A machine for grinding cylindrical bearing surfaces on parts, in particular journals and/or crank pins on crankshafts, using an abrasive belt, includes a support on which three abrasive belt clamping members are mounted in a triangle and mobile in directions that converge toward the axis of the bearing surface to be ground. Each clamping member carries at least one applicator shoe conformed to press the abrasive belt against the bearing surface along a surface essentially limited to a generatrix parallel to the axis of the bearing surface. The shoe is preferably made from an elastomer having a shore hardness at most equal to 100 and has a cylindrically curved applicator surface with a radius of curvature less than the radius of curvature of the bearing surface.
|
1. A machine for superfinishing an at least substantially cylindrical bearing surface having an axis of rotation on a workpiece, comprising an abrasive belt and three abrasive belt clamping members mounted in a triangle around said bearing surface and movable in directions that converge on the axis of rotation of said bearing surface, wherein each of said three clamping members has a surface facing said bearing surface and carries two applicator shoes rigidly fastened to the clamping member so as to project from said clamping member surface toward said bearing surface, said two shoes being spaced from each other in the circumferential direction of said bearing surface, each of the six shoes thus provided having a cylindrically curved abrasive belt applicator surface to press said abrasive belt against said bearing surface along a surface substantially limited to a generatrix parallel to said axis of said bearing surface.
9. A machine for superfinishing an at least substantially cylindrical bearing surface having an axis of rotation on a cast iron crankshaft, comprising an abrasive belt and three abrasive belt clamping members mounted in a triangle and movable in directions that converge on the axis of rotation of the bearing surface to be superfinished, wherein each clamping member has a surface facing said bearing surface and carries two applicator shoes made from an elastomer having a shore hardness of not more than 100, rigidly fastened to the clamping member so as to project from said clamping member surface toward said bearing surface, said two shoes being spaced from each other in the circumferential direction of said bearing surface, each of the six shoes thus provided having a cylindrically curved abrasive belt applicator surface, the radius of curvature of said applicator surface being less than half the radius of curvature of said bearing surface, to press said abrasive belt against said bearing surface along a surface substantially limited to a generatrix parallel to said axis of said bearing surface.
2. The machine claimed in
3. The machine claimed in
4. The machine claimed in
5. The machine claimed in
6. The machine claimed in
7. The machine claimed in
8. The machine claimed in
10. The machine claimed in
11. The machine claimed in
12. The machine claimed in
13. The machine claimed in
|
1. Field of the Invention
The present invention relates to a machine for grinding cylindrical bearing surfaces on parts, in particular journals and crank pins on crankshafts, using an abrasive belt, the machine including a support on which three abrasive belt clamping members are mounted in a triangle so that they can move in directions that intersect on the axis of the bearing surface to be ground.
2. Description of the Prior Art
Superfinishing machines of the above type are known in the art, for example from the documents FR-A-2 634 877, U.S. Pat. No. 5,522,762 and U.S. Pat. No. 5,651,719. As described in the above documents, the abrasive belt clamping members carry abrasive belt applicator shoes in the form of jaws which can be very hard and subtend a larger or smaller circumferential angle, which in particular makes it possible to correct any shape defects caused by preceding grinding operations. On the other hand, the clamping members with their dedicated applicator shoes are designed for a very specific diameter, which means that a machine equipped with these clamping members can be used only to grind specific parts, for example crankshafts of one design of engine. However, for reasons of flexibility, it would be desirable to be able to use the same machine to grind crankshafts for several designs of the same type of engine, for example, or even crankshafts for different types of engine, in particular engines in which the journals and/or crank pins may have different diameters.
The problem stated above in connection with the diameter of the bearing surfaces to be ground can also arise in connection with the width of the bearing surfaces.
What is more, the prior art machines are not entirely satisfactory for grinding bearing surfaces of cast iron crankshafts because the applicator shoes used in these machines are not able to detach graphite nodules from the bearing surfaces because of their hardness and their circumferential angles of contact with the bearing surfaces.
The present invention relates to an abrasive belt grinding machine that is distinguished by a very high degree of flexibility in relation to the diameter of the bearing surfaces that can be ground using the same abrasive belt clamping members. The invention also relates to an abrasive belt grinding machine that is distinguished by a very high degree of flexibility in relation to the width of the bearing surfaces that can be ground using the same abrasive belt clamping members and the same abrasive belts. The invention also relates to an abrasive belt grinding machine which is distinguished by improved efficiency in grinding cast iron crankshaft bearing surfaces.
The invention provides a machine for grinding cylindrical bearing surfaces on parts, in particular journals and/or crank pins on crankshafts, using an abrasive belt, including three abrasive belt clamping members mounted in a triangle and mobile in directions that converge toward the axis of the bearing surface to be ground, wherein each clamping member carries at least one applicator shoe conformed to press the abrasive belt against the bearing surface along a surface essentially limited to a generatrix parallel to the axis of the bearing surface.
The shoe can advantageously have a cylindrically curved applicator surface, preferably with a radius of curvature less than the radius of curvature of the bearing surface and more particularly less than half the radius of curvature of the bearing surface.
Each abrasive belt clamping member can advantageously carry two applicator shoes spaced in the circumferential direction, preferably by a distance that substantially corresponds to the distance between the successive shoes of two consecutive clamping members, for the average of the extreme diameters of bearing surfaces that can be ground on the same machine.
Each shoe is preferably made of a material such as an elastomer having a Shore hardness less than or equal to 100.
If the bearing surface has been rough-ground with a curvature that must be conserved on superfinishing, it is possible for each abrasive belt applicator shoe to have, along the axis of the bearing surface to be ground, two end parts of higher hardness on respective opposite sides of an intermediate part of lower hardness. For example, the end parts can have a Shore hardness of the order of 95 and the intermediary part a Shore hardness of the order of 65.
To be able to machine bearing surfaces with different widths on the same machine without having to change the abrasive belt, the clamping members and the applicator shoes mounted on those members, it is advantageous to make the length of the shoes and the width of the abrasive belt less than the width of the narrowest bearing surface and to cause the support on which the abrasive belt clamping members are mounted to oscillate at a low speed during the grinding of the bearing surface and over a greater or lesser stroke, which is manifested in the form of a tacking movement of the abrasive belt relative to the bearing surface of the part which is driven in rotation in the usual way. This tacking movement imparted to the abrasive belt is independent of the oscillatory movement at high speed and over a relatively small stroke usually imparted to the part during superfinishing.
One illustrative and non-limiting embodiment of a grinding machine according to the invention is described in more detail hereinafter with reference to the appended drawings.
The surface 6 of each clamping member 1 facing toward the bearing surface 4.1 to be ground carries two shoes 7 parallel to the axis 3, each consisting of a cylindrical round member whose axis is parallel to the axis 3 of the bearing surface and whose diameter is less than the diameter of the bearing surface 4.1. The two shoes 7 of each member 1 are spaced from each other in the circumferential direction by an angular distance e1 slightly greater than the angular distance f1 between the two consecutive shoes of two successive members 1 whose shoes 7 press the abrasive belt 5 against the bearing surface 4.1.
Note that each shoe 7 fastened to the member 1 is in this example force-fitted into a housing 8 consisting of a hole formed in the member 1 so that a cylindrical segment of the shoe 7 subtending an angle of 120°C, for example, projects from the surface 6 of the member 1.
Each shoe 7 is advantageously made from a material having a Shore hardness of less than 100, for example an elastomer such as the COURBHANE elastomer from COURBIS SYNTHESE, F-26100 ROMANS SUR ISERE.
The diameter of the shoes 7 is chosen as a function of the diameter of the bearing surfaces 4 to be ground so that the shoes are in contact with the bearing surface, through the abrasive belt 5, along contact surfaces which are limited more or less to generatrices of the bearing surface.
Given the limited hardness of the material of the shoes and the shape of the shoes, because of which the contact of the belt with the bearing surface at the location of each shoe is essentially limited to a generatrix of the bearing surface, the shoes enable the abrasive belt 5 to "penetrate" into the material of the bearing surface and, in the case of cast iron crankshaft bearing surfaces, detach graphite nodules from the bearing surface.
Because each clamping member 1 carries two shoes 7 with a cylindrical applicator surface whose diameter is small compared to the diameter of the bearing surfaces to be ground, it is possible to grind bearing surfaces 4 with different diameters using the same clamping members 1 carrying the same shoes 7, as is apparent on comparing
In
The distance f on each member 1 is preferably chosen to correspond substantially to the distance e for the average of the extreme diameters of the bearing surfaces 4 that can be ground on the same machine with the same clamping members 1 equipped with the same shoes 7.
Referring to
Referring to
It should be noted that the machine according to the invention, instead of including two shoes 7 in the form of round members on each of the three clamping members 1 participating in the grinding of a bearing surface 4, could equally well be equipped, for example, with a single shoe 7 on each clamping member 1, although this would reduce to three the number of generatrices of contact of the abrasive belt 5 with the bearing surface 4. It would equally be possible to provide three shoes 7 on each clamping member 1, which would increase the number of generatrices of contact of the belt 5 with the bearing surface 4, but would eliminate the flexibility of the machine, i.e. the facility to adapt it to bearing surfaces with different diameters without modifying the clamping members 1 and the shoes 7. Furthermore, there is in theory nothing to oppose replacing the shoes 7 in the form of round members on the three clamping members 1, bringing about "linear" contact along generatrices, with shoes in the form of jaws, having an applicator surface conformed for a bearing surface of particular diameter, although this would also be to the detriment of the flexibility of the machine.
Bonachera, Richard, Millot, Raymond
Patent | Priority | Assignee | Title |
10046431, | Sep 21 2011 | HANGZHOU XIANGSHENG ABRASIVE MACHINE MANUFACTURING CO , LTD | Deburring machine abrasive belt, chamfering-deburring machine that deburrs twice per rotation, and deburring method |
10207383, | Jul 25 2014 | SUPFINA GRIESHABER GMBH & CO KG | Finishing device |
8517804, | Oct 16 2007 | Nagel Maschinen- und Werkzeugfabrik GmbH | Pressing device for cutting means and apparatus and method for finishing circumferential surfaces on cylindrical parts of a workpiece |
9221146, | Oct 01 2012 | Supfina Grieshaber GmbH & Co. KG | Belt finishing device, belt finishing system and method for producing a belt finishing device |
Patent | Priority | Assignee | Title |
4993191, | Apr 28 1999 | Industrial Metal Products Corporation | Roller cam microfinishing tooling |
5058325, | Sep 27 1988 | Societe Procedes Machines Speciales, S.P.M.S. | Machine for the abrasive machining of cylindrical journals on components, in particular for machining journals and crank pins on crankshafts using abrasive material |
5522762, | Mar 18 1993 | SOCIETE PROCEDES MACHINES SPECIALES S P M S | Tool for applying surface coated abrasives for use on a machine for abrasion machining of cylindrical surfaces on workpieces |
5651719, | May 04 1994 | Societe Procedes Machines Speciales S.P.M.S. | Tooling for abrasive belt machining of cylindrical bearing surfaces with provision for monitoring bearing surface diameter |
5683291, | Jul 29 1994 | MASCHINENBAU GRIESHABER GMBH & CO | Device for surface machining of workpieces |
5984767, | Jan 30 1998 | Societe des Procedes et Machines Speciales | Assembly using an abrasive strip to machine a cylindrical bearing surface of a workpiece |
FR2719516, | |||
FR2758756, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 26 2001 | BONACHERA, RICHARD | Societe des Procedes et Machines Speciales | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011781 | /0542 | |
Apr 26 2001 | MILLOT, RAYMOND | Societe des Procedes et Machines Speciales | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011781 | /0542 | |
May 04 2001 | Societe des Procedes et Machines Speciales | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 23 2006 | LTOS: Pat Holder Claims Small Entity Status. |
Feb 23 2006 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
May 03 2010 | REM: Maintenance Fee Reminder Mailed. |
Sep 24 2010 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 24 2005 | 4 years fee payment window open |
Mar 24 2006 | 6 months grace period start (w surcharge) |
Sep 24 2006 | patent expiry (for year 4) |
Sep 24 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 24 2009 | 8 years fee payment window open |
Mar 24 2010 | 6 months grace period start (w surcharge) |
Sep 24 2010 | patent expiry (for year 8) |
Sep 24 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 24 2013 | 12 years fee payment window open |
Mar 24 2014 | 6 months grace period start (w surcharge) |
Sep 24 2014 | patent expiry (for year 12) |
Sep 24 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |