A method of operating a disk drive to efficiently recover from an event which interrupts a safe-to-write condition that occurs during a write operation includes receiving a string of data blocks for writing on respective addressable locations on a track of a disk in the disk drive. During a pass of the addressable locations under the read/write head, the head is positioned to follow the track within a tolerance limit and a first write operation is started to write the string of data blocks on the track. During the first write operation, if it is detected that a safe-to-write condition no longer exists, as may be triggered by a shock event, the first write operation is aborted. When it is later determined that the safe-to-write condition is asserted, a second write operation is defined to write a set of addressable locations within the string of data blocks which have yet to pass under the read/write head and the second write operation is performed. By performing the second write operation as soon as possible, the performance of the drive is improved.

Patent
   6445524
Priority
Dec 20 1999
Filed
Dec 20 1999
Issued
Sep 03 2002
Expiry
Dec 20 2019
Assg.orig
Entity
Large
139
1
all paid
1. In a disk drive having a head positioned over a track on a rotating disk, a method of writing a string of data blocks having a starting data block and an ending data block which are required to be written sequentially in respective addressable locations disposed on the track, the respective addressable locations having a leading addressable location corresponding to the starting data block and a trailing addressable location corresponding the ending data block and a pass is defined to be an interval which is initiated by the leading addressable location passing under the head, and terminated by the trailing addressable location passing under the head, the method comprising the steps of
determining if the head is positioned within a safe-to-write window; if the bead is determined to be positioned within a safe-to-write window performing the steps of:
determining that an addressable location which is required to be written has passed under the head during the pass without being written;
determining if another addressable location which is required to be written has yet to pass under the head during the pass; if so then
writing to the other addressable location during the pass.
2. The method of claim 1 wherein the respective addressable location is addressed by a logical block address.
3. The method of claim 1 wherein the method is executed by a disk control microprocessor.
4. The method of claim 1 wherein the safe-to-write window is defined by a safe-to-write signal.
5. The method of claim 1 wherein the addressable location which has passed under the head has a logical block address which is lower in sequence than a logical block address for the addressable location which is written during the pass.

1. Field of the Invention

The present invention relates to disk drives. More particularly, the present invention relates to a method of operating a disk drive for writing to an addressable location after detecting that a head is within a safe-to-write window.

2. Description of the Prior Art

A disk drive has a control system generally comprising an interface microprocessor, which directs the activities of the disk drive, and a servo microprocessor, which controls the position of a read/write head. The interface and servo functions may be embodied in a single microprocessor or in separate microprocessors. A disk controller or formatter circuit automates disk data transfer functions such as reading and writing data sectors under control of the interface microprocessor. An exemplary such disk drive is shown in commonly assigned U.S. Pat. No. 5,965,992 to Goretzki et al which is hereby incorporated by reference.

During a write operation initiated by a host computer, a disk drive receives a sequential series or "string" of data blocks from the host. The string of data blocks is stored in a disk memory buffer for writing to corresponding addressable locations on a data track of a disk. Each addressable location may be a structure on the track known as a data sector, conventionally referenced by a logical block address (LBA). The control system of the disk drive requires that the read/write head be positioned over the track and that the head follow the track to within a tolerance limit during the entire write operation. When the head is positioned within the tolerance limit, the head is said to be within a safe-to-write window. If the head wanders off-track or outside the tolerance limit for whatever reason during a write operation, the head is declared to be outside the safe-to-write window by the control system and the write operation must stop to avoid overwriting data on an adjacent track or tracks. One reason the head may wander off-track is that the drive may have been subjected to a shock impulse. Conventionally, to recover from such a shock event, the disk drive control system will wait until the head is once again following the track within the tolerance limits and the first addressable location corresponding to the string passes under the head on a subsequent revolution of the disk before attempting to re-write the string of data blocks. The control system will therefore wait until the appropriate servo wedge preceding the first data block to be written passes under the head to verify track following within tolerance levels before attempting the write operation again.

It should be understood for this discussion that the disk drive head conventionally comprises an integration of separate read/write elements in a fixed relationship such that the read element provides position information to the servo controller and the servo controller uses the position information to position the head to place the write element on track for writing.

FIG. 1 is a timing diagram of a write operation in a prior art disk drive in the presence of a condition causing the head to wander outside a safe-to-write window. FIG. 1 is divided into an upper and a lower portion. The upper portion illustrates sequences of events occurring during a first pass of the addressable locations under the head, whereas the lower portion thereof illustrates the sequence of events occurring during a second pass of the addressable locations under the head. Bold arrows 102 and 104 indicate the length of time the write operation is pending during the first and second passes respectively. A disk track 150, as shown in FIG. 1, includes a plurality of addressable locations D1-D12 corresponding to a string of logical data blocks D1-D12, received from a host for writing, and embedded servo sectors or "wedges" S1-S3 interspersed there between. The servo wedges are read by the head and used by the control system to determine the head's most recent position on the disk. As the head positioning system is a sampled system, the precise position of the head is unknown until a servo wedge is read and the position information stored therein is processed. As shown in FIG. 1, a disk controller command (Write D1-D12) is issued by a system control microprocessor to cause the head to write data blocks D1 through D12 on the track 150 from a buffer memory. As the media is rotating, the disk controller has an opportunity to write the data blocks D1-D12 during a "pass" of the string of data blocks D1-D12 under the head. The pass is initiated by the addressable location D1 passing under the head. The pass is terminated when the addressable location D12 passes under the head. In the illustration of FIG. 1, the shaded addressable locations have been written, whereas those that are not shaded have yet to be written to disk. During the writing of data block D2, a signal (safe-to-write) asserting a safe-to-write-condition is de-asserted, indicating that it is no longer safe to write to the disk. The safe-to-write signal is a signal that is transmitted by the servo controller and if de-asserted may cause the write operation to be immediately aborted. The safe-to-write signal may be de-asserted for a variety of reasons, and generally indicates a temporary condition that may disappear over time.

A shock event is one such temporary condition. During the shock event, the head may have wandered outside a safe-to-write window, increasing the likelihood that data on adjacent tracks may be inadvertently overwritten. After reading the servo wedge S2 and determining that the head is now back on the desired track or within the tolerance limit, the safe-to-write signal is re-asserted. There is some latency between the reading of the servo wedge S2 and the reassertion of the safe-to-write signal as the head passes over data sector D6, as some processing time is required to determine the position of the head. Although the diagram of FIG. 1 shows the safe-to-write signal being re-asserted immediately following servo wedge S2 for illustration of the concept, actual practice would dictate that the safe-to-write condition be tested repeatedly until some number of servo wedges have been read in succession to verify that the read/write head is staying within the safe-to-write window.

The writing of the data blocks, as shown in the upper portion of FIG. 1, stopped after writing D2. As shown in the lower portion of prior art FIG. 1, the disk drive control system refrains from writing any data blocks until another pass is initiated. In this case, the next pass is labeled as second pass. As whatever event caused the servo controller to de-assert a safe-to-write condition occurred at some indeterminate time prior to servo wedge S1, the servo controller (after the safe-to-write condition is restored at some time after S2 during the first pass) backs up and re-writes the entire string of data blocks D1-D12, as shown in the lower portion of FIG. 1. In practice, the head may be commanded to back up a predetermined number of blocks (as measured from the servo wedge at which it was determined that the head has wandered off-track) before rewriting all or a portion of the string of data blocks, as a precautionary measure. Therefore, according to the prior art disk drive operating method, at least two revolutions of the disk or one revolution plus the time for the complete string of blocks D1-D12 to pass under the head during second pass 104 are necessary to complete the write operation. In this illustration, the summed length of arrowed lines labeled 102 and 104 indicates the relative length of time required to complete the operation.

Original Equipment Manufacturers (OEM's) of disk-drive-containing systems often specify disk drive performance requirements that must be met by disk drive manufacturers. Such requirements often specify the maximum data transfer performance degradation that is allowed as the drives are subjected to and recover from an event (such as a shock impulse) that causes a safe-to-write condition to be terminated. In the case of a shock event, such performance requirements may be met by equipping the drive with costly shock sensors or mechanical shock dampeners, for example. Competitive pressures in the disk drive industry, however, preclude such a course of action. A preferred solution to the problem of efficiently recovering from an off-track condition would not require such added hardware. There is a need, therefore, for methods of operating a disk drive to efficiently recover from events terminating a safe-to-write-condition that do not depend upon costly mechanical hardware or added manufacturing steps.

This invention may be regarded as a method for writing a string of data blocks in a disk drive. The disk drive has a head positioned over a track on a rotating disk. The string of data blocks has a starting data block and an ending data block which are required to be written sequentially in respective addressable locations disposed on the track. The respective addressable locations include a leading addressable location corresponding to the starting data block and a trailing addressable location corresponding the ending data block. With regard to the invention, a pass is defined to be an interval which is initiated by the leading addressable location passing under the head, and terminated by the trailing addressable location passing under the head. The method of the invention comprises the steps of determining if the head is positioned within a safe-to-write window and if the head is determined to be positioned within a safe-to-write window, performing the steps of determining that an addressable location which is required to be written has passed under the head during the pass without being written; determining if another addressable location which is required to be written has yet to pass under the head during the pass; and if so then writing to the other addressable location during the pass.

FIG. 1 is a timing diagram of a write operation of a prior art disk drive in the presence of an event which interrupts a safe-to-write condition.

FIG. 2 is a timing diagram of a write operation of a disk drive according to an embodiment of the present invention as it efficiently recovers from an event which interrupts a safe-to-write condition.

FIG. 3 is a diagram of a disk drive in which the method of the invention is practiced having a head positioned over a track on a rotating disk and having a string of data blocks to be written on the track during a pass of respective addressable locations under a head.

FIG. 4 is a flowchart of the method of the invention for operating a disk drive for writing to an addressable location after detecting that a head is within a safe-to-write window, according to an embodiment of the invention.

Referring to FIG. 3, a disk drive 10 has a head 50 positioned over a track 150 on a rotating disk. A string 70 of data blocks D1-12 is required to be written sequentially on respective addressable locations D1-12 shown on track 150. The string 70 of data blocks D1-D12 has a starting data block D1 and an ending data block D12. A leading addressable location 155 corresponds to starting data block D1 in string 70 while a trailing addressable location 165 corresponds to ending data block D12 in string 70. A pass is defined to be an interval (arrowed dimension PASS in FIG. 3) which is initiated by the leading addressable location 155 passing under the head 50 and which is terminated by the trailing addressable location 165 passing under the head 50.

Referring to FIG. 4, a flow chart of a method for writing a string of data blocks after detecting a safe-to-write condition is shown. The method may be suitably employed in a disk drive such as described in the above-referenced Goretzki patent. The method begins at step S10 where a pass of respective addressable locations as described above is initiated. At step S15, the method determines whether the head is positioned within a safe-to-write window. If the determination is positive (YES branch at S15) then the method proceeds to step S20 to determine if an addressable location which is required to be written has passed under the head during the pass without being written, indicating that a pass interval has occurred. Of so, then the YES branch at step S20 proceeds to step S25 where the method determined if another addressable location which is required to be written is yet to pass under the head during this pass. If so, then the method proceeds to step S25 to write to the other addressable location during this pass.

FIG. 2 illustrates the execution in a timing sense of the above described method of operating a disk drive to efficiently recover from an interruption of a safe-to-write condition that occurs during a write operation. The timing diagram of FIG. 2 may be compared to the prior art sequence of FIG. 1 to illustrate a benefit of the invention. FIG. 2 is divided into an upper and a lower portion. The upper portion illustrates sequences of events occurring during a first pass whereas the lower portion thereof illustrates the sequence of events occurring during a second pass. Bold arrows 202 and 204 represent the length of time the write operation is pending during the first and second passes, respectively. In FIG. 2, the shaded blocks are data blocks that have been written, whereas those blocks that are not shaded have yet to be written to disk. At the outset, a string of data blocks such as string 70 in FIG. 3 are received for writing on track 150. During a first revolution of the disk, the disk control system positions the read/write head to follow the track within a tolerance limit and to start a writing operation to write the string of data blocks D1-Dl2 on the track. During this write operation, it is detected at servo wedge S1 that a safe-to-write condition no longer exists, indicating that the read/write head is positioned outside the tolerance window. Upon detecting the loss of a safe-to-write condition, the servo controller de-asserts the safe-to-write signal and the first write operation is aborted as shown by the termination of disk controller command "Write D1-12."

Thereafter, using the method of the invention, at servo wedge S2 during the first pass, the control system determines that the head is back within the tolerance window for writing. The control system then re-asserts the safe-to-write signal as shown. The method then determines at point 250 for example that the safe-write-signal is asserted and that an addressable location which is required to be written such as any of D3 through D6 has passed under the head without being written. The method then determines that an addressable location, such as D10, which is required to be written has yet to pass under the head during the first pass. The method schedules a disk controller command "Write D1-D12" and after verifying at servo wedge S3 that the safe-to-write signal remains asserted, writes to addressable locations D10-D12.

On a subsequent pass (Second Pass), the control system schedules a disk controller command to write the addressable locations D3-D9 which were not written during the first pass and as a precaution re-writes addressable locations D1-D2 as well. It may be noted that no rotational latency penalty ensues from the rewriting of D1-D2. By observing the summed length of arrowed segments 202 and 204 compared to the corresponding prior art segments in FIG. 1, it can be seen that the method of the invention provides a performance improvement by completing the write operation in a shorter time.

Moreover, this performance improvement does not necessitate additional hardware or manufacturing steps. The method of the invention is preferably stored in a disk drive magnetic media or in ROM and executed from RAM or ROM by a disk microprocessor such as that shown in the aforementioned commonly assigned patent to Goretzki et al.

Codilian, Raffi, Nazarian, Ara W.

Patent Priority Assignee Title
10056920, Nov 03 2015 Western Digital Technologies, Inc. Data storage device encoding and interleaving codewords to improve trellis sequence detection
10063257, Nov 03 2015 Western Digital Technologies, Inc. Data storage device encoding and interleaving codewords to improve trellis sequence detection
10162534, Apr 07 2014 Western Digital Technologies, Inc. Ordering commitment of data from a data cache to nonvolatile memory using ordering commands
10282096, Dec 17 2014 Western Digital Technologies, INC Identification of data with predetermined data pattern
10282130, Jan 27 2014 Western Digital Technologies, Inc. Coherency of data in data relocation
10282371, Dec 02 2014 Western Digital Technologies, INC Object storage device with probabilistic data structure
10365836, Jan 27 2015 Western Digital Technologies, INC Electronic system with declustered data protection by parity based on reliability and method of operation thereof
10554221, Nov 03 2015 Western Digital Technologies, Inc. Data storage device encoding and interleaving codewords to improve trellis sequence detection
10554225, Nov 03 2015 Western Digital Technologies, Inc. Data storage device encoding and interleaving codewords to improve trellis sequence detection
10572358, Sep 08 2014 Western Digital Technologies, INC Data management in RAID environment
10940110, Feb 26 2008 SUNOVION RESPIRATORY DEVELOPMENT INC. Method and system for the treatment of chronic COPD with nebulized anticholinergic administrations
6711628, Feb 22 2002 Western Digital Technologies, Inc. Disk drive aborting a write command before a last target sector reached if an abnormal condition detected and selecting a second command according to a rotational positioning optimization algorithm
6854022, Feb 22 2002 Western Digital Technologies, Inc. Disk drive using rotational position optimization algorithm to facilitate write verify operations
7019934, Dec 22 2004 Panasonic Corporation Optimization of media parameters for adverse operating conditions
7076604, Dec 24 2002 Western Digital Technologies, Inc. Disk drive employing a disk command data structure for tracking a write verify status of a write command
7085086, Apr 17 2003 International Business Machines Corporation Apparatus and method for reducing errors in writing to a storage medium
7120737, Dec 24 2002 Western Digital Technologies, Inc. Disk drive employing a disk command data structure for tracking a write verify status of a write command
8879188, Aug 23 2010 Western Digital Technologies, Inc. Disk drive employing fly height calibration tracks to account for magnetic entropy and thermal decay
8885283, Nov 03 2011 Western Digital Technologies, Inc. Disk drive adjusting write block size based on detected vibration
8891193, May 09 2013 Western Digital Technologies, INC Disk drive calibrating threshold and gain of touchdown sensor
8891341, Mar 11 2013 Western Digital Technologies, INC Energy assisted magnetic recording disk drive using modulated laser light
8902527, Mar 22 2010 Western Digital Technologies, Inc. Systems and methods for improving sequential data rate performance using sorted data zones
8902529, Nov 20 2012 Western Digital Technologies, Inc. Dual frequency crystal oscillator
8908311, Jan 27 2014 Western Digital Technologies, INC Data storage device writing a multi-sector codeword in segments over multiple disk revolutions
8909889, Oct 10 2011 Western Digital Technologies, Inc.; Western Digital Technologies, INC Method and apparatus for servicing host commands by a disk drive
8914625, Jul 31 2009 Western Digital Technologies, INC Automatically configuring a web browser file when booting an operating system from a data storage device
8922939, Apr 02 2013 Western Digital Technologies, Inc. Disk drive generating feed-forward fly height control based on temperature sensitive fly height sensor
8937782, May 07 2012 Western Digital Technologies, Inc. Hard disk drive assembly including a NVSM to store configuration data for controlling disk drive operations
8941941, Feb 28 2013 Western Digital Technologies, Inc. Disk drive calibrating touchdown sensor
8947812, Mar 27 2014 Western Digital Technologies, Inc.; Western Digital Technologies, INC Data storage device comprising equalizer filter and inter-track interference filter
8949521, Apr 10 2013 Western Digital Technologies, INC Actuator prepositioning for disk drive
8953269, Jul 18 2014 Western Digital Technologies, INC Management of data objects in a data object zone
8953277, Jun 16 2014 Western Digital Technologies, INC Data storage device writing tracks on a disk with equal spacing
8954664, Oct 01 2010 Western Digital Technologies, INC Writing metadata files on a disk
8958167, Dec 23 2013 Western Digital Technologies, INC Detection of disk surface irregularities in data storage devices
8959281, Nov 09 2012 Western Digital Technologies, Inc.; Western Digital Technologies, INC Data management for a storage device
8970978, Oct 22 2012 Western Digital Technologies, Inc. Disk drive detecting head touchdown by applying DC+AC control signal to fly height actuator
8976633, Apr 15 2014 Western Digital Technologies, INC Data storage device calibrating fly height actuator based on laser power for heat assisted magnetic recording
8988809, Feb 18 2014 Western Digital Technologies, INC Disk recording device for writing a radially coherent reference band by measuring relative timing offsets of reference bursts
8988810, Apr 16 2014 Western Digital Technologies, INC Track measurement for data storage device
8990493, Jun 30 2011 Western Digital Technologies, INC Method and apparatus for performing force unit access writes on a disk
8996839, Jan 23 2012 Western Digital Technologies, INC Data storage device aligning partition to boundary of sector when partition offset correlates with offset of write commands
9001453, Jul 18 2014 Western Digital Technologies, INC Data storage device calibrating fly height actuator based on read mode touchdown resistance of touchdown sensor
9009358, Sep 23 2008 Western Digital Technologies, Inc.; Western Digital Technologies, INC Configuring a data storage device with a parameter file interlocked with configuration code
9013818, Dec 06 2013 Western Digital Technologies, INC Disk drive measuring reader/writer gap by measuring fractional clock cycle over disk radius
9013821, Jun 10 2014 Western Digital Technologies, INC Data storage device employing one-dimensional and two-dimensional channels
9021410, Dec 10 2013 Western Digital Technologies, INC Electronic system with multi-cycle simulation coverage mechanism and method of operation thereof
9025267, Jun 09 2014 Western Digital Technologies, INC Data storage device using branch metric from adjacent track to compensate for inter-track interference
9025270, Sep 17 2013 WESTERN DIGITIAL TECHNOLOGIES, INC Electronic system with current conservation mechanism and method of operation thereof
9025421, Oct 08 2014 Western Digital Technologies, INC Data storage device adjusting laser input power to compensate for temperature variations
9047917, Nov 26 2013 Western Digital Technologies, INC Disk drive slider with sense amplifier for coupling to a preamp through a supply/bias line and a read signal line
9049471, Oct 17 2001 Keen Personal Media, Inc. Personal video recorder for inserting a stored advertisement into a displayed broadcast stream
9053730, May 11 2012 Western Digital Technologies, Inc. Disk drive comprising extended range head proximity sensor
9053749, Mar 15 2013 Western Digital Technologies, INC Disk drive comprising a per-drive and per-head fly height filter
9060420, Nov 01 2007 Western Digitial Technologies, Inc. Method of manufacturing a double sided flex circuit for a disk drive wherein a first side lead provides an etching mask for a second side lead
9063838, Jan 23 2012 Western Digital Technologies, INC Data storage device shifting data chunks of alignment zone relative to sector boundaries
9064504, Jan 29 2014 Western Digital Technologies, INC Electronic system with media recovery mechanism and method of operation thereof
9064525, Nov 26 2013 Western Digital Technologies, INC Disk drive comprising laser transmission line optimized for heat assisted magnetic recording
9064542, Apr 08 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Scheduled load of heads to reduce lubricant migration on pole tip and decrease time to ready
9070406, Mar 10 2014 Western Digital Technologies, INC Disk drive configuring one-dimensional and two-dimensional recording areas based on read element spacing
9074941, Mar 14 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Systems and methods for measuring ambient and laser temperature in heat assisted magnetic recording
9075714, May 13 2014 Western Digital Technologies, INC Electronic system with data management mechanism and method of operation thereof
9076474, Dec 23 2014 Western Digital Technologies, INC Data storage device attenuating thermal decay effect on fly height measurement
9082458, Mar 10 2014 Western Digital Technologies, Inc. Data storage device balancing and maximizing quality metric when configuring arial density of each disk surface
9099103, Oct 21 2014 Western Digital Technologies, INC Heat assisted magnetic recording withinterlaced high-power heated and low-power heated tracks
9099134, Jan 27 2015 Western Digital Technologies, INC Data storage device employing multiple jog profiles for a butterfly written disk surface
9099144, Oct 11 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Disk drive evaluating laser performance for heat assisted magnetic recording
9117463, Jun 23 2014 Western Digital Technologies, INC Data storage device erasing multiple adjacent data tracks to recover from inter-track interference
9117479, Sep 24 2014 Western Digital Technologies, INC Data storage device calibrating laser write power for heat assisted magnetic recording
9117489, Feb 18 2014 Western Digital Technologies, INC Data storage device screening heads by verifying defects after defect scan
9123370, Apr 15 2014 Western Digital Technologies, INC Data storage device calibrating fly height actuator based on laser power for heat assisted magnetic recording
9123382, Oct 28 2014 Western Digital Technologies, INC Non-volatile caching for sequence of data
9128820, Jun 18 2012 Western Digital Technologies, Inc.; Western Digital Technologies, INC File management among different zones of storage media
9129628, Oct 23 2014 Western Digital Technologies, INC Data management for data storage device with different track density regions
9135205, May 01 2013 Western Digital Technologies, Inc. Data storage assembly for archive cold storage
9153266, Sep 11 2014 Western Digital Technologies, INC Data storage device measuring laser protrusion fly height profile
9153287, May 13 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Data access for shingled magnetic recording media
9158722, Nov 02 2011 Western Digital Technologies, Inc. Data storage device to communicate with a host in a SATA or a USB mode
9164694, Jun 19 2013 Western Digital Technologies, INC Data storage device detecting read-before-write conditions and returning configurable return data
9171575, Jun 23 2014 Western Digital Technologies, INC Data storage device detecting media defects by writing opposite polarity test pattern
9183864, Jun 13 2013 Western Digital Technologies, INC Disk drive adjusting closed-loop fly height target based on change in open-loop fly height control signal
9183877, Mar 20 2015 Western Digital Technologies, INC Data storage device comprising two-dimensional data dependent noise whitening filters for two-dimensional recording
9189392, Jun 30 2011 Western Digital Technologies, INC Opportunistic defragmentation during garbage collection
9196302, Mar 18 2015 Western Digital Technologies, INC Electronic system with media maintenance mechanism and method of operation thereof
9213493, Dec 16 2011 Western Digital Technologies, INC Sorted serpentine mapping for storage drives
9214186, Mar 23 2015 Western Digital Technologies, INC Data storage device measuring radial offset between read element and write element
9230585, Jan 31 2014 Western Digital Technologies, Inc. Per wedge preheat DFH to improve data storage device performance
9230605, Dec 01 2014 Western Digital Technologies, INC Data storage device maximizing areal density based on a target quality metric
9236086, Oct 15 2014 Western Digital Technologies, INC Methods for reducing operational latency of data storage systems
9245556, Mar 10 2014 Western Digital Technologies, INC Disk drive employing multiple read elements to increase radial band for two-dimensional magnetic recording
9245558, May 09 2014 Western Digital Technologies, INC Electronic system with data management mechanism and method of operation thereof
9251844, Jun 02 2014 Western Digital Technologies, INC Waterfall method and apparatus for a data storage device read system
9251856, May 30 2014 Western Digital Technologies, INC Read failover method and apparatus for a data storage system
9257143, Dec 23 2014 Western Digital Technologies, INC Precautionary measures for data storage device environmental conditions
9257145, Nov 27 2013 Western Digital Technologies, INC Disk drive measuring down-track spacing of read sensors
9257146, Feb 11 2014 Western Digital Technologies, INC Data storage device comprising sequence detector compensating for inter-track interference
9263088, Mar 21 2014 Western Digital Technologies, INC Data management for a data storage device using a last resort zone
9268499, Aug 13 2010 Western Digital Technologies, Inc. Hybrid drive migrating high workload data from disk to non-volatile semiconductor memory
9268649, Jun 23 2011 Western Digital Technologies, INC Disk drive with recent write streams list for data refresh determination
9269393, Dec 08 2014 Western Digital Technologies, INC Electronic system with data refresh mechanism and method of operation thereof
9281009, Dec 18 2014 Western Digital Technologies, INC Data storage device employing variable size interleave written track segments
9299371, Nov 26 2013 Western Digital Technologies, Inc. Disk drive slider with sense amplifier for coupling to a preamp through a supply/bias line and a read signal line
9311939, Dec 23 2014 Western Digital Technologies, INC Write-through media caching
9318137, Mar 13 2015 Western Digital Technologies, INC Data storage device executing retry operation by buffering signal samples at different radial offsets
9330715, May 14 2013 Western Digital Technologies, Inc.; Western Digital Technologies, INC Mapping of shingled magnetic recording media
9355666, Sep 30 2013 Western Digital Technologies, INC Disk drive measuring stroke difference between heads by detecting a difference between ramp contact
9361938, Apr 16 2015 Western Digital Technologies, INC Disk defect management for a data storage device
9368131, Apr 03 2015 Western Digital Technologies, INC Data storage device employing mirrored cross-track profiles for top and bottom disk surfaces
9368132, Sep 04 2015 Western Digital Technologies, Inc. Data storage device employing differential write data signal and differential write pattern signal
9383923, Oct 18 2012 Western Digital Technologies, INC Write pointer management for a disk drive
9384774, Mar 23 2015 Western Digital Technologies, INC Data storage device calibrating a laser power for heat assisted magnetic recording based on slope of quality metric
9401165, May 05 2014 Western Digital Technologies, INC Method and system to monitor magnetic head loading and unloading stability for a data storage system
9417628, Mar 13 2013 Western Digital Technologies, INC Production failure analysis system
9424864, Jul 02 2014 Western Digital Technologies, INC Data management for a data storage device with zone relocation
9437242, Sep 14 2015 Western Digital Technologies, Inc. Data storage device employing different frequency preambles in adjacent data tracks
9466318, Dec 24 2014 Western Digital Technologies, Inc. Allowing fast data zone switches on data storage devices
9466321, Jun 05 2015 Western Digital Technologies, INC Angular position tracking of data accesses to mitigate risk of data loss
9472219, May 01 2015 Western Digital Technologies, INC Data storage device calibrating parameter for heat assisted magnetic recording
9477681, Jun 18 2012 Western Digital Technologies, Inc. File management among different zones of storage media
9501393, Jan 27 2014 Western Digital Technologies, INC Data storage system garbage collection based on at least one attribute
9502068, Apr 08 2015 Western Digital Technologies, INC Data storage device updating laser power during non-write mode for heat assisted magnetic recording
9588898, Jun 02 2015 Western Digital Technologies, INC Fullness control for media-based cache operating in a steady state
9600205, Sep 22 2014 Western Digital Technologies, INC Power aware power safe write buffer
9632711, Apr 07 2014 Western Digital Technologies, INC Processing flush requests by utilizing storage system write notifications
9639287, Jun 29 2015 Western Digital Technologies, INC Write command reporting
9645752, Apr 07 2014 Western Digital Technologies, INC Identification of data committed to non-volatile memory by use of notification commands
9672107, Feb 11 2015 Western Digital Technologies, INC Data protection for a data storage device
9747928, Sep 25 2014 Western Digital Technologies, INC Data storage device modifying write operation when a laser mode hop is detected
9761273, Nov 03 2015 Western Digital Technologies, Inc. Data storage device encoding and interleaving codewords to improve trellis sequence detection
9842617, Jun 29 2015 Western Digital Technologies, INC Electronic system with head management mechanism and method of operation thereof
9842622, Dec 23 2014 Western Digital Technologies, INC Data storage device having improved read failure tolerance
9864529, Jan 27 2014 Western Digital Technologies, INC Host compatibility for host managed storage media
9870281, Mar 20 2015 Western Digital Technologies, INC Power loss mitigation for data storage device
9875055, Aug 04 2014 Western Digital Technologies, INC Check-pointing of metadata
9916616, Mar 31 2014 Western Digital Technologies, INC Inventory management system using incremental capacity formats
9933955, Mar 05 2015 Western Digital Technologies, INC Power safe write buffer for data storage device
9952950, Sep 08 2014 Western Digital Technologies, INC Data management in RAID environment
9959052, Sep 17 2015 Western Digital Technologies, Inc. Media based cache for data storage device
9972344, Sep 25 2014 Western Digital Technologies, Inc. Data storage device modifying write operation when a laser mode hop is detected
Patent Priority Assignee Title
5477525, Sep 03 1992 Sony Corporation Data destruction preventing method, recording apparatus provided with data destruction preventing capability, and disc recorded with guard band
//////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 15 1999NAZARIAN, ARA W Western Digital CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0104820129 pdf
Dec 15 1999CODILIAN, RAFFIWestern Digital CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0104820129 pdf
Dec 20 1999Western Digital Technologies, Inc.(assignment on the face of the patent)
Sep 20 2000Western Digital CorporationGeneral Electric Capital CorporationSECURITY AGREEMENT0111700948 pdf
Apr 06 2001Western Digital CorporationWestern Digital Technologies, INCAMENDED AND RESTATED CERTIFICATE OF INCORPORATION OF WESTERN DIGITAL CORP 0119670481 pdf
Aug 09 2007GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENTWestern Digital Technologies, INCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0215020451 pdf
May 12 2016Western Digital Technologies, INCU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY AGREEMENT0387440281 pdf
May 12 2016Western Digital Technologies, INCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY AGREEMENT0387220229 pdf
Feb 27 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTWestern Digital Technologies, INCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0455010714 pdf
Feb 03 2022JPMORGAN CHASE BANK, N A Western Digital Technologies, INCRELEASE OF SECURITY INTEREST AT REEL 038744 FRAME 04810589820556 pdf
Date Maintenance Fee Events
Feb 15 2006M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 25 2010M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Apr 11 2014REM: Maintenance Fee Reminder Mailed.
Jul 23 2014M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jul 23 2014M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.


Date Maintenance Schedule
Sep 03 20054 years fee payment window open
Mar 03 20066 months grace period start (w surcharge)
Sep 03 2006patent expiry (for year 4)
Sep 03 20082 years to revive unintentionally abandoned end. (for year 4)
Sep 03 20098 years fee payment window open
Mar 03 20106 months grace period start (w surcharge)
Sep 03 2010patent expiry (for year 8)
Sep 03 20122 years to revive unintentionally abandoned end. (for year 8)
Sep 03 201312 years fee payment window open
Mar 03 20146 months grace period start (w surcharge)
Sep 03 2014patent expiry (for year 12)
Sep 03 20162 years to revive unintentionally abandoned end. (for year 12)