The apparatus comprises a NOX reducing unit, a duct to receive a flue gas stream from said NOX and reducing unit, and an activation source associated with the duct. In use, the activation source applies energy to the flue gas stream to facilitate the removal of contaminants from the flue gas stream. Further, the method comprises providing an activation source is downstream of a NOX reducing unit. The activation source is then activated to facilitate the removal of contaminants from the flue gas stream.
|
13. A method of decreasing the concentration of contaminants within a flue gas stream, said method comprising the steps of:
providing an activation source downstream of a NOX reducing unit, where said activation source is associated with a duct configured to convey a flue gas stream; and activating said activation source to facilitate the removal of contaminants from said flue gas stream.
1. An apparatus for decreasing the concentration of contaminants within a flue gas stream, comprising:
a NOX reducing unit; a duct to receive a flue gas stream from said NOX reducing unit; and an activation source associated with said duct downstream of said NOX reducing unit, such that in use said activation source applies energy, to said flue gas stream to facilitate the removal of contaminants from said flue gas stream.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
|
This is a continuation-in-part of U.S. patent application Ser. No. 09/371,256 filed Aug. 10, 1999 now U.S. Pat. No. 6,267,940.
This invention relates generally to the control of pollutants from combustion processes. More particularly, this invention relates to a technique for enhancing NOX reducing catalyst activity and thereby efficiently removing NOX from a combustion process gas stream.
The 1990 Clean Air Act Amendments require major sources of air emissions to limit the discharge of NOX . NOX is present in the flue gas emitted from combustion processes. Therefore, cost-effective methods for controlling NOX are of significant interest.
Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) catalysts for NOX removal are known in the art. Conventional NOX SCR catalysts require large amounts of catalyst and the flue gas stream to be at relatively high temperatures (between approximately 300 to 400°C C.) in order to have sufficient activity for effective NOX reduction. In such schemes, ammonia or urea are also typically added as a reducing agents. However, significant problems are associated with the use of reducing agents, including, for example the formation of ammonium compounds from ammonia, referred to as ammonia "slip." Ammonia "slip" occurs when unreacted ammonia and ammonium compounds pass out of the SCR unit. Such ammonia "slip" can plug downstream air heaters and impact ash use and disposal. SNCR is not as effective as SCR processes and the use of urea in SNCR also produces unwanted ammonia and ammonium compounds. Therefore, it would be desirable to have a process than can supplement NOX reduction downstream of the SCR/SNCR process, where the process can also reduce ammonia slip.
In addition to SCR and SNCR, low NOX burners (LNB) positioned in the furnace are also commonly used for NOX reduction. However, the LNB's are not as effective as SCR/SNCR at removing NOX from the combustion process. Therefore, it would also be desirable to have a process that can supplement NOX reduction downstream of LNB burners to meet more stringent NOX emissions control requirements.
There are ongoing efforts to develop low temperature catalysts for applications between approximately 100 to 250°C C. Unfortunately, these low temperature catalysts are sensitive to high SOx concentrations in the flue gas. There are also NOX SCR catalysts being developed that are reagentless, so, for instance, ammonia is not required as a reducing agent. These catalyst systems can benefit from the imposition of additional and alternative activating agents to the catalyst so that they can operate at lower temperatures, be less sensitive to poisoning agents, and more reactive without the addition of chemical agents.
In view of the foregoing, it would be highly desirable to provide an approach to enhance NOX removal. Ideally, the technique would reduce the amount of catalyst needed, or would operate at relatively low temperatures, or reduce the amount of required chemical reducing agents.
According to the invention there is provided an apparatus for decreasing the concentration of contaminants, such as NOX or reducing agents, present in a gas stream. The apparatus comprises a NOX reducing unit, a duct to receive a flue gas stream from said NOX and reducing unit, and an activation source associated with the duct. In use, the activation source applies energy to the flue gas stream to facilitate the removal of contaminants from the flue gas stream.
Further, according to the invention there is provided a method of decreasing the concentration of contaminants within a flue gas stream. An activation source is provided downstream of a NOX reducing unit. The activation source is associated with a duct configured to convey a flue gas stream. The activation source is then activated to facilitate the removal of contaminants from the flue gas stream.
In this way, the inclusion of an activation source downstream of a NOX reducing unit decreases the concentration of NOX and reducing agents within the flue gas stream. The activation source of the invention may also be used with a low NOX burner to reduce NOX even in the absence or reducing agents that are present in other embodiments of the invention.
For a better understanding of the invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings, in which:
Like reference numerals refer to corresponding parts throughout the drawings.
The power plant components discussed up to this point are conventional. The invention is directed toward supplementing the operation of these components to include a process wherein a NOX reducing catalyst is used to remove NOX from flue gas in the outlet duct 28. The invention utilizes a NOX reducing catalyst injector 40 to inject a NOX reducing catalyst powder into the outlet duct 28. A separate activation source 42 is used to activate the NOX reducing catalyst while it is in the output duct 28 and/or in the particulate collection device 30.
The combination of the catalyst injection 40 and activation source 42 enhance the activity of the NOX reducing catalyst and enable significant NOX reduction in the duct 28 and the particulate collection device 30. The invention also allows a NOX reducing catalyst to be used at relatively low temperatures, e.g., between approximately 100 to 250°C C.
The NOX reducing catalyst injector 40 may be implemented as any standard particle injector. The activation source 42 is implemented as an energy producing mechanism. The energy created by the energy producing mechanism activates the NOX reducing catalyst. The energy producing mechanism may be implemented to create an electrical field across the catalyst surface. The catalyst structure may also be irradiated with electromagnetic energy, such as microwave radiation, ultraviolet radiation, or infrared radiation. The activation source 42 may also be implemented to produce a magnetic field.
Those skilled in the art will appreciate that the foregoing activation techniques may be used alone or in combination. The underlying principle of the activation technique is to render the NOX reducing catalyst sufficiently active through supplemental and alternative energy input and excitation energies so that lower amounts of catalyst are needed or the catalyst can operate in a relatively low temperature (between approximately 100 to 250°C C.) flue gas stream.
In one embodiment of the invention, the catalyst injector 40 injects a fine NOX catalyst powder into the duct 44 and the output duct 28. The catalyst powder is irradiated by electromagnetic waves produced by the activation source 42. This irradiation may occur in the duct 44 and/or the output duct 28. The fine catalyst powder is then captured in the downstream particle collection device 30, which may be a baghouse or electrostatic precipitator, where the powder may be further irradiated with electromagnetic waves to continue the reaction with NOX . In this embodiment, the NOX in the gas stream reacts with the catalyst suspended in the gas stream as well as when the catalyst is deposited on the surface of the filter bags or precipitator.
The test apparatus 60 further includes an inner quartz tube 68 and an outer pyrex tube 70. A input port 72 receives a controlled flow of gas, which is discharged at output port 73. A wire 74 delivers power to the ultra violet light source 66. An air input port 78 receives pumped air, which is discharged at an air output port 80.
In one embodiment, the catalyst 62 was prepared by the decomposition of metal nitrates (Catalyst I) or other water soluble species on a support. An aqueous solution containing amounts of metal nitrates in concentration ratios appropriate to obtain a desired catalyst stoichiometry was used. The solution was added drop-wise to a support (silica gel, large pore, -8 mesh, 300 m2/g) until excess of the liquid just appeared (incipient wetness impregnation). In the case of a V2O5-TiO2SCR catalyst (Catalyst II), ammonium metavanadate (NH4VO3) was used as the vanadium oxide source.
The reactor employed in evaluating these systems is shown in FIG. 3. The following points are noteworthy: 1) products were monitored with electrochemical NOX sensors; 2) the flow rates of the gases He, NO, and O2 through ports 72 and 73 were controlled with precision metering valves and measured with flow meters; 3) the reactor consisted of a straight quartz tube 68 with a 12 mm outside diameter, which housed the UV source 66 and an outer Pyrex tube 70 of inside diameter 15.8 mm in between which the catalyst 62 was packed between two pieces of quartz wool 64; and 4) the reactor was heated using a temperature controlled furnace. The catalyst 62 was a powder of weight 1.15 g and a volume of 2.0 cm3. Space velocities reported here were based on the reactor volume occupied by the catalyst 62. A description of the analysis techniques that were utilized is presented in the following paragraphs.
NOX sensors (not shown) were used in connection with the apparatus of FIG. 3. Both NO and NO2 were measured electrochemically using conventional sensors. The sensors were operated in parallel using Helium (He) as a carrier gas. The He flow was adjusted by a needle valve to approximately 10 mL/min. Samples were introduced with a syringe through injection ports located in the gas stream immediately before each sensor. The gas flow lines through the sensors were made of polytetrafluroethylene to reduce surface adsorption of NO2.
Gas chromatography (GC) was used to quantify the products of NOX decomposition (nitrogen and nitrous oxide). An HP 5890 Series II gas chromatograph equipped with a thermal conductivity detector (TCD) and a CTR I column operating at a temperature of 30°C C. and using a helium carrier gas was used. A sampling value equipped with a 2 ml sample loop was employed.
Activity data obtained for catalysts evaluated at 350°C C. are summarized in Table 1.
TABLE 1 | |||||||
Data for UV Activation of NOx Reducing Catalysts. T = 100°C C. λ = 254 nm. | |||||||
% NO & | |||||||
UV | ppm NO | % | Reducing | NO2 | ppm NO2 | Space Velocity | |
CATALYST | Activation | & NO2 | O2 | Agent | Removed | Produced | (hr-1) |
Off | 665 | 0 | 0 | 0.6 | 0.0 | 432 | |
On | 738 | 0 | 0 | 28.7 | 32 | 432 | |
Off | 596 | 1.42 | 0 | -2.9 | 30 | 522 | |
Catalyst I | On | 576 | 1.42 | 0 | -6.2 | 233 | 522 |
(11.1 wt. % | Off | 554 | 0 | 0 | 6 | -1 | 4340 |
Sr2Bi2Cu2O2/silica gel) | On | 527 | 0 | 0 | 6.7 | 15 | 4340 |
Off | 593 | 0 | 0 | 5.6 | 0 | 5296 | |
On | 558 | 0 | 0 | 11.1 | 22 | 5296 | |
Off | 674 | 2.67 | 0 | 2.5 | 3 | 5147 | |
On | 678 | 2.67 | 0 | 4.1 | 71 | 5147 | |
Off | 3 | 0 | 0 | 50.0 | 0 | 580 | |
Off | 2 | 0 | 0 | -50.0 | 2 | 580 | |
Off | 2 | 2.50 | 0 | 0.0 | 0 | 536 | |
On | 3 | 2.50 | 0 | -33.9 | 2 | 536 | |
Off | 544 | 0.0 | 351 ppm | 3.1 | 2 | 1077 | |
CO | |||||||
On | 509 | 0.0 | 351 ppm | 1.8 | 58 | 1077 | |
CO | |||||||
Off | 811 | 2.50 | 373 ppm | -2.8 | 31 | 1012 | |
CO | |||||||
On | 813 | 2.50 | 373 ppm | -6.6 | 233 | 1012 | |
CO | |||||||
Off | 823 | 3.01 | 941 ppm | 0.0 | 33 | 1037 | |
CO | |||||||
On | 767 | 3.01 | 941 ppm | -11.0 | 239 | 1037 | |
CO | |||||||
Off | 641 | 2.68 | 509 ppm | 5.9 | 3 | 945 | |
NH3 | |||||||
On | 636 | 2.68 | 509 ppm | 38.4 | 51 | 945 | |
NH3 | |||||||
Off | 430 | 1.79 | 574 ppm | 0.0 | 0 | 1416 | |
NH3 | |||||||
On | 439 | 1.79 | 574 ppm | 37.7 | 36 | 1416 | |
NH3 | |||||||
Catalyst II | Off | 550 | 0.0 | 0 | 1.6 | -2 | 430 |
1.2% V2O5 on TiO2 | On | 509 | 0.0 | 0 | 8.1 | 0 | 494 |
Off | 491 | 2.57 | 0 | -5.6 | 10 | 589 | |
On | 516 | 2.57 | 0 | 8.9 | 6 | 589 | |
Off | 460 | 2.57 | 0 | 0.4 | -1 | 959 | |
Off | 468 | 0.0 | 0 | 5.7. | 2 | 976 | |
On | 445 | 1.83 | 0 | 8.2 | 4 | 976 | |
Off | 636 | 2.38 | 444 ppm | 5.9 | -2 | 867 | |
NH3 | |||||||
On | 612 | 2.38 | 444 ppm | 38.7 | -4 | 867 | |
NH3 | |||||||
Off | 444 | 1.26 | 742 ppm | 0.0 | 0 | 1635 | |
NH3 | |||||||
On | 442 | 1.26 | 742 ppm | 33.5 | -1 | 1635 | |
NH3 | |||||||
Off | 453 | 0 | 0 | 0.0 | 0 | 4938 | |
On | 526 | 0 | 0 | 6.7 | -1 | 4938 | |
Off | 552 | 2.95 | 0 | 0.0 | 7 | 5137 | |
On | 559 | 2.95 | 0 | 8.0 | 4 | 5137 | |
Off | 633 | 4.92 | 496 ppm | 8.8 | 2 | 1021 | |
NH3 | |||||||
On | 573 | 4.92 | 496 ppm | 41.4 | -9 | 1021 | |
NH3 | |||||||
Off | 588 | 2.11 | 488 ppm | 14.5 | -4 | 849 | |
NH3 | |||||||
On | 656 | 2.11 | 488 ppm | 62.2 | 20 | 849 | |
NH3 | |||||||
Several general observations are apparent from the above table. First, appreciable differences in activity were observed when the UV source was in the "On" versus the "Off" state. Two, in the absence of oxygen, a net removal of nitrogen oxides (NO+NO2) via UV activation was observed over a space velocity range of 400-5300 h-1. Three, Catalyst II exhibited less NO2 production than Catalyst I when O2 was introduced. Four, apparently negative conversions resulted from the storage of NO2 in the catalyst. Finally, activity was still evident after over 1000 hours on-line.
Some discussion of the nature of the UV activation process follows. Reagentless reactions are considered first. The observations concerning reagentless reactions absent added oxygen are as follows: 1) NO2 was not produced in great abundance and 2) the order of activity was Sr2 Bi2Cu2O7/silica gel>V2O5/TiO2. Introducing 1-3% O2 gave the result that the net conversion of NO+NO2 displayed the order V2O5/TiO2>Sr2 Bi2Cu2O7/silica gel. In the case of Catalyst I, NO2 was produced extensively. CO was found to be an ineffective reagent. In the case of both V2O5/TiO2 and Sr2 Bi2Cu2O7/silica gel, it was found that ammonia was an effective reagent for the UV activation of nitrogen oxides. In the case of V2O5/TiO2, the disappearance of nitrogen oxides was fully accounted for in terms of the products of ammonia reduction. The product distribution was N2(95%) and N2O (5%). It is not likely that scissioning of the N--O bond by direct interaction with the radiation occurs since the difference in energies between LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (highest Occupied Molecular Orbital) was less than the source energy (4.0 eV) of the 254 nm UV lamp. Rather, substrate excitation or excitation of a substrate-NO complex must occur. Decomposition in the absence of oxygen occurs according to the following mechanism:
In the case of oxidation, UV radiation probably serves to excite hole states, leading to the following important steps:
In the case of the silica supported catalysts, the ammonia reagent probably works by its reaction with NO2 formed by UV excitation, since the dioxide species is formed over both of the catalysts in the presence of oxygen when the catalyst is irradiated with ultraviolet light. The mechanism in the case of V2O5/TiO2 is clear, since UV does not cause NO2 to be generated.
The foregoing results demonstrate conversion via a nonoxidative pathway has been obtained using ultraviolet activation of nitrogen oxides. Although the conversion may be low relative to current NOX catalysts, it must be remembered that the catalysts employed here were not optimal: strongly basic catalysts are not expected to be effective at promoting SCR. For example, it is well known that bases including alkali and alkaline earths poison SCR catalysts. In contrast, catalysts found to display significant and even potentially useful activity absent reagents, demonstrated a preferred oxidative pathway under UV irradiation when oxygen was introduced into the system. This is in sharp distinction to the behavior exhibited by the catalysts in thermal catalytic activation of NO2. In that case, the catalysts removed NO essentially completely through a nonoxidative pathway, with a nitrogen product.
In sum, the foregoing data demonstrates UV activation as a tool for the nonoxidative removal of NO from an exhaust stream containing up to 5% O2. Reagentless decomposition was demonstrated in the absence of oxygen. However, there was a marked tendency for the reagentless catalysts to produce NO2 in the presence of O2. In the presence of oxygen, ammonia present in a 0.7 to 1.5:1 ratio with respect to NO+NO2 resulted in the essentially complete reduction of NO. One of these basic catalysts were found to be more active than an SCR catalyst.
The foregoing results indicate that UV radiation is effective for the nonoxidative activation of nitrogen oxides at low temperature (e.g., 100°C C.). In particular, the use of a reagent (ammonia) was found to be effective in the UV activation of NOX . The results point to certain steps that can be taken to optimize performance of the process. For example, increasing wavelength may reduce the tendency to oxidize NO and allow for possible use in reagentless or reduced-reagent catalysis. Catalyst optimization may also be considered to improve performance with specific wavelengths or wavelength ranges. Catalyst distribution may also be considered to improve exposure to radiation.
Those skilled in the art will appreciate that the invention provides a technique for promoting catalytic activity in various NOX SCR catalysts so that they can be operated and installed under conditions where they would not normally be active and may therefore provide more cost-effective options for NOX reduction in gases. The invention facilitates the use of catalysts at lower temperatures. The invention renders the catalysts less sensitive to poisoning agents, and otherwise more reactive, even without the addition of chemical agents. The NOX reduction technique of the invention is cost-effective, thereby minimizing the overall cost of generating electricity in fossil-fired power plants.
For ease of explanation, the abovementioned apparatus, which uses a catalyst structure and an activation source, will hereafter be referred to as an Advanced Energy Activation (AEA) unit. As mentioned previously, an AEA unit activation source may include an ultraviolet (UV) energy source, an electromagnetic energy source, a microwave energy source, an electric field energy source, an electric current energy source, a magnetic field energy source, and an infrared energy source. Some of these AEA activation sources also act to heat the catalyst to an elevated and more reactive temperature. The AEA unit activation sources, therefore, render an AEA unit catalyst sufficiently active through supplemental and alternative energy input and excitation energies so that an AEA unit can be operated and installed under conditions where it would not normally be active. This provides a more cost-effective reduction of NOX flue gases.
During laboratory and field studies of AEA units, it was found that using a supplemental activation source downstream of existing NOX reduction units, such as SNCR, SCR, LNB, or AEA units, reduces any NOX present in the system, and also reduces "slip" caused by reducing agents, such as ammonia or urea, by promoting reactions between NOX and reducing agents. Therefore, a supplemental activation source is preferably used downstream of an SNCR, SCR, or LNB unit as a NOX polishing step.
The energy provided by the supplemental activation source 86 serves to reduce "slip" caused by reducing agents, such as ammonia or urea, by promoting reactions between NOX and the reducing agent. The reducing agent may be suspended in the flue stream or it may be on flyash surfaces. This not only reduces ammonia "slip", but also reduces NOX present in the flue gas by promoting a reaction between the NOX and the reducing agents.
It has also been demonstrated that NOX in the flue gas can be further reduced by the supplemental activation source 86 even in the absence of reducing agents, such as ammonia or urea. Furthermore, should any catalyst powder be present in the flue gas at the supplemental activation source 86, such as if injected at a NOX SNCR, SCR, or AEA unit 88, any NOX present in the flue gas will react with the catalyst to further reduce any NOX present in the flue gas.
In another embodiment, a supplemental catalyst 84 is used in conjunction with the supplemental activation source 86. The supplemental catalyst 84 may either be placed in a stationary position adjacent the supplemental activation source 86 (stationary configuration), similar to that shown in
The placing (step 94) of the supplemental activation source 86 (
In this way, the inclusion of a supplemental activation source downstream of a NOX reducing unit, decreases the concentration of reducing agents within a flue gas stream while further decreasing any NOX present in the flue gas.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. In other instances, well known circuits and devices are shown in block diagram form in order to avoid unnecessary distraction from the underlying invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, obviously many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Sjostrom, Sharon, Slye, Richard, Chang, Ramsay
Patent | Priority | Assignee | Title |
10844763, | Mar 10 2017 | R F MACDONALD CO | Process for direct urea injection with selective catalytic reduction (SCR) for NOx reduction in hot gas streams and related systems and assemblies |
11242789, | Mar 10 2017 | R. F. MacDonald Co. | Process for direct urea injection with selective catalytic reduction (SCR) for NOx reduction in hot gas streams and related systems and assemblies |
7306774, | Aug 05 2004 | Electric Power Research Institute, Inc | Reactive membrane process for the removal of vapor phase contaminants |
7468171, | Jan 31 2005 | Toyota Motor Corporation | Process using microwave energy and a catalyst to decompose nitrogen oxides |
7498009, | Aug 16 2004 | DANA UV, INC , A WYOMING CORPORATION | Controlled spectrum ultraviolet radiation pollution control process |
7618603, | Jan 10 2005 | NORTH DAKOTA, THE UNIVERSITY OF | Mercury oxidation of flue gas using catalytic barrier filters |
7731781, | Nov 03 2006 | Electric Power Research Institute, Inc | Method and apparatus for the enhanced removal of aerosols and vapor phase contaminants from a gas stream |
7838297, | Mar 28 2003 | General Electric Company | Combustion optimization for fossil fuel fired boilers |
7850764, | Aug 05 2004 | Electric Power Research Institute, Inc. | Reactive membrane process for the removal of vapor phase contaminants |
8029600, | Nov 03 2006 | Electric Power Research Institute, Inc | Sorbent filter for the removal of vapor phase contaminants |
8071037, | Jun 25 2008 | CUMMINS FILTRATION IP, INC. | Catalytic devices for converting urea to ammonia |
8241398, | Nov 03 2006 | Electric Power Research Institute, Inc. | Method and apparatus for the enhanced removal of aerosols and vapor phase contaminants from a gas stream |
9675930, | Apr 02 2009 | CLEAN TECHNOLOGY CO., LTD. | Control method of plasma by magnetic field in an exhaust gas treating apparatus and an exhaust gas treating apparatus using the same |
Patent | Priority | Assignee | Title |
6117403, | Oct 09 1996 | POWERSPAN CORP A DELAWARE CORPORATION | Barrier discharge conversion of Hg, SO2 and NOx |
6153159, | Mar 01 1996 | Volkswagen AG | Method for purifying exhaust gases |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 23 2001 | CHANG, RAMSAY | Electric Power Research Institute, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011565 | /0795 | |
Feb 02 2001 | SJOSTROM, SHARON | Electric Power Research Institute, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011565 | /0795 | |
Feb 02 2001 | SLYE, RICHARD | Electric Power Research Institute, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011565 | /0795 | |
Feb 13 2001 | Electric Power Research Institute, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 28 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 31 2010 | REM: Maintenance Fee Reminder Mailed. |
Oct 22 2010 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 22 2005 | 4 years fee payment window open |
Apr 22 2006 | 6 months grace period start (w surcharge) |
Oct 22 2006 | patent expiry (for year 4) |
Oct 22 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 22 2009 | 8 years fee payment window open |
Apr 22 2010 | 6 months grace period start (w surcharge) |
Oct 22 2010 | patent expiry (for year 8) |
Oct 22 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 22 2013 | 12 years fee payment window open |
Apr 22 2014 | 6 months grace period start (w surcharge) |
Oct 22 2014 | patent expiry (for year 12) |
Oct 22 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |