensioning or modification of the sensor element or addition of other electronic components. That achieves the advantage that the switching point can be adjusted to the specific requirements via software, for example.
The sensor according to the invention is also able to detect approaching conductive or dielectric objects and to measure the distance to the object within the micron range. This type of sensor can be used, for example, as a proximity switch for continuous measurement of the piston travel at the reversal point of pneumatic and hydraulic cylinders, of valve positions or for measurement of the extension of pressure membranes.
According to the invention, the measuring distance for conductive objects does not depend on the object's size if it is assumed that the object is at least as large as the diameter of the cavity resonator. Moreover, a measurement of distance to conductive and dielectric objects is generally possible.
If the sensor is used as a switch, then according to the invention a change of the switching point or a redimensioning or modification of the sensor element can be implemented in a simple manner. Since the switching point is adjustable via software, for example, there is the further advantage that multiple switching points can be input in a simple manner via suitable software, whereby one obtains a substantially more versatile range of uses, e.g., for detecting the sizes of parts, for different configurations of a machine, for detecting rotation angles via cams, etc. In contrast, as mentioned initially, very great effort is required to implement multiple switching points with inductive sensors.
Owing to the measurement method used in the distance-measuring device according to the invention, several switching points can also be connected to one another via a logic circuit, whereupon the measurement method operates continuously. For example, this is advantageous if three switching points are needed for the interrogation of a rotary cylinder.
Owing to its compact construction, one base element is usable in all standard housing types for switching distances of, for example, 0.6, 0.8, 1.0, 1.5, 2.0 or 5 mm, resulting in cost savings and hence reduced logistic requirements.
Alternatively, the distance-measuring device, specifically the resonator, can have a microstrip line for the in-coupling, which is used especially when it is advantageous for the evaluation electronics unit to be offset from the resonator, e.g., for applications in which a high temperature occurs.
Other advantageous embodiments are the subject of other subclaims.
It has turned out to be especially advantageous if the resonator is a radio frequency resonator whose resonance frequency lies between 1 and 100 GHz depending on the object, and preferably between 20 and 30 GHz. For certain applications it is further advantageous to tune the radio frequency resonator with a frequency between 22 and 24 GHz as well as 24 and 26 GHz or any other range, with a bandwidth of preferably 2 GHz or with a bandwidth of approximately 10 percent of the utilized frequency.
If the distance-measuring device according to the invention is equipped with a resonator which has a cylindrical shape and whose base surface facing toward the object is open, i.e., not metallized, then the resonance frequency is not dependent on temperature.
If the cavity resonator according to claim 5 is filled, for example, with a dielectric, preferably Al2O3, then the entire distance-measuring device can be small.
Here it should be pointed out that it is generally advantageous if the measuring range is as large as possible, but that means that the dielectric constant ε should be small. Ideally, that is achieved in that the cavity resonator is unfilled, i.e., contains no dielectric. But a disadvantage of that arrangement is that the cavity resonator then has to be large in order to obtain a large measuring range. But with dielectric the cavity resonator is small for approximatelythe same measuring range. However, it must be made certain that the dielectric constant of the dielectric is not too large (preferably ≦10), since otherwise the losses increase and the range of distances decreases. If a ceramic is used as dielectric, the further advantage is achieved that applications requiring resistance to temperatures of up to 1000°C C. are possible and use for highly dynamic measurements of pressure in internal-combustion engines is possible. Thus the distance device according to the invention is resistant to pressure and hence also usable in hydraulic cylinders, for example.
It has proven advantageous that, according to claim 8, only the surface of the dielectric--with the exception of the base surface facing toward the object--is coated or sputter-coated with a thin layer of gold, so that the temperature function depends only on the temperature coefficient of the ceramic, for example, and not on the housing.
The sensor element consists of a ceramic and a metal housing and can be connected to the evaluation electronics unit via a suitable radiofrequency line, e.g., a waveguide. Because of that, it is possible to use the sensor element for high-temperature applications at up to approximately 1000°C C., e.g., in internal combustion engines.
Independently of the measurement of a distance, the distance-measuring device can also be used advantageously for the measurement of other physical quantities such as pressure, force or mass and of material properties such as the loss factor of dielectric materials. For that purpose, the open side of the cavity resonator is closed with a sample of the material at a fixed distance to it. For a pressure sensor, preferably a piezoelectric ceramic disk would be mounted at distance zero. If a pressure, a force or a mass now acts on the piezoelectric ceramic, then the latter's dielectric constant changes. The change of the dielectric constant results in a shift of the resonance frequency. By determining the resonance frequency with the device features from claim 1 or 2, the pressure, force or mass on the piezoelectric ceramic can be determined.
If, according to claim 10, the dielectric is inserted into a metal housing made preferably of Kovar or titanium, a suitable high-temperature application is conceivable. Then the cavity resonator in the unfilled state has a high measuring accuracy even at high temperatures, and in the filled state the expansion as such is exactly controllable.
If the distance-measuring device according to claim 11, and specifically the resonator, has a coplanar slot coupling on the side facing away from the object, that arrangement ensures that the in-coupling of the resonance frequency can occur simply and at a suitable point.
Depending on the operating mode of the distance-measuring device, the coplanar slot coupling can consist of one coupling slot each for the transmitter and receiver according to claim 12, which are disposed circularly and which corresponds to a transmission mode, or the coplanar slot coupling consists of one coupling slot for the transmitter and receiver, which corresponds to operation in a reflection mode.
If, according to claim 14, the distance-measuring device is operated in the H0np mode, preferably in the H011 mode, then the resonator can oscillate within a large range of resonance frequencies in which no other modes are co-excited, so as to keep the measuring accuracy high. Furthermore, excitation of the H011 mode offers the advantage that then no wall currents flow over the edges between the cylindrical surface and the end surface.
Other advantageous embodiments of the invention are the subject of the other subclaims.
Specific embodiments of the present invention will be illustrated with reference to the appended drawings.
As is shown in
Positioned on the back of the cavity resonator is a substrate 9, e.g., also ceramic, as carrier for the in-coupling mimic. e.g., in the form of a coplanar slot coupling or a microstrip line, and the active components of the evaluation electronics unit and in the form of the radiofrequency electronics unit. The electromagnetic wave is coupled in via this arrangement. This back can also be gold plated and carries the entire radiofrequency electronics unit 11.
Owing to the use of the dielectric 7, the geometric dimensions of the cavity resonator can be reduced while maintaining the same transmit frequency. As is generally known, the resonance frequency fr of a cylindrical Hmnp resonator can be determined from ε, μ, the nth zero of the derivative of the Bessel function of mth order and the diameter D and length L of the cavity resonator. The functional relation between εμ(frD)2 and (D/L)2 can be clearly illustrated in a so-called mode chart as in FIG. 5. From this mode chart it is also relatively easy to identify regions in which no other modes can be propagated. By isolating the resonator end surface from the cylindrical surface, which corresponds to an open resonator with H0np modes, a further mode selection can be made. It has proven to be especially advantageous for the cavity resonator to be designed so that the H0np modes, preferably the H011 mode, can be propagated, since then no wall currents flow over the edges between the cylindrical surface and the end surface. Corresponding to the line of the H011 mode in
The back of the cavity resonator of
With this arrangement the cavity resonator 1 can be operated both in the transmission mode and in the reflection mode. If the cavity resonator 1 is operated in the transmission mode, then the electromagnetic wave is coupled out at a second coupling slot 15 with the already described coplanar out-coupling and in-coupling. In the reflection mode, that output is terminated with 50Ω. As already mentioned above, if the diameter of the dielectric is smaller, then a microstrip line in-coupling can be used advantageously. Also provided on the back is, e.g., an oscillator 19, e.g., a voltage-controlled oscillator (VCO), a detection diode 21 and a frequency divider 23, which are connected to an evaluation electronics unit.
In this manner the resonance frequency in the cavity resonator is measured. Since the resonance frequency in the cavity resonator depends on the distance of the object (see FIG. 5), the distance can be inferred directly from a determination of the resonance frequency. The new resonance frequency is determined by varying the transmit frequency until the resonance frequency and the transmit frequency coincide. At that time, a power dip occurs at the detector diode. Parallel with that, the transmit frequency is determined at the output of the frequency divider 23. The accuracy of the measurement of the distance to the object depends on how quickly and with what accuracy the transmit frequency is determined. Determination of the distance with an accuracy of 1μm at a typical distance of 0.5 mm requires an accuracy of at least 0.5 MHz in the frequency determination at 26 GHz.
The measurement values illustrated in
As can be clearly seen in
The dependence of the distance on the resonance frequency is illustrated in FIG. 5. It is clearly recognizable that a clearer shift of the resonance frequency occurs for smaller distances, which [verb missing] the measuring accuracy especially for objects which are positioned just in front of the cavity resonator. It should be noted that the resonance frequency decreases with increasing distance to the object. In contrast, for dielectric objects the resonance frequency increases with increasing distance to the object. Hence the directional change of the resonance frequency depends on the dielectric constant of the object. According to the invention, this effect can be exploited to measure or determine the physical quantities of pressure, force and mass. For that purpose, the open side of the cavity resonator is preferably closed with a piezoelectric ceramic. If a pressure, force or mass then acts on the piezoelectric ceramic, its dielectric constant changes correspondingly. The change of the dielectric constant shifts the resonance frequency of the cavity resonator. Depending on the dielectric constant, one then moves along the y-axis (x=0) in FIG. 5.
To determine distances within the micron range, one can use another embodiment of the evaluation electronics unit in the distance-measuring device according to the application, which is explained in more detail with reference to the block circuit diagram in FIG. 7.
The main difference compared to the distance determination described above is that the divided-down oscillator frequency is not used directly as the result parameter. Instead, it is used in a frequency and phase control loop, a so-called phase-locked loop (PLL). The setpoint frequency is adjusted via a direct digital synthesizer (DDS) to a frequency which enters the control loop as reference input. If the video signal from the receive branch II satisfies the resonance condition, the resonance frequency and thus the distance to the target is already known in a microcontroller contained in the evaluation electronics unit. By eliminating the measuring time for the oscillator frequency and the use of a resonance sequence algorithm in a microcontroller in the evaluation electronics unit, the cycle time can be clearly shortened and thus the measuring accuracy can be substantially enhanced.
A few possible fields of use of the distance-measuring device according to the application using a radiofrequency proximity sensor shall be described in the following.
A. Detection of Piston Position:
The possible sensor arrangements for interrogating the piston position of a linear cylinder drive with the radiofrequency proximity sensor of the distance-measuring device according to the application are shown in FIG. 8.
A possible sensor arrangement for interrogating the position of a rotary drive with the radiofrequency proximity sensor is shown for a rotary drive in FIG. 9. Because such a radiofrequency proximity switch has an extremely flat construction, several positions can be implemented with the sensor element when there are several switching points. For example, the adjustment can be made with a potentiometer or a teach-in logic.
B. Detection of the Piston Position of a Shock Absorber
The construction of a shock absorber with a built-in radio frequency proximity sensor is illustrated schematically in FIG. 10.
In general, the principle according to the invention can also be applied to valves with moving mechanical parts (see FIG. 11), in which case the valve flow capabilities are controlled by the position change of the mechanical part. Heretofore, position interrogations in the pneumatics field were performed by means of sensors that are sensitive to magnetic fields and react to permanent magnets on the piston or tappet of the valve. But it turns out that for cost-effective solutions only discrete ranges of position can be detected by a sensor that is mounted at a fixed place and is aligned with the positions being detected. In the hydraulics field, a magnetic interrogation has only limited feasibility because of the ferromagnetic materials that are usually used.
C. Pressure Measurement by Detection of the Membrane Excursion
Different pressure measurements, i.e., absolute pressure and relative or differential pressure, are illustrated in FIG. 12. In this special exemplary embodiment, the pressure is determined by detecting the distance to a membrane which is moving toward and away from the RF proximity sensor. In comparison to currently used systems, e.g., piezoresistive strip strain gauges or silicon elements, the device according to the application has the advantage that the sensitive electronics lie outside the pressure transducer.
D. Pressure Measurement by Change of the Dielectric Constant Under Mechanical Loading, Preferably of a Piezoelectric Ceramic
For a pressure measurement at very high pressures, an indirect determination of the pressure via a displacement measurement, e.g., by means of a membrane moving toward and away, is not suitable because of the forces that occur.
In this embodiment, the measurement of the physical quantity "distance" is replaced by the material property "pressure-dependent dielectric constant". Here the cavity resonator filled with dielectric is closed on the open side, preferably with a piezoelectric ceramic (see FIG. 13). The result of this change is that the resonance frequency is shifted. The evaluation of this frequency change and its conversion into the corresponding pressure change is done preferably by the method described in FIG. 3 and FIG. 7.
In this exemplary embodiment, the entire cavity of the resonator can be filled with piezoelectric ceramic (see
A major advantage of this arrangement in comparison to conventional measuring methods with strip strain gauges or capacitive pressure transducers is its high mechanical stability. The piezoelectric ceramic is mechanically completely braced by the resonator, especially when the resonator housing is tapered and the internally supported ceramic provides the necessary stability for high-pressure applications.
Further advantages relative to conventional measuring methods are that the alignment and high precision required for installation in the pressure transducer are eliminated and the sensitive electronics are located outside the pressure transducer.
E. Object Surveying
For the object surveying shown in
F. Liquid-level Sensor or Monitor
The possible application illustrated in
In contrast, if the radiofrequency proximity switch is used externally as a liquid-level switch, the switching function can be used to indicate when the liquid level goes above or below a preset liquid level. This external arrangement can eliminate the need for an expensive integration. The system in
At this point it should be pointed out that the distance-measuring device according to the application can be used not only in the fields indicated above but wherever a distance-measuring device down to the micron range is required.
Patent | Priority | Assignee | Title |
10132922, | Jul 01 2013 | Balluff GmbH | Proximity sensor and method for measuring the distance from an object |
10534077, | Mar 06 2015 | Balluff GmbH | Proximity sensor and method for measuring the distance from an object |
10598777, | Dec 23 2014 | Balluff GmbH | Proximity sensor and method for measuring the distance from a target |
10996045, | May 23 2014 | CRUISE MUNICH GMBH | Distance measuring device, in particular for dielectric and metallic target objects |
11635285, | May 23 2014 | CRUISE MUNICH GMBH | Distance measuring device, in particular for dielectric and metallic target objects |
12078477, | May 20 2021 | FUJIFILM Business Innovation Corp. | Measurement device and image forming apparatus |
6989675, | Mar 13 2003 | MultiMetrixs LLC | Method and apparatus for precision measurement of film thickness |
7092840, | Feb 26 2004 | Honeywell International, Inc. | High temperature resonant transmission line sensor and methods |
7104182, | Jun 07 2002 | FESTO AG & CO KG | Contractile unit having a position sensor means |
7888950, | Jul 06 2007 | Honeywell International Inc. | Structural health monitoring sensor system and method using resonant transmission line sensors |
8085156, | Apr 08 2009 | Rosemount Inc. | RF cavity-based process fluid sensor |
8244494, | Apr 06 2007 | BANK OF AMERICA, N A | Plasma insensitive height sensing |
8373425, | Apr 06 2007 | BANK OF AMERICA, N A | Plasma insensitive height sensing |
Patent | Priority | Assignee | Title |
3522527, | |||
3628136, | |||
4211987, | Nov 30 1977 | Harris Corporation | Cavity excitation utilizing microstrip, strip, or slot line |
4781063, | Oct 01 1984 | Method of measuring orientation of sheet or web like material | |
4845422, | Dec 24 1986 | General Electric Company | Microwave proximity sensor |
4868488, | Nov 27 1987 | Use of a dielectric microwave resonator and sensor circuit for determining the position of a body | |
4890054, | Dec 09 1986 | Dipole Electronics Co., Ltd. | Apparatus and method for measuring physical quantities |
4943778, | Dec 21 1987 | NEW OJI PAPER CO , LTD | Instrument for measuring high frequency characteristics of sheet-like materials |
5023618, | Oct 24 1989 | THALES NEDERLAND B V | FM-CW radar apparatus |
5325095, | Jul 14 1992 | Bechtel Nevada Corporation | Stepped frequency ground penetrating radar |
5504490, | Apr 05 1994 | Thomson-CSF | Radar method and device for the measurement of distance |
5596325, | Jul 07 1995 | Nonlinear Technologies, Inc. | FM-CW radar transceiver |
DE19543179, | |||
DE19833220, | |||
DE4040084, | |||
EP121824, | |||
EP558759, | |||
GB1331525, | |||
JP57197734, | |||
JP7030584, | |||
SU1103098, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 29 2000 | Mikrowellen-Technologie und Sensoren GmbH | (assignment on the face of the patent) | / | |||
Aug 01 2000 | TRUMMER, GUNTHER | MIKROWELLENN-TECHNOLOGIE UND SENSOREN GMBH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011197 | /0132 | |
May 25 2006 | Mikrowellen-Technologie und Sensoren GmbH | ASTYX GmbH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 024804 | /0667 | |
Sep 28 2021 | ASTYX GmbH | CRUISE MUNICH GMBH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 058188 | /0957 |
Date | Maintenance Fee Events |
Mar 22 2006 | REM: Maintenance Fee Reminder Mailed. |
May 17 2006 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
May 17 2006 | M2554: Surcharge for late Payment, Small Entity. |
Jan 20 2010 | ASPN: Payor Number Assigned. |
Mar 02 2010 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Feb 28 2014 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Sep 03 2005 | 4 years fee payment window open |
Mar 03 2006 | 6 months grace period start (w surcharge) |
Sep 03 2006 | patent expiry (for year 4) |
Sep 03 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 03 2009 | 8 years fee payment window open |
Mar 03 2010 | 6 months grace period start (w surcharge) |
Sep 03 2010 | patent expiry (for year 8) |
Sep 03 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 03 2013 | 12 years fee payment window open |
Mar 03 2014 | 6 months grace period start (w surcharge) |
Sep 03 2014 | patent expiry (for year 12) |
Sep 03 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |