A heat dissipating device includes: a barrel having a plurality of fins formed on the barrel and having a buckle for fastening the barrel to a base board of a central processing unit (CPU) to conduct heat from CPU towards the barrel; a cooling fan contiguous to the fins and the barrel for cooling the fins and the barrel; a vaporizable coolant filled in the barrel; a guiding device provided in the barrel for guiding and ejecting the vapor as vaporized from a liquid coolant when absorbing the heat from CPU towards a cooled inside wall of the barrel to be condensed as a liquid coolant; and a capillary device formed on the inside wall for capillarily osmetically draining the liquid coolant towards a bottom of the barrel for enhancing a liquid-vapor two phase recirculation of the coolant for efficiently dissipating heat from the CPU.
|
1. A heat dissipating means for cooling central processing unit comprising:
a barrel having a bottom wall contiguous to and thermally conductive with a central processing unit (CPU), and having an end cover distal from said bottom wall for capping a side wall circumferentially formed on said bottom wall for confining a chamber among said bottom wall, said side wall and said end cover of said barrel; a plurality of fins formed on said barrel; a cooling fan contiguous to said fins and said barrel for driving a cooling air for cooling said barrel and said fins; a vaporizable coolant filled into said barrel as evacuated to form vacuum in said chamber; a guiding means provided in said chamber in said barrel for guiding vapor of the coolant as vaporized when absorbing heat from the CPU towards an inside wall of said barrel to be cooled and condensed as a liquid coolant; and a capillary means formed on the inside wall in said barrel for capillarily osmetically draining the liquid coolant as condensed on the inside wall of the barrel towards the bottom wall for automatically recirculatively completing liquid-vapor two phase change of the coolant for efficiently dissipating heat from the CPU; said guiding means including: a hood portion retained to the bottom wall of the barrel having a plurality of inlet holes formed in a bottom portion of the hood portion to drain a liquid coolant from the side wall into the hood portion through the inlet holes; and a nozzle tapered from the hood portion towards the end cover having a plurality of perforations formed in the nozzle for guiding vapor, which is vaporized from the liquid coolant in the hood portion when heated by heat transferred from CPU, towards the end cover and the side wall of the barrel to be cooled and condensed at the inside wall of the end cover and the side wall of the barrel.
2. A heat dissipating means according to
3. A heat dissipating means according to
4. A heat dissipating means according to
|
This application is a continuation-in-part (C-I-P) of the U.S. Patent application entitled "Self-recirculated Heat Dissipating Means for Cooling Central Processing Unit" (hereinafter defined as "Prior Application") filed on: Nov. 24, 2000 by the same inventor of this application.
The prior application disclosed a heat dissipating device for cooling central processing unit (CPU) by filling a vaporizable coolant in a barrel having fins and cooling fan provided on the barrel; whereby upon absorption of heat from CPU, the coolant will absorb heat of vaporization to become vapor which is then contacted with the barrel wall as cooled by the fan to be condensed as a liquid coolant for completing a liquid-vapor two phase recirculation for dissipating the heat from CPU.
However, the prior application did not disclose any capillary device for capillarily draining the condensed liquid coolant into the bottom portion of the barrel, thereby influencing the heat dissipating efficiency for removing heat from the CPU.
The present inventor has found the drawback of the prior application and invented the present heat dissipating means for guidably recirculating the coolant for increasing the heat dissipating efficiency for cooling CPU.
The object of the present invention is to provide a heat dissipating device including: a barrel having a plurality of fins formed on the barrel and having a buckle for fastening the barrel to a base board of a central processing unit (CPU) to conduct heat from CPU towards the barrel; a cooling fan contiguous to the fins and the barrel for cooling the fins and the barrel; a vaporizable coolant filled in the barrel; a guiding device provided in the barrel for guiding and ejecting the vapor as vaporized from a liquid coolant when absorbing the heat from CPU towards a cooled inside wall of the barrel to be condensed as a liquid coolant; and a capillary device formed on the inside wall for capillarily osmetically draining the liquid coolant towards a bottom of the barrel for enhancing a liquid-vapor two phase recirculation of the coolant for efficiently dissipating heat from the CPU.
As shown in
The barrel 1 defines a longitudinal axis Y at a longitudinal center of the barrel 1 to be perpendicular to a horizontal axis X (FIG. 3). The barrel 1 may be comprehensively referred to a hollow body, a container, a casing, a tube or the like.
The barrel 1, and the fins 2 should be made of heat conductive materials, for example, aluminum alloys. The barrel 1 may be formed as cylindrical or tubular shape, but not limited in the present invention.
The barrel 1 includes: a bottom wall 12 closely connected, fastened or adhered with the base board B of CPU (C) by thermally conductive adhesive A; a side wall 11 circumferentially integrally formed with the bottom wall 12; and an end cover 13 distal from the bottom wall 12 and sealably capping the side wall 11 to define a chamber 10 among the bottom wall 12, the side wall 11 and the end cover 13.
The chamber 10 in the barrel 1 may be evacuated to form vacuum after or before filling the coolant 5 in the barrel 1 by sucking air outwardly through a vent 130 formed in the end cover 13.
Each fin 2 has a proximal end 21 secured to or integrally formed on the barrel 1. The cooling fan 4 is secured to a distal end 22 of the fin 2. As shown in
The fan 4 may also be mounted on the barrel 1 with suitable frame or fixture (not shown).
The buckle 3 has its one end 31 secured to the barrel 1 and has its fastening end formed with a tenon hole 32 in order to be engaged with a tenon B1 formed on the base board B of CPU (C) as shown in FIG. 1.
The fastening mechanism for fastening the buckle 3, the CPU base board B and the barrel 1 may be modified by those skilled in the art, not limited in the present invention.
The end cover 13 may be formed as a shallow conical shape, semi-spherical shape, arcuate shape, or other shapes.
As shown in
The capillary means includes: a first capillary layer 131 formed on an inside wall of the end cover 13, and a second capillary layer 132 formed on an inside wall of the side wall 11 and continuously contacted with the first capillary layer 131 for capillarily osmetically draining the liquid coolant, as condensed on the inside walls of the end cover 13 and the side wall 11 of the barrel 1, towards the bottom wall 12 to complete the liquid-vapor two phase change recirculation of the vaporizable coolant 5.
As shown in
As shown in
The shapes of the grooves 111a, 133 of the present invention are not limited. Each ridge 132 may be formed as an arrow shape as shown in
As shown in
As shown in
Upon absorption of the heat transferred from the CPU (C) by the liquid coolant 5 as accumulated in the bottom portion of the barrel 1, the liquid coolant will be vaporized when absorbing the heat of vaporization to become vapor which will then be guided by the guiding means 6 and ejected towards the end cover 13 and the side wall 11 to be cooled and condensed by releasing the heat of condensation which will be dissipated outwardly through the barrel 1 and the fins 2 as cooled by the cooling fan 4.
The vapor of coolant is condensed to be liquid coolant which will be osmetically capillarily drained through the capillary means 131, 111 on the inside walls of the barrel 1 towards the bottom wall 12 of the barrel 1 to thereby complete the circulation of liquid-vapor two-phase change. The liquid vapor phase changes will be automatically recirculated to quickly efficiently dissipate the heat as released from the CPU.
The guiding means 6 plays an important role to guide the coolant vapor towards the cooled inside wall of the cover 13 and side wall 11 of the barrel 1 to be separated from the liquid coolant condensate to prevent "collision" between the coolant vapor and liquid condensate, thereby facilitating the two phase recirculation rate and increasing the cooling effect for cooling CPU.
The capillary means 131, 111 synergistically cooperates with the guiding means 6 to capillarily osmetically drain the liquid condensate of coolant as shown in arrow direction of FIGS. 3∼5 to be separated from the vapor ejecting orientations to also facilitate the two phase recirculation rate and increase the efficiency for dissipating the heat from CPU.
Otherwise, the liquid coolant as condensed on the end cover 13 (like a "roof") will gravitationally drop downwardly vertically to collide the upwardly rising vapor, thereby decreasing the recirculation rate.
Accordingly, the present invention will improve the cooling effect for dissipating heat from CPU to be superior to the prior application.
As shown in
If turning the drawing figure of
The present invention may be modified without departing from the spirit and scope of the present invention.
If the CPU is a small piece with low load, the barrel 1 may be formed as a shallow cylinder and the guiding means 6 may also be eliminated for saving cost. Also, if the inside wall of the barrel is made as a smooth draining surface for gravitationally draining the coolant downwardly, the capillary layers 131, 111 on the inside wall of the barrel 1 may be eliminated. Moreover, if the coolant is selected from that with low boiling point or high volatility, the chamber 10 in the barrel 1 may not be evacuated to form vacuum.
Patent | Priority | Assignee | Title |
10888024, | Aug 28 2017 | EQUINIX, INC | Data center refrigeration system |
10985085, | May 15 2019 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package and method for manufacturing the same |
11073340, | Oct 25 2010 | Rochester Institute of Technology | Passive two phase heat transfer systems |
6988534, | Nov 01 2002 | Vertiv Corporation | Method and apparatus for flexible fluid delivery for cooling desired hot spots in a heat producing device |
6994151, | Oct 22 2002 | Vertiv Corporation | Vapor escape microchannel heat exchanger |
7000684, | Nov 01 2002 | Vertiv Corporation | Method and apparatus for efficient vertical fluid delivery for cooling a heat producing device |
7014558, | Dec 14 2002 | LG Electronics Inc. | Cover structure with vent |
7017654, | Mar 17 2003 | Vertiv Corporation | Apparatus and method of forming channels in a heat-exchanging device |
7040382, | Jul 06 2004 | End surface capillary structure of heat pipe | |
7104312, | Nov 01 2002 | Vertiv Corporation | Method and apparatus for achieving temperature uniformity and hot spot cooling in a heat producing device |
7156159, | Mar 17 2003 | Vertiv Corporation | Multi-level microchannel heat exchangers |
7188662, | Jun 04 2004 | Vertiv Corporation | Apparatus and method of efficient fluid delivery for cooling a heat producing device |
7201012, | Jan 31 2003 | Vertiv Corporation | Remedies to prevent cracking in a liquid system |
7201214, | Jan 31 2003 | Vertiv Corporation | Remedies to prevent cracking in a liquid system |
7224585, | Aug 08 2003 | FU ZHUN PRECISION INDUSTRY SHEN ZHEN CO , LTD ; FOXCONN TECHNOLOGY CO , LTD | Liquid-cooled heat sink assembly |
7226352, | Dec 14 2002 | LG Electronics Inc. | Cover structure with vent |
7262966, | May 28 2004 | RHINOL TECH CORP | Heat sink modules for light and thin electronic equipment |
7278549, | Jan 31 2003 | Vertiv Corporation | Remedies to prevent cracking in a liquid system |
7293423, | Jun 04 2004 | Vertiv Corporation | Method and apparatus for controlling freezing nucleation and propagation |
7322402, | Jan 05 2004 | Heat pipe structure and method for fabricating the same | |
7344363, | Jan 31 2003 | Vertiv Corporation | Remedies to prevent cracking in a liquid system |
7402029, | Jan 31 2003 | Cooligy Inc. | Remedies to prevent cracking in a liquid system |
7552759, | Jun 17 2005 | Foxconn Technology Co., Ltd. | Loop-type heat exchange device |
7616444, | Jun 04 2004 | Vertiv Corporation | Gimballed attachment for multiple heat exchangers |
7715194, | Apr 11 2006 | Vertiv Corporation | Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers |
7806168, | Nov 01 2002 | Vertiv Corporation | Optimal spreader system, device and method for fluid cooled micro-scaled heat exchange |
7836597, | Nov 01 2002 | Vertiv Corporation | Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system |
8157001, | Mar 30 2006 | Vertiv Corporation | Integrated liquid to air conduction module |
8250877, | Mar 10 2008 | Vertiv Corporation | Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door |
8590601, | Apr 21 2009 | ZHONGSHAN WEIQIANG TECHNOLOGY CO , LTD | Sintered heat pipe |
9297571, | Mar 10 2008 | Liebert Corporation | Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door |
Patent | Priority | Assignee | Title |
3673306, | |||
3789920, | |||
3800190, | |||
3857441, | |||
3865184, | |||
3955619, | Mar 16 1971 | General Electric Company | Heat transfer device |
3971435, | Jul 13 1971 | NCR Corporation | Heat transfer device |
4012770, | Sep 28 1972 | Dynatherm Corporation | Cooling a heat-producing electrical or electronic component |
4212349, | Jan 02 1979 | International Business Machines Corporation | Micro bellows thermo capsule |
4633371, | Sep 17 1984 | Amdahl Corporation | Heat pipe heat exchanger for large scale integrated circuits |
4951740, | Jun 27 1988 | Texas A & M University System | Bellows heat pipe for thermal control of electronic components |
4966226, | Dec 29 1989 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Composite graphite heat pipe apparatus and method |
5219021, | Oct 17 1991 | Grumman Aerospace Corporation | Large capacity re-entrant groove heat pipe |
5412535, | Aug 24 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus and method for cooling electronic devices |
5632158, | Mar 20 1995 | Calsonic Corporation | Electronic component cooling unit |
5871043, | Sep 06 1994 | Nippondenso Co., Ltd. | Cooling apparatus using boiling and condensing refrigerant |
6085831, | Mar 03 1999 | International Business Machines Corporation | Direct chip-cooling through liquid vaporization heat exchange |
6330908, | Mar 15 2000 | Foxconn Precision Components Co., Ltd. | Heat sink |
6336497, | Nov 24 2000 | Self-recirculated heat dissipating means for cooling central processing unit |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jan 24 2006 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
May 24 2010 | REM: Maintenance Fee Reminder Mailed. |
Oct 15 2010 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 15 2005 | 4 years fee payment window open |
Apr 15 2006 | 6 months grace period start (w surcharge) |
Oct 15 2006 | patent expiry (for year 4) |
Oct 15 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 15 2009 | 8 years fee payment window open |
Apr 15 2010 | 6 months grace period start (w surcharge) |
Oct 15 2010 | patent expiry (for year 8) |
Oct 15 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 15 2013 | 12 years fee payment window open |
Apr 15 2014 | 6 months grace period start (w surcharge) |
Oct 15 2014 | patent expiry (for year 12) |
Oct 15 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |