The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. A first layer of organic materials is deposited over a substrate, followed by a first electrode layer. A first patterned die having a raised portion is then pressed onto the first electrode layer, such that the raised portion of the first patterned die contacts portions of the first electrode layer. The patterned die is removed, such that the portions of the first electrode layer in contact with the raised portions of the first patterned die are removed. In one embodiment of the invention, a second organic layer is then deposited over the first electrode layer, followed by a second electrode layer. A second patterned die having a raised portion is pressed onto the second electrode layer, such that the raised portion of the second patterned die contacts portions of the second electrode layer. The second patterned die is removed, such that the portions of the second electrode layer in contact with the raised portions of the second patterned die are removed. Preferably the patterned die is coated with an adhesive material such as a metal.
|
9. A method of fabricating an organic device, comprising:
(a) depositing a first organic layer over a substrate; (b) depositing a first electrode layer over the first organic layer; (c) pressing a first patterned die having a raised portion onto the first electrode layer; (d) removing the first patterned die; (e) depositing a second organic layer over the first electrode layer; (f) depositing a second electrode layer over the second organic layer; (g) pressing a second patterned die having a raised portion onto the second electrode layer; (h) removing the second patterned die.
1. A method of fabricating an organic device, comprising:
(a) depositing a first organic layer over a substrate; (b) depositing a first electrode layer over the first organic layer; (c) pressing a first patterned die having a raised portion onto the first electrode layer, such that the raised portion of the first patterned die contacts portions of the first electrode layer; (d) removing the first patterned die, such that the portions of the first electrode layer in contact with the raised portions of the first patterned die are removed; (e) depositing a second organic layer over the first electrode layer; (f) depositing a second electrode layer over the second organic layer; (g) pressing a second patterned die having a raised portion onto the second electrode layer, such that the raised portion of the second patterned die contacts portions of the second electrode layer; (h) removing the second patterned die, such that the portions of the second electrode layer in contact with the raised portions of the second patterned die are removed.
2. The method of
(i) depositing a third organic layer over the second electrode layer; (j) depositing a third electrode layer over the third organic layer; (k) pressing a third patterned die having a raised portion onto the third electrode layer, such that the raised portion of the third patterned die contacts portions of the third electrode layer; (l) removing the third patterned die, such that the portions of the third electrode layer in contact with the raised portions of the third patterned die are removed.
3. The method of
after step (d) and before step (e), removing portions of the first organic layer exposed by the removal of portions of the first electrode layer in step (d); after step (g) and before step (h), removing portions of the second organic layer exposed by the removal of portions of the second electrode layer in step (g).
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
11. The method of
12. The method of
13. The method of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 09/447,793, filed Nov. 23, 1999, now U.S. Pat. No. 6,294,398 which is incorporated by reference in its entirety.
The present invention relates to patterning methods for thin films, and more particularly to patterning methods using a die.
Organic light emitting devices (OLEDs), which make use of thin films that emit light when excited by electric current, are becoming an increasingly popular technology for applications such as flat panel displays. Popular OLED configurations include double heterostructure, single heterostructure, and single layer, as described in PCT Application WO 96/19792, which is incorporated herein by reference.
To form an array of OLEDs, the constituent materials must be patterned. Such patterning maybe achieved by photoresist methods, as disclosed by U.S. Pat. No. 5,641,611 to Shieh, and in U.S. Pat. No. 6,013,528 to Burrows et al. Shadow masks may also be used to pattern, as disclosed by co-pending U.S. patent application Ser. No. 09/182,636. Shadow masks must be thick enough to provide mechanical strength and thus, the obtainable resolution of the pattern is limited. Other methods of patterning have been used, such as excimer laser ablation and conformal masks.
While these known patterning methods are acceptable in certain circumstances, a more accurate, faster and less expensive method of patterning is desirable.
The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. A first layer of organic materials is deposited over a substrate, followed by a first electrode layer. A first patterned die having a raised portion is then pressed onto the first electrode layer, such that the raised portion of the first patterned die contacts portions of the first electrode layer. The patterned die is removed, such that the portions of the first electrode layer in contact with the raised portions of the first patterned die are removed. In one embodiment of the invention, a second organic layer is then deposited over the first electrode layer, followed by a second electrode layer. A second patterned die having a raised portion is pressed onto the second electrode layer, such that the raised portion of the second patterned die contacts portions of the second electrode layer. The second patterned die is removed, such that the portions of the second electrode layer in contact with the raised portions of the second patterned die are removed. Preferably the patterned die is coated with an adhesive material such as a metal.
The present invention will be described with reference to the illustrative embodiments in the following processes and drawing figures.
A method is provided for patterning an electronic device using a die. The device is fabricated on top of a substrate. Prior to patterning in accordance with the present invention, patterned layers or a first electrode may be formed on the substrate using techniques known to the art. Then, a blanket layer of organic material is deposited over the substrate and any patterned layers or electrodes present thereon. Next, a blanket layer of a metal electrode material (the "top electrode layer"), is deposited over the organic layer. The top electrode layer may be for example, a cathode layer or an anode layer. The optional first electrode may also be a cathode layer or an anode layer. Preferably if the top electrode layer is a cathode layer, then the first electrode is an anode layer and vice versa.
The electronic device maybe for example an Organic Light Emitting Device (OLED) as described for example in U.S. Pat. No. 5,707,745, which is incorporated herein by reference.
The blanket layers are patterned with a die having raised and depressed portions that form a desired pattern. According to one embodiment, the die is pressed onto the blanket layers, such that the raised portions of the die compress underlying layers on the substrate. As a result, the organic layers will deform, and the top electrode layer will break at the juncture between the raised and depressed portions of the die. The raised portions of the die may be coated with a material such that the underlying portions of the top electrode layer stick to the die, and are removed when the die is lifted away. When the raised portions of the die are not coated with a material such that the underlying portions of the top electrode layer stick to the die, the compression by the die causes the top electrode layer to break, however, the residual layer of the top electrode remains part of the patterned electronic device.
The die is formed from a hard substance. Preferably, the die is made of a substance that is readily patterned. Examples of suitable materials that may be used to form dies in accordance with the present invention include silicon, glass, quartz and hard metals. Silicon is a preferred die material in the laboratory, because it is hard and readily patterned. However, different materials may be more suitable for large scale production.
Die 100 is pressed onto sample 300, and raised portions 106 of die 100 contacts the upper portion of sample 300. Regions 308b of top electrode layer 308 stick to coating 108, and are removed when die 100 is lifted away from sample 300. Top electrode 308a (the remaining portion of top electrode layer 308) does not stick to the die.
In one embodiment of the invention, Sample 300 as shown in
It is to be understood that the present invention may be used to fabricate much larger arrays of organic devices than those specifically described herein. Moreover, a multi-color display may be fabricated by depositing various down-conversion layers known to the art. For example, organic layer 206 may be made of a material that emits blue light, and patterned blue-to-green and blue-to-red down conversion layers maybe deposited on substrate 202 prior to the deposition of bottom electrodes 204. These down-conversion layers maybe patterned such that an array of organic devices ultimately fabricated forms an array of three-color pixels, where each pixel comprises three organic devices--one with no down conversion layer that emits blue, one with a blue-to-green down conversion layer that emits green, and one with a blue-to-red down conversion layer that emits red.
The organic layers may emit light through any of a number of mechanisms. The emission of light is generically referred to as "luminescence." Specific luminescent mechanisms include phosphorescence and fluorescence. For purposes of the present invention, any type of luminescence may be used in any of the embodiments.
A method according to the present invention for the direct micropatterning of OLED displays by post-deposition stamping was performed. Specifically an unpatterned OLED was patterned such that a cathode layer of the OLED was selectively lifted off of an OLED by pressing a patterned silicon stamp (i.e., a die) with a metal layer, onto the unpatterned OLED. In this post-deposition stamping method, the stamp contained a metal coating, which cold welded to the cathode of the unpatterned OLED when the metal coating and the cathode were contacted with one another. When the stamp was removed from the OLED, the cathode was selectively removed from the OLED in essentially the same pattern in which the metal was placed on the stamp.
In the present examples, a patterning process as shown in
To pattern the OLEDs, a stamp (or die) 500 was formed. In forming the stamp, a silicon wafer was processed using conventional photolithography. Using SiO2 as a mask, the wafer was etched by chlorine-based reactive ion etching (RIE) and by wet etching (HF-HNO3--CH3COOH mixture etching). For wet etching, an etchant composition (by volume) of 7%:70%:23% (HF:HNO3:CH3COOH) was used and the etch rate was ∼2 μm/min. The resulting pattern on the silicon stamp was the negative image of a desired OLED pattern. The silicon stamp 702 was coated with a metal coating 708 having a 50 Å thick Cr adhesion layer and a 150 Å∼200 Å thick Ag layer, which was deposited by conventional e-beam evaporation.
To create the OLED pattern, the stamp was pressed onto the unpatterned OLEDs to induce cold welding between the OLED cathode and the silver on the stamp. The pressing was performed using an Instron Dynamic Testing System (model 8501), which applies force using a hydraulic actuator. The substrate and the stamp were placed on a lower cylinder-shaped platen and compressive force was applied by moving up the lower platen to a fixed upper platen. The applied force increased from zero to maximum linearly with respect to time, and the maximum force and ramp rate were computer controlled. Throughout the experiment, glass substrates 602 having a size of about 10 mm×10 mm were used.
The results for a 230 μm diameter dots pattern are shown in
The patterning of the OLEDs in these experiments were performed in ambient laboratory conditions, hence neither the stamps nor the OLEDs were protected from dust, oxygen, water vapor, etc.
To demonstrate a possible application of the present method to flat panel displays, a passive matrix having a pixel size of 420 μm×420 μm was fabricated. First, parallel lines of a ∼1500 Å thick ITO layer were obtained by conventional photolithography and wet etching. After performing a cleaning step, organic single heterostructure and cathode layers were subsequently deposited on the patterned ITO layer (as described above). Next the substrate was pressed perpendicularly with the stamp with a parallel line pattern to obtain a passive matrix. The maximum force applied during the pressing was ∼8 kN (i.e., a pressure of ∼380 MPa) and the ramp rate was 1 kN/s. The sample was kept under pressure for 5 minutes after the maximum pressure was reached.
As two solid surfaces (e.g., the metal layer on the stamp and the cathode of the OLED) are brought into contact, they can be bonded to each other when the interfacial separation is decreased below a critical value, resulting in a single solid. Therefore, to achieve good patterns by this technique, the applied pressure should be high enough to decrease the interfacial separation below the critical value.
The stress distribution in the cathode layer should also be considered. This problem may be considered an elastic contact problem between the silicon stamp and the glass substrate with finite friction. Normal contact stress is very large at the edge of the contact region. It is believed that the cathode layer is locally weakened at the edge of the contact region due to the highly concentrated normal stress. Also, due to the relatively high applied pressure, plastic deformation of the cathode and organic layers should be taken into consideration.
As applied pressure increases gradually, the raised part of the stamp expands laterally as determined by the applied pressure and poisson ratio. See FIG. 11. This is expected to help local weakening. Therefore, as a result, the fracture along the weakened boundaries occurs upon separation of the stamps from the OLEDs, giving sharp pattern edges. The applied pressure should be high enough to decrease the interfacial separation of silver layers below the critical value and also to induce the local weakening of the metal layers along the edges of the contact region. An optimum pressure was determined to be about 250 MPa to about 400 MPa.
When the stamp is applied to the device, the substrate of the device may bend such that the device bows into the depressed portions of the die. Contact between the device and the depressed portion of the die is undesirable, and could lead to the removal of layers that are supposed to remain on the device. To avoid such contact, various parameters may be controlled. For example, stiffer substrates and lower forces applied to the die are two factors that may be used to eliminate such contact. Alternatively, if a flexible substrate is used, the substrate may be mounted on a stiff support structure, if desired. Still other means may be used to keep the flexible substrate sufficiently rigid to maintain the desired tolerances. Another important factor is the geometry of the die. In particular, by increasing the depth of the depressed portions, or by decreasing the separation between the raised portions, such contact may be avoided. It is believed that a depth of about 10 microns per 1 millimeter of separation is preferred to avoid such contact, although this ratio may change depending upon the particular substrate and forces.
Full Color OLED By Stamping
In one embodiment of the invention, several different patterning steps may be performed with patterned dies. As a result, devices such as fall color OLED displays may be fabricated. For example, a fall color OLED maybe fabricated as illustrated in
Insulating strips 1227 may prevent the formation of possible shorts between first electrode 1220 and the other electrodes during stamping with dies 1210, 1510 and 1710. Insulating strips 1227 run parallel to second electrode 1540a, and may be made of any non-conductive material that provides suitable protection. Preferably, insulating strips 1227 are made of SiNx or SiO2. Insulating strips 1227 may not be necessary, and maybe omitted from device 1200, if the formation of such shorts is within acceptable tolerances even without insulating strips 1227.
Preferably, any residual portions of blanket electrode layers 1540 and 1740, i.e., residual portions 1540d and 1740d, are electrically connected to the operational electrode layers running directly below and parallel to them, to avoid unwanted electrically floating residual portions of blanket electrode layers, and/or to avoid voltage differences across residual organic portions. In particular, with reference to
Electrical contact between electrodes 1230a and 1530a with overlying residual portions 1530d and 1730d may also be achieved without the use of edge masking by driving a conductive rod through the electrodes and any overlying residual portions at the edge of the device.
Operational organic layers 1230a, 1530a and 1730a emit light when current is passed through them. In particular, first operational organic layer 1230a emits light when a current is applied between first electrode 1225 and second electrode 1240a. Second operational organic layer 1530a emits light when a current is applied between first electrode 1225 and third electrode 1540a. Operational organic layer 1230a emits light when a current is applied between first electrode 1225 and second electrode 1240a. Device 1200 as shown in
Although various embodiments of the invention are illustrated with simplified organic layers and electrodes, additional layers and sublayers may be present. For example, operational organic layer 1230a may comprise multiple sublayers as described with respect to FIG. 2. Additional layers may also be present. For example, a hole injecting layer may also be present, such as described in U.S. Pat. No. 5,998,803 to Forrest et al., which is incorporated by reference. The presence of such a hole injecting layer between an electrode and an organic layer may block physical contact between the electrode and the organic layer, but does not change the fact that the electrode and organic layer are in electrical contact. Additional layers as known to the art may also be present.
The embodiment of
Preferably, each of the organic layers and each electrode is about 1000 Å thick. Preferably, first electrode 1225 is ITO, although any other suitable transparent electrode may be used. Preferably, second electrode 1240a, third electrode 1540a, and fourth electrode 1740a comprise a layer of Mg/Ag alloy about 1000 Å thick, coated with a layer of Au about 1000 Å thick. However, any suitable electrode may be used, such as a LiF/Al electrode.
In the embodiment of
Further Examples
Two arrays of OLEDs were sequentially fabricated on a single substrate. Although no stamping was used, organic layers were removed by reactive ion etching in between the fabrication of the two arrays. This demonstrates that the first array did not suffer adverse effects from exposure to reactive ion etching, and that the second array could be successfully fabricated using bottom electrodes that had been exposed to reactive ion etching.
In particular, a conventional substrate covered with a layer of ITO was obtained. This layer of ITO was not patterned, and serves as the common bottom electrode (anode) of each device in each of the arrays. As a result, this example is not intended to demonstrate an array where each pixel is individually addressable, but rather to demonstrate that working OLEDs may be fabricated. A 500 Å thick layer of α-NPD was blanket deposited over the ITO, followed by a 500 Å thick layer of Alq, to form the organic layers of a conventional single heterostructure OLED. The top electrodes (cathodes) of the first array only were then deposited through shadow masks. The first array was confined to less than half of the substrate.
The characteristics of the first array of devices were measured.
Reactive ion etching with a combination of CF4 and O2 was then used to remove the exposed organic layers, i.e., the parts of the organic layers not covered by the top electrodes of the first array of devices. The characteristics of the first array of devices were then measured again. Lines 2120 and 2125 of
A second 500 Å thick layer of α-NPD was then blanket deposited over the entire substrate, including the first array of devices, followed by a second 500 Å thick layer of Alq, to form the organic layers of a conventional single heterostructure OLED. The top electrodes of the second array were then deposited through a shadow mask onto a portion of the substrate not occupied by the first array.
The characteristics of the second array of devices were measured. Lines 2130 and 2135 of
Reactive ion etching with a combination of CF4 and O2 was then used to remove the exposed organic layers, i.e., the parts of the organic layers not covered by the top electrodes of the second array of devices. This reactive ion etching also removed the organic material that had been deposited over the first array of devices. The characteristics of the second array of devices were then measured again. Lines 2140 and 2145 of
The closeness of lines 2140, 2145, 2150 and 2155 to the other lines on
Conclusion
The method of the present invention has several advantages over previously reported patterning techniques. For example, the present method is very cost-effective, because the stamps are reusable. In embodiments where the stamps have metal layers, the stamps are reusable after the metal layers are removed by wet etching. The method of the present invention also offers high throughput. Large areas, such as display panels, can be patterned in one step.
Additionally, the method of the present invention is well suited for roll-to-roll fabrication processes that use flexible plastic substrates. By using roller stamps, large area patterning can be performed more easily for flexible substrates, since optimum pressure can be applied with smaller forces due to decreased contact areas. The method of the present invention allows simple, cost-effective and high throughput fabrication of OLEDs and other electronic devices and can be applied to the fabrication of flat panel displays, for example.
The embodiment of
While the present invention is described with respect to particular examples and preferred embodiments, it is understood that the present invention is not limited to these examples and embodiments. In particular, the present invention is not limited to OLEDs, and may be applied to a wide variety of electronic devices. In addition, with respect to OLEDs, the present invention is not limited to the particular examples and embodiments described. The present invention as claimed therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art.
Forrest, Stephen R., Burrows, Paul E., Kim, Changsoon, Zhou, Theodore
Patent | Priority | Assignee | Title |
10000517, | Dec 17 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10003033, | Feb 18 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10003034, | Sep 30 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10008677, | Jan 13 2011 | UNIVERSAL DISPLAY CORPORATION | Materials for organic light emitting diode |
10008678, | Dec 12 2008 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10008679, | Apr 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10020466, | Jul 08 2015 | UNIVERSAL DISPLAY CORPORATION | Flexible multilayer scattering substrate used in OLED |
10027869, | Mar 21 2016 | UNIVERSAL DISPLAY CORPORATION | Flash optimized using OLED display |
10033000, | Nov 15 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10033002, | Nov 09 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10033004, | Jun 01 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10038151, | Nov 12 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10038167, | Jan 08 2015 | The Regents of the University of Michigan | Thick-ETL OLEDs with sub-ITO grids with improved outcoupling |
10043987, | Sep 29 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10056565, | Nov 20 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10056566, | Mar 23 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10062738, | Nov 27 2013 | The Regents of the University of Michigan | Devices combining thin film inorganic LEDs with organic LEDs and fabrication thereof |
10069081, | Dec 07 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10069090, | Nov 20 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10074806, | Aug 20 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10079349, | May 27 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10084143, | Sep 16 2008 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent materials |
10096592, | Jan 12 2011 | UNIVERSAL DISPLAY CORPORATION | OLED lighting device with short tolerant structure |
10109799, | May 21 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10109815, | Nov 01 2011 | UNIVERSAL DISPLAY CORPORATION | Reducing OLED device efficiency at low luminance |
10115930, | Jul 08 2014 | UNIVERSAL DISPLAY CORPORATION; Kent State University | Combined internal and external extraction layers for enhanced light outcoupling for organic light emitting device |
10121975, | Jul 03 2013 | University of Southern California | Organic electroluminescent materials and devices |
10128319, | Sep 18 2015 | UNIVERSAL DISPLAY CORPORATION | Hybrid display |
10128450, | Oct 23 2013 | University of Southern California | Organic electroluminescent materials and devices |
10128468, | Sep 19 2014 | UNIVERSAL DISPLAY CORPORATION | Nozzle assembly and nozzle array for OVJP |
10135006, | Jan 04 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10135007, | Sep 29 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10135008, | Jan 07 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10144867, | Feb 13 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10147360, | Mar 31 2015 | UNIVERSAL DISPLAY CORPORATION | Rugged display device architecture |
10147892, | Dec 07 2010 | The University of Southern California | Organic electroluminescent materials and devices |
10153443, | Jul 19 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10153445, | Nov 21 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10158089, | May 27 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10158090, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10164000, | Jan 12 2011 | UNIVERSAL DISPLAY CORPORATION | OLED lighting device with short tolerant structure |
10170701, | Mar 04 2016 | UNIVERSAL DISPLAY CORPORATION | Controlled deposition of materials using a differential pressure regime |
10177126, | Dec 16 2014 | UNIVERSAL DISPLAY CORPORATION | Tunable OLED lighting source |
10177201, | Oct 01 2008 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture |
10177316, | Feb 09 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10177318, | Oct 29 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10178738, | Aug 30 2013 | UNIVERSAL DISPLAY CORPORATION | Intelligent dimming lighting |
10181564, | Aug 26 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10186672, | Sep 03 2008 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10192936, | Oct 01 2008 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture |
10199581, | Jul 01 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10199582, | Sep 03 2013 | University of Southern California | Organic electroluminescent materials and devices |
10205105, | Aug 15 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10208026, | Mar 18 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10211413, | Jan 17 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10211429, | Dec 19 2014 | The Regents of the University of Michigan | Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces |
10214551, | Jul 25 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10229956, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
10229958, | Nov 27 2013 | The Regents of the University of Michigan | Devices combining thin film inorganic LEDs with organic LEDs and fabrication thereof |
10229960, | Aug 02 2016 | UNIVERSAL DISPLAY CORPORATION | OLED displays with variable display regions |
10230060, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10236456, | Apr 11 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10236458, | Oct 24 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10243023, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | Top emission AMOLED displays using two emissive layers |
10243162, | Jun 17 2015 | UNIVERSAL DISPLAY CORPORATION | Close illumination system |
10243172, | May 30 2012 | UNIVERSAL DISPLAY CORPORATION | Luminaire and individually replaceable components |
10249685, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
10249834, | May 18 2004 | The University of Southern California; UNIVERSAL DISPLAY CORPORATION | Carbene metal complexes as OLED materials |
10253252, | Dec 30 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10256411, | May 21 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10256419, | May 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10256427, | Apr 15 2014 | UNIVERSAL DISPLAY CORPORATION | Efficient organic electroluminescent devices |
10263050, | Sep 18 2015 | UNIVERSAL DISPLAY CORPORATION | Hybrid display |
10263198, | May 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10270046, | Mar 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10276805, | May 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10276809, | Apr 05 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10283577, | Oct 19 2012 | UNIVERSAL DISPLAY CORPORATION | One-way transparent display |
10290816, | Nov 16 2015 | The Regents of the University of Michigan | Organic electroluminescent materials and devices |
10297762, | Jul 09 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10297769, | Jun 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10297770, | Mar 27 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10301338, | May 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10304906, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
10312450, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10312458, | Mar 23 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10340313, | Jun 17 2011 | UNIVERSAL DISPLAY CORPORATION | Non-common capping layer on an organic device |
10340464, | Nov 10 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10355222, | Feb 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10355227, | Dec 16 2013 | UNIVERSAL DISPLAY CORPORATION | Metal complex for phosphorescent OLED |
10361375, | Oct 06 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10361381, | Sep 03 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10367154, | Feb 21 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10367161, | Dec 13 2012 | UNIVERSAL DISPLAY CORPORATION | System and method for matching electrode resistances in OLED light panels |
10374017, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
10374171, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10374173, | Apr 28 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10381579, | May 06 2005 | UNIVERSAL DISPLAY CORPORATION | Stability OLED materials and devices |
10381580, | Feb 23 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10388890, | Feb 23 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent heterocyclic carbene metal complexes and devices containing the same |
10388892, | Oct 29 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10388893, | Oct 29 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10388894, | Sep 25 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10400163, | Feb 08 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10403825, | Feb 27 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10403826, | May 07 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10403830, | May 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10403831, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10411200, | Aug 07 2014 | UNIVERSAL DISPLAY CORPORATION | Electroluminescent (2-phenylpyridine)iridium complexes and devices |
10411201, | Nov 12 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10418562, | Feb 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10418568, | Jun 01 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10418569, | Jan 25 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10454046, | Dec 09 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10457699, | May 02 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10457864, | Feb 09 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10460663, | May 31 2016 | UNIVERSAL DISPLAY CORPORATION | Architecture for very high resolution AMOLED display backplane |
10461260, | Jun 03 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10468609, | Jun 02 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10468633, | Jun 05 2013 | Kent State University | Microlens array architectures for enhanced light outcoupling from an OLED array |
10476010, | Nov 30 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10477646, | Aug 30 2013 | UNIVERSAL DISPLAY CORPORATION | Intelligent dimming lighting |
10483477, | May 28 2014 | The Regents of the University of Michigan; The University of Southern California | Excited state management |
10483487, | Mar 15 2013 | The Trustees of Princeton University | Electronic device with reduced non-device edge area |
10483489, | Aug 12 2016 | UNIVERSAL DISPLAY CORPORATION | Integrated circular polarizer and permeation barrier for flexible OLEDs |
10483498, | Apr 22 2016 | UNIVERSAL DISPLAY CORPORATION | High efficiency vapor transport sublimation source using baffles coated with source material |
10490753, | Dec 15 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10490774, | Jun 17 2015 | UNIVERSAL DISPLAY CORPORATION | Flexible AMOLED display |
10505127, | Sep 19 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10505137, | Mar 16 2012 | UNIVERSAL DISPLAY CORPORATION | Electronic device with reduced non-device edge area |
10510968, | Nov 09 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10510973, | Dec 17 2014 | UNIVERSAL DISPLAY CORPORATION | Color-stable organic light emitting diode stack |
10514136, | Mar 25 2013 | UNIVERSAL DISPLAY CORPORATION | Lighting devices |
10522769, | Aug 18 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10522776, | May 23 2016 | UNIVERSAL DISPLAY CORPORATION | OLED device structures |
10529931, | Mar 24 2015 | UNIVERSAL DISPLAY CORPORATION | Organic Electroluminescent materials and devices |
10529955, | Jan 18 2017 | Pictiva Displays International Limited | Method for producing an organic electronic device |
10547013, | May 15 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10566534, | Oct 12 2015 | UNIVERSAL DISPLAY CORPORATION | Apparatus and method to deliver organic material via organic vapor-jet printing (OVJP) |
10566546, | Jul 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10566547, | Jul 11 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10566552, | Apr 13 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10578883, | Aug 19 2013 | UNIVERSAL DISPLAY CORPORATION | Autostereoscopic displays |
10580832, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
10580984, | Mar 04 2016 | UNIVERSAL DISPLAY CORPORATION | Controlled deposition of materials using a differential pressure regime |
10586486, | Sep 14 2012 | UNIVERSAL DISPLAY CORPORATION | Lifetime OLED display |
10593890, | Apr 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10593892, | Oct 01 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10593896, | Sep 03 2008 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10593900, | Apr 21 2005 | UNIVERSAL DISPLAY CORPORATION | Non-blocked phosphorescent OLEDs |
10600966, | Feb 27 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10600967, | Feb 18 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10600975, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10600981, | Aug 24 2017 | UNIVERSAL DISPLAY CORPORATION | Exciplex-sensitized fluorescence light emitting system |
10608185, | Oct 17 2016 | UNIVERAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10608186, | Sep 14 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10608188, | Sep 11 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10629820, | Jan 18 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10636978, | Dec 30 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10636983, | May 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10644247, | Feb 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10644251, | Dec 04 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10651403, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10654272, | Jan 12 2018 | UNIVERSAL DISPLAY CORPORATION | Valved micronozzle array for high temperature MEMS application |
10662196, | Nov 17 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10672996, | Sep 03 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10672997, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10672998, | Mar 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10680183, | Feb 15 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10680184, | Jul 11 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10680187, | Sep 23 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10680188, | Nov 11 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10680189, | Jan 13 2011 | UNIVERSAL DISPLAY CORPORATION | Materials for organic light emitting diodes |
10686140, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10686143, | Mar 05 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10686159, | Jun 26 2015 | UNIVERSAL DISPLAY CORPORATION | OLED devices having improved efficiency |
10693082, | Apr 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10700134, | May 27 2014 | UNIVERSAL DISPLAY CORPORATION | Low power consumption OLED display |
10700293, | Jun 26 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10704144, | Oct 12 2015 | UNIVERSAL DISPLAY CORPORATION | Apparatus and method for printing multilayer organic thin films from vapor phase in an ultra-pure gas ambient |
10707423, | Feb 21 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10707427, | Feb 09 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10720587, | Jul 19 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10727423, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10741775, | Mar 24 2003 | The University of Southern California | Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir |
10741780, | Mar 10 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10745431, | Mar 08 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10749113, | Sep 29 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10749114, | Aug 20 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10749121, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10749122, | Jan 07 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10749123, | Mar 27 2014 | UNIVERSAL DISPLAY CORPORATION | Impact resistant OLED devices |
10756141, | Jul 28 2016 | UNIVERSAL DISPLAY CORPORATION | Very high resolution stacked OLED display |
10770664, | Sep 21 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10770673, | Nov 28 2017 | The Regents of the University of Michigan | Highly reliable stacked white organic light emitting device |
10770690, | Nov 15 2017 | The Regents of the University of Michigan | OLED with minimal plasmonic losses |
10777125, | Nov 27 2017 | UNIVERSAL DISPLAY CORPORATION | Multi-mode OLED display |
10777749, | May 07 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10777754, | Apr 11 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10783823, | Jan 04 2017 | UNIVERSAL DISPLAY CORPORATION | OLED device with controllable brightness |
10790455, | May 18 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10797112, | Jul 25 2018 | UNIVERSAL DISPLAY CORPORATION | Energy efficient OLED TV |
10797258, | Dec 13 2012 | UNIVERSAL DISPLAY CORPORATION | System and method for matching electrode resistances in OLED light panels |
10804475, | Jan 11 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10811618, | Dec 19 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10811620, | Oct 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent compounds, compositions and devices |
10811633, | Jun 17 2015 | UNIVERSAL DISPLAY CORPORATION | Method of increasing the flexibility of an AMOLDED display, a flexible display, and a product |
10818840, | May 05 2017 | UNIVERSAL DISPLAY CORPORATION | Segmented print bar for large-area OVJP deposition |
10818853, | Jun 04 2015 | University of Southern California | Organic electroluminescent materials and devices |
10822361, | Feb 22 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10822362, | May 11 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10825997, | Jun 25 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10825998, | Apr 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10833276, | Nov 21 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10839734, | Dec 23 2013 | UNIVERSAL DISPLAY CORPORATION | OLED color tuning by driving mode variation |
10840458, | May 25 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10840459, | May 18 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10844084, | Feb 22 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10844085, | Mar 29 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10847728, | Oct 01 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10847729, | Nov 20 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10854826, | Oct 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent compounds, compositions and devices |
10858729, | Jun 25 2014 | UNIVERSAL DISPLAY CORPORATION | Systems and methods of modulating flow during vapor jet deposition of organic materials |
10862046, | Mar 30 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10862054, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10862055, | May 05 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10862073, | Sep 25 2012 | UNIVERSAL DISPLAY CORPORATION; The Trustees of Princeton University | Barrier film for electronic devices and substrates |
10862074, | Dec 17 2012 | UNIVERSAL DISPLAY CORPORATION | Manufacturing flexible organic electronic devices |
10868261, | Nov 10 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10870668, | May 05 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10873036, | Jul 07 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10873037, | Mar 28 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10873038, | Mar 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10879487, | Oct 04 2018 | UNIVERSAL DISPLAY CORPORATION | Wearable OLED illumination device |
10886503, | Jun 05 2013 | UNIVERSAL DISPLAY CORPORATION; Kent State University | Microlens array architectures for enhanced light outcoupling from an OLED array |
10889754, | Feb 13 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10892426, | Sep 03 2008 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10897016, | Nov 14 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10910564, | Dec 07 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10910570, | Apr 28 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10910577, | Mar 28 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10910590, | Mar 27 2014 | UNIVERSAL DISPLAY CORPORATION | Hermetically sealed isolated OLED pixels |
10916704, | Apr 03 2018 | UNIVERSAL DISPLAY CORPORATION | Vapor jet printing |
10916721, | Apr 21 2005 | UNIVERSAL DISPLAY CORPORATION | Non-blocked phosphorescent OLEDs |
10930862, | Jun 01 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10930864, | May 10 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10930866, | Jul 25 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10934293, | May 18 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10941170, | May 03 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10944060, | May 11 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10944062, | May 18 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10950803, | Oct 13 2014 | UNIVERSAL DISPLAY CORPORATION | Compounds and uses in devices |
10957858, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10957861, | Dec 29 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10957866, | Jun 30 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10957870, | Sep 07 2012 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device |
10964757, | Jul 25 2018 | UNIVERSAL DISPLAY CORPORATION | Energy efficient OLED TV |
10964766, | Oct 19 2012 | UNIVERSAL DISPLAY CORPORATION | One-way transparent display |
10964893, | Nov 17 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10964895, | Sep 11 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10964904, | Jan 20 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10968226, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10971687, | Dec 14 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10975113, | Apr 21 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10978647, | Feb 15 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10978648, | Jun 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10978649, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10985328, | May 25 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10985331, | Jan 07 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10991895, | Oct 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10991896, | Jul 01 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10992252, | Dec 19 2017 | UNIVERSAL DISPLAY CORPORATION | Integrated photovoltaic window and light source |
10998507, | Nov 23 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10998508, | Oct 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
10998531, | Dec 12 2017 | UNIVERSAL DISPLAY CORPORATION | Segmented OVJP print bar |
11005051, | Jan 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11005052, | Apr 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11011709, | Oct 07 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11014386, | Apr 11 2016 | UNIVERSAL DISPLAY CORPORATION | Actuation mechanism for accurately controlling distance in OVJP printing |
11018193, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
11018309, | Aug 03 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11018319, | Mar 16 2012 | UNIVERSAL DISPLAY CORPORATION | Electronic device with reduced non-device edge area |
11024807, | Sep 14 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11024808, | Dec 29 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11024811, | Jul 09 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11024816, | Feb 18 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11031569, | May 28 2014 | The Regents of the University of Michigan; The University of Southern California | Excited state management |
11033924, | Jan 31 2018 | UNIVERSAL DISPLAY CORPORATION | Organic vapor jet print head with orthogonal delivery and exhaust channels |
11038115, | May 18 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and device |
11038117, | Apr 11 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11038137, | Apr 28 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11043641, | Nov 12 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11049907, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
11050028, | Jan 24 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11053268, | Jan 20 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11056540, | Mar 12 2019 | UNIVERSAL DISPLAY CORPORATION | Plasmonic PHOLED arrangement for displays |
11056657, | Feb 27 2015 | University Display Corporation; UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11056658, | Mar 19 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11062205, | Apr 06 2018 | UNIVERSAL DISPLAY CORPORATION | Hybrid neuromorphic computing display |
11063229, | Jun 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11069864, | Nov 11 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11075357, | Mar 16 2012 | UNIVERSAL DISPLAY CORPORATION | Edge barrier film for electronic devices |
11081647, | Apr 22 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11081658, | Oct 03 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11081659, | Jan 10 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11084838, | Apr 21 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and device |
11088324, | Mar 04 2016 | UNIVERSAL DISPLAY CORPORATION | Controlled deposition of materials using a differential pressure regime |
11088325, | Jan 18 2019 | UNIVERSAL DISPLAY CORPORATION | Organic vapor jet micro-print head with multiple gas distribution orifice plates |
11094891, | Mar 16 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11098245, | Feb 09 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11101434, | Apr 21 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11104988, | Feb 22 2018 | UNIVERSAL DISPLAY CORPORATION | Modular confined organic print head and system |
11107712, | Dec 26 2013 | Kateeva, Inc. | Techniques for thermal treatment of electronic devices |
11108000, | Aug 07 2014 | UNNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11108027, | Jan 11 2018 | UNIVERSAL DISPLAY CORPORATION | Printed metal gasket |
11114624, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11117897, | May 01 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11121320, | Jun 18 2018 | UNIVERSAL DISPLAY CORPORATION | Organic vapor jet print head with redundant groups of depositors |
11121322, | Oct 12 2015 | UNIVERSAL DISPLAY CORPORATION | Apparatus and method to deliver organic material via organic vapor-jet printing (OVJP) |
11121346, | Jun 26 2015 | UNIVERSAL DISPLAY CORPORATION | OLED devices having improved efficiency |
11127905, | Jul 29 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11127906, | Oct 03 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11139442, | Mar 12 2019 | UNIVERSAL DISPLAY CORPORATION | Nanopatch antenna outcoupling structure for use in OLEDs |
11139443, | Mar 31 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11139444, | Dec 12 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent devices containing a near-infrared down-conversion layer |
11142538, | Mar 12 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11145692, | Dec 12 2017 | UNIVERSAL DISPLAY CORPORATION | Hybrid wearable organic light emitting diode (OLED) illumination devices |
11145831, | Nov 20 2012 | UNIVERSAL DISPLAY CORPORATION | Osmium(IV) complexes for OLED materials |
11145837, | Dec 17 2014 | UNIVERSAL DISPLAY CORPORATION | Color stable organic light emitting diode stack |
11152579, | Dec 28 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11158820, | Mar 29 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11165028, | Mar 12 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11168103, | Nov 17 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11168391, | Apr 11 2016 | UNIVERSAL DISPLAY CORPORATION | Nozzle exit contours for pattern composition |
11170709, | Nov 27 2017 | UNIVERSAL DISPLAY CORPORATION | Multi-mode OLED display |
11174259, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11177452, | Sep 26 2012 | UNIVERSAL DISPLAY CORPORATION | Three stack hybrid white OLED for enhanced efficiency and lifetime |
11180519, | Feb 09 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11183541, | Jul 28 2016 | UNIVERSAL DISPLAY CORPORATION | Very high resolution stacked OLED display |
11183642, | Oct 03 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11183646, | Nov 07 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11189804, | Oct 03 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11189805, | May 27 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11192910, | Mar 29 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11196010, | Oct 03 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11196030, | Apr 22 2016 | UNIVERSAL DISPLAY CORPORATION | High efficiency vapor transport sublimation source using baffles coated with source material |
11201288, | May 26 2017 | UNIVERSAL DISPLAY CORPORATION | Generalized organic vapor jet depositor capable of high resolution printing and method for OVJP printing |
11201298, | Jan 09 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11201299, | May 04 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11201313, | Nov 29 2018 | UNIVERSAL DISPLAY CORPORATION | Enhanced outcoupling from surface plasmon modes in corrugated OLEDs |
11205751, | Mar 13 2012 | UNIVERSAL DISPLAY CORPORATION | Nozzle design for organic vapor jet printing |
11214587, | Nov 07 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11217757, | Mar 12 2018 | UNIVERSAL DISPLAY CORPORATION | Host materials for electroluminescent devices |
11217762, | Nov 30 2018 | UNIVERSAL DISPLAY CORPORATION | Surface-plasmon-pumped light emitting devices |
11220737, | Jun 25 2014 | UNIVERSAL DISPLAY CORPORATION | Systems and methods of modulating flow during vapor jet deposition of organic materials |
11222928, | Apr 01 2019 | UNIVERSAL DISPLAY CORPORATION | Display architecture with reduced number of data line connections |
11223032, | Nov 29 2016 | UNIVERSAL DISPLAY CORPORATION | Thin film barrier structure |
11228002, | Apr 22 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11228003, | Apr 22 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11228004, | Jun 22 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11228010, | Jul 26 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11232743, | Jan 04 2017 | UNIVERSAL DISPLAY CORPORATION | OLED device with controllable brightness |
11233203, | Sep 06 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11233204, | Dec 14 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11233205, | Dec 14 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11239432, | Oct 14 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11239433, | Jul 26 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11239434, | Feb 09 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11245080, | Apr 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11245081, | Feb 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11245086, | Mar 12 2019 | UNIVERSAL DISPLAY CORPORATION | Nano-objects for purcell enhancement, out-coupling and engineering radiation pattern |
11254697, | Feb 22 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11261207, | Jun 25 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11267012, | Jun 25 2014 | UNIVERSAL DISPLAY CORPORATION | Spatial control of vapor condensation using convection |
11267834, | Jan 26 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11271177, | Jan 11 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11276829, | Mar 31 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11279722, | Mar 12 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11289659, | Aug 20 2010 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11292245, | Jan 03 2020 | The Regents of the University of Michigan | Microelectromechanical shutters for organic vapor jet printing |
11296283, | Jun 04 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11302749, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
11302872, | Sep 09 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11309522, | Mar 16 2012 | UNIVERSAL DISPLAY CORPORATION; The Trustees of Princeton University | Electronic device with reduced non-device edge area |
11316113, | Aug 20 2010 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11322691, | Jul 26 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11325932, | Feb 08 2019 | UNIVERSAL DISPLAY CORPORATION; UNIVERSAL DISPLAY CORPORATION, | Organic electroluminescent materials and devices |
11335864, | May 15 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11338319, | Apr 30 2014 | Kateeva, Inc. | Gas cushion apparatus and techniques for substrate coating |
11339182, | Jun 07 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11342509, | Feb 09 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11342510, | Oct 06 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11342513, | May 04 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11342515, | Apr 13 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11342516, | Oct 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11342526, | Jan 29 2019 | The Regents of the University of Michigan | Hybrid organic light emitting device |
11349083, | Aug 10 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11349087, | Oct 29 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11349099, | Jan 25 2019 | The Regents of the University of Michigan | Method of fabricating a light emitting device having a polymer film with a specified surface rouggness |
11362310, | Nov 20 2017 | The Regents of the University of Michigan | Organic light-emitting devices using a low refractive index dielectric |
11362311, | Nov 17 2017 | The Regents of the University of Michigan | Sub-electrode microlens array for organic light emitting devices |
11367840, | Jan 26 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11370809, | Feb 08 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11374172, | Dec 22 2006 | The Regents of the University of Michigan; The Trustees of Princeton University | Organic vapor jet deposition using an exhaust |
11374180, | Jan 13 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11374181, | Aug 14 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11377459, | May 05 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11380854, | Mar 23 2009 | UNIVERSAL DISPLAY CORPORATION | Heteroleptic iridium complexes as dopants |
11380855, | Nov 09 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11390639, | Apr 13 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11404650, | May 06 2005 | UNIVERSAL DISPLAY CORPORATION | Stability OLED materials and devices |
11404653, | Jun 04 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11424419, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11424420, | Sep 07 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11427607, | May 02 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11437591, | Aug 24 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11444249, | Sep 07 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11450713, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
11450822, | May 25 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11456423, | Jul 09 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11459349, | May 25 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11462697, | Aug 22 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11469382, | Jul 12 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11469383, | Oct 08 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11469384, | Nov 02 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11476430, | Oct 15 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11482683, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11482684, | Dec 09 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11482685, | Sep 03 2008 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11485706, | Sep 11 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11489119, | Jan 21 2014 | Kateeva, Inc. | Apparatus and techniques for electronic device encapsulation |
11495749, | Apr 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11495752, | Oct 08 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11495754, | May 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11495755, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11495756, | May 07 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11495757, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11502134, | May 27 2014 | UNIVERSAL DISPLAY CORPORATION | Low power consumption OLED display |
11502263, | Oct 04 2018 | UNIVERSAL DISPLAY CORPORATION | Wearable OLED illumination device |
11508913, | Aug 10 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11512093, | Mar 04 2019 | UNIVERSAL DISPLAY CORPORATION | Compound used for organic light emitting device (OLED), consumer product and formulation |
11515482, | Oct 23 2018 | UNIVERSAL DISPLAY CORPORATION | Deep HOMO (highest occupied molecular orbital) emitter device structures |
11515489, | Nov 28 2018 | UNIVERSAL DISPLAY CORPORATION | Host materials for electroluminescent devices |
11515493, | Jan 11 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11515494, | May 04 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11522140, | Aug 17 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11532683, | Oct 19 2012 | UNIVERSAL DISPLAY CORPORATION | One-way transparent display |
11535797, | Feb 13 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11539031, | Oct 03 2016 | Regents of the University of Michigan | Enhanced OLED outcoupling by suppressing surface plasmon modes |
11542289, | Jan 26 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11545636, | Dec 15 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11545637, | Jan 13 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11548905, | Dec 15 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11552159, | Jun 18 2018 | UNIVERSAL DISPLAY CORPORATION | OLED display with all organic thin film layers patterned |
11552247, | Mar 20 2019 | Trustees of Boston University | Organic vapor jet nozzle with shutter |
11552261, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11552278, | May 08 2018 | UNIVERSAL DISPLAY CORPORATION | Integrated photobiomodulation device |
11555048, | Dec 01 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11557733, | Mar 12 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11557738, | Feb 22 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11560398, | May 07 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11566034, | Jan 20 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11566035, | Apr 21 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11569480, | Mar 12 2019 | UNIVERSAL DISPLAY CORPORATION | Plasmonic OLEDs and vertical dipole emitters |
11584991, | Oct 12 2015 | UNIVERSAL DISPLAY CORPORATION | Apparatus and method for printing multilayer organic thin films from vapor phase in an ultra-pure gas ambient |
11588121, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11588140, | Jan 12 2018 | UNIVERSAL DISPLAY CORPORATION | Organic vapor jet print head for depositing thin film features with high thickness uniformity |
11591356, | Apr 21 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11591686, | Jun 25 2014 | UNIVERSAL DISPLAY CORPORATION | Methods of modulating flow during vapor jet deposition of organic materials |
11594697, | Apr 21 2005 | UNIVERSAL DISPLAY CORPORATION | Non-blocked phosphorescent OLEDs |
11600777, | Jun 18 2018 | UNIVERSAL DISPLAY CORPORATION | Organic vapor jet print head with redundant groups of depositors |
11600782, | Feb 27 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11600787, | Aug 30 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11600791, | Mar 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11605789, | Sep 03 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11605791, | Sep 01 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11608321, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11611042, | Aug 20 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11613550, | Apr 30 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes |
11616203, | Apr 17 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11621300, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
11623936, | Dec 11 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11626563, | Sep 03 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11633968, | Jun 13 2008 | Kateeva, Inc. | Low-particle gas enclosure systems and methods |
11634445, | May 21 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11637251, | Mar 23 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11637261, | Mar 12 2019 | UNIVERSAL DISPLAY CORPORATION | Nanopatch antenna outcoupling structure for use in OLEDs |
11637271, | Dec 17 2012 | UNIVERSAL DISPLAY CORPORATION | Manufacturing flexible organic electronic devices |
11639363, | Apr 22 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11641774, | Sep 29 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11647647, | Nov 29 2018 | UNIVERSAL DISPLAY CORPORATION | Enhanced outcoupling from surface plasmon modes in corrugated OLEDs |
11647667, | Jun 14 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent compounds and organic light emitting devices using the same |
11653543, | Mar 12 2019 | UNIVERSAL DISPLAY CORPORATION | Plasmonic PHOLED arrangement for displays |
11653558, | Dec 16 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11663459, | Apr 06 2018 | UNIVERSAL DISPLAY CORPORATION | Hybrid neuromorphic computing display |
11665951, | Sep 25 2012 | UNIVERSAL DISPLAY CORPORATION; The Trustees of Princeton University | Barrier film for electronic devices and substrates |
11672165, | Nov 28 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11672175, | Apr 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11672176, | Nov 28 2018 | UNIVERSAL DISPLAY CORPORATION | Host materials for electroluminescent devices |
11678499, | Jul 27 2017 | UNIVERSAL DISPLAY CORPORATION | Use of singlet-triplet gap hosts for increasing stability of blue phosphorescent emission |
11678563, | Mar 29 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11678565, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11678567, | Feb 27 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11683973, | Jan 31 2019 | UNIVERSAL DISPLAY CORPORATION | Use of thin film metal with stable native oxide for solder wetting control |
11683981, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11685754, | Jul 22 2019 | UNIVERSAL DISPLAY CORPORATION | Heteroleptic organic electroluminescent materials |
11685756, | Nov 07 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11690284, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11690285, | Nov 28 2018 | UNIVERSAL DISPLAY CORPORATION | Electroluminescent devices |
11690286, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11692132, | Feb 09 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11696459, | Sep 07 2012 | UNIVERSAL DISPLAY CORPORATION | Phosphorescence-sensitized delayed fluorescence light emitting system |
11696492, | Sep 07 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11697653, | Oct 21 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11697661, | Feb 22 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11697662, | Feb 09 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11700756, | Jul 25 2018 | UNIVERSAL DISPLAY CORPORATION | Energy efficient OLED TV |
11700765, | Jan 10 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11700766, | Mar 12 2018 | UNIVERSAL DISPLAY CORPORATION | Host materials for electroluminescent devices |
11702420, | May 01 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11706972, | Sep 08 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11706980, | Nov 28 2018 | UNIVERSAL DISPLAY CORPORATION | Host materials for electroluminescent devices |
11708355, | Aug 01 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11711933, | May 23 2016 | UNIVERSAL DISPLAY CORPORATION | OLED device structures |
11711968, | Oct 07 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11711969, | Oct 03 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11711977, | May 25 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11716863, | May 11 2020 | UNIVERSAL DISPLAY CORPORATION | Hybrid display architecture |
11716898, | Feb 09 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11716899, | Nov 28 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11716900, | May 30 2018 | UNIVERSAL DISPLAY CORPORATION | Host materials for electroluminescent devices |
11716902, | Dec 07 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11718634, | Sep 14 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11723269, | Aug 22 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11725021, | Mar 29 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11725022, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11731975, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11737349, | Dec 12 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11739081, | Mar 11 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11744097, | May 28 2014 | The Regents of the University of Michigan; The University of Southern California | Excited state management |
11744141, | Aug 09 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11744142, | Aug 10 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11744151, | May 07 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11746122, | Mar 12 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11746408, | Feb 22 2018 | UNIVERSAL DISPLAY CORPORATION | Modular confined organic print head and system |
11751426, | Oct 18 2016 | UNIVERSAL DISPLAY CORPORATION | Hybrid thin film permeation barrier and method of making the same |
11751455, | Jun 17 2011 | UNIVERSAL DISPLAY CORPORATION | Non-common capping layer on an organic device |
11751466, | May 11 2020 | UNIVERSAL DISPLAY CORPORATION | Apparatus and method to deliver organic material via organic vapor jet printing (OVJP) |
11751468, | Mar 04 2016 | UNIVERSAL DISPLAY CORPORATION | Controlled deposition of materials using a differential pressure regime |
11753425, | Jul 11 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11753427, | May 04 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11758804, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11758807, | Feb 22 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11760770, | Feb 22 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11765965, | Oct 30 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11765966, | Jan 24 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11765968, | Jan 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11765970, | Jul 26 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11773320, | Feb 21 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11778889, | Jul 20 2020 | UNIVERSAL DISPLAY CORPORATION | Height measurement and control in confined spaces for vapor deposition system |
11778895, | Jan 13 2020 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11778897, | Sep 20 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11778898, | May 18 2004 | The University of Southern California; UNIVERSAL DISPLAY CORPORATION | Carbene metal complexes as OLED materials |
11780829, | Jan 30 2019 | The University of Southern California | Organic electroluminescent materials and devices |
11780865, | Jan 09 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11785804, | Oct 19 2012 | UNIVERSAL DISPLAY CORPORATION | One way transparent display |
11793015, | Mar 12 2019 | UNIVERSAL DISPLAY CORPORATION | Nano-objects for purcell enhancement, out-coupling and engineering radiation pattern |
11793059, | Jan 11 2018 | UNIVERSAL DISPLAY CORPORATION | Printed metal gasket |
11793066, | Apr 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11793073, | May 06 2018 | UNIVERSAL DISPLAY CORPORATION | Host materials for electroluminescent devices |
11795385, | Feb 13 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11802136, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11812622, | Sep 25 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent compounds and devices |
11812624, | Jan 30 2019 | The University of Southern California | Organic electroluminescent materials and devices |
11814403, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11818946, | Jan 11 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11818948, | Dec 29 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11818949, | Apr 06 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11820783, | Sep 06 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11825687, | Jul 17 2019 | The Regents of the University of Michigan; The University of Southern California | Organic light emitting device |
11825734, | Apr 13 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11825735, | Nov 28 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11825736, | Nov 19 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11827651, | May 13 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11832456, | Nov 23 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11832475, | Jan 25 2019 | The Regents of the University of Michigan | Flexible electronic display device |
11832504, | Nov 25 2019 | The Regents of the University of Michigan | System and method for organic electronic device patterning |
11832507, | Nov 12 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11832510, | Jun 23 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11834459, | Dec 12 2018 | UNIVERSAL DISPLAY CORPORATION | Host materials for electroluminescent devices |
11837989, | Dec 19 2017 | UNIVERSAL DISPLAY CORPORATION | Integrated photovoltaic window and light source |
11839124, | Jul 25 2018 | UNIVERSAL DISPLAY CORPORATION | Energy efficient OLED TV |
11839139, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11839141, | Nov 02 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11839142, | May 04 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11844267, | May 25 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11845764, | Jan 26 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11864458, | Oct 08 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11871607, | Mar 16 2012 | UNIVERSAL DISPLAY CORPORATION; The Trustees of Princeton University | Electronic device with reduced non-device edge area |
11871652, | Feb 21 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11871653, | Feb 22 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11877489, | Sep 29 2020 | UNIVERSAL DISPLAY CORPORATION | High color gamut OLED displays |
11881161, | Jan 04 2017 | UNIVERSAL DISPLAY CORPORATION | OLED device with controllable brightness |
11882759, | Apr 13 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11889708, | Nov 14 2019 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11889747, | Oct 01 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11895853, | Jan 17 2019 | The Regents of the University of Michigan | Organic photovoltaic device having a lateral charge transport channel |
11903300, | Nov 18 2019 | UNIVERSAL DISPLAY CORPORATION | Pixel configurations for high resolution OVJP printed OLED displays |
11903302, | Dec 16 2020 | UNIVERSAL DISPLAY CORPORATION | Organic vapor jet printing system |
11903305, | Sep 24 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11903306, | Jun 20 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11910699, | Aug 10 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11910700, | Mar 23 2009 | UNIVERSAL DISPLAY CORPORATION | Heteroleptic iridium complexes as dopants |
11910701, | Mar 23 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11910702, | Nov 07 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent devices |
11910708, | Feb 09 2018 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11917843, | Jul 26 2017 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11917900, | Jan 28 2020 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
11917902, | Sep 25 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
6687266, | Nov 08 2002 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting materials and devices |
6858327, | Nov 08 2002 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting materials and devices |
6885025, | Jul 10 2003 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device structures for obtaining chromaticity stability |
6891326, | Nov 15 2002 | UNIVERSAL DISPLAY CORPORATION | Structure and method of fabricating organic devices |
6902833, | Apr 01 2003 | UNIVERSITY OF SOUTHERN CALIFORNIA, THE; UNIVERSAL DISPLAY CORPORATION | Materials and structures for enhancing the performance or organic light emitting devices |
6916554, | Nov 06 2002 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting materials and devices |
6951694, | Mar 29 2002 | UNIVERSITY OF SOUTHERN CALIFORNIA, THE | Organic light emitting devices with electron blocking layers |
6972431, | Nov 26 2003 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Multilayer organic photodetectors with improved performance |
6982179, | Nov 15 2002 | UNIVERSAL DISPLAY CORPORATION | Structure and method of fabricating organic devices |
6984546, | Mar 15 2001 | Delta Optoelectronics, Inc. | Method for forming a thin film light emitting device |
6995035, | Jun 16 2003 | Global Oled Technology LLC | Method of making a top-emitting OLED device having improved power distribution |
6995445, | Mar 14 2003 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Thin film organic position sensitive detectors |
7011897, | Aug 16 2002 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting materials and devices |
7018723, | Jul 25 2003 | UNIVERSAL DISPLAY CORPORATION | Materials and structures for enhancing the performance of organic light emitting devices |
7029765, | Apr 22 2003 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting devices having reduced pixel shrinkage |
7045952, | Mar 04 2004 | UNIVERSAL DISPLAY CORPORATION | OLEDs with mixed host emissive layer |
7053547, | Nov 29 2001 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Increased emission efficiency in organic light-emitting devices on high-index substrates |
7061011, | Nov 26 2003 | PRINCETON UNIVERSITY, TRUSTEES OF THE | Bipolar organic devices |
7070867, | Dec 05 2003 | SOUTHERN CALIFORNIA, THE UNIVERSITY OF | OLEDs having n-type doping |
7087321, | Apr 22 2003 | University Display Corporation | Organic light emitting devices having reduced pixel shrinkage |
7090928, | Apr 01 2003 | The University of Southern California | Binuclear compounds |
7114448, | Nov 06 2003 | Xerox Corporation | Method for large-area patterning dissolved polymers by making use of an active stamp |
7151339, | Jan 30 2004 | UNIVERSAL DISPLAY CORPORATION | OLED efficiency by utilization of different doping concentrations within the device emissive layer |
7154114, | May 18 2004 | University Display Corporation | Cyclometallated iridium carbene complexes for use as hosts |
7179543, | Oct 06 2003 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Doping of organic opto-electronic devices to extend reliability |
7194173, | Jul 16 2004 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Organic devices having a fiber structure |
7211823, | Jul 10 2003 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device structure for obtaining chromaticity stability |
7279232, | Jan 26 2004 | The University of Southern California | Electroluminescent stability |
7279704, | May 18 2004 | UNIVERSITY OF SOUTHERN CALIFORNIA, THE; UNIVERSAL DISPLAY CORPORATION | Complexes with tridentate ligands |
7285432, | Nov 15 2002 | UNIVERSAL DISPLAY CORPORATION | Structure and method of fabricating organic devices |
7338722, | Mar 24 2003 | UNIVERSITY OF SOUTHERN CALIFORNIA, THE | Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir |
7393599, | May 18 2004 | UNIVERSITY OF SOUTHERN CALIFORNIA, THE | Luminescent compounds with carbene ligands |
7429426, | Nov 06 2002 | The University of Southern California; UNIVERSAL DISPLAY CORPORATION | Organometallic compounds for use in electroluminescent devices |
7435256, | Nov 06 2003 | Boston Scientific Scimed, Inc | Method and apparatus for controlled delivery of active substance |
7445855, | May 18 2004 | UNIVERSAL DISPLAY CORPORATION | Cationic metal-carbene complexes |
7465678, | Mar 28 2003 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Deformable organic devices |
7474048, | Jun 01 2005 | The Trustees of Princeton University | Fluorescent filtered electrophosphorescence |
7482451, | Aug 16 2002 | UNIVERSITY OF SOUTHERN CALIFORNIA, THE | Organic light emitting materials with anionic ligand |
7491823, | May 18 2004 | UNIVERSITY OF SOUTHERN CALIFORNIA,THE | Luminescent compounds with carbene ligands |
7534505, | May 18 2004 | UNIVERSAL DISPLAY CORPORATION | Organometallic compounds for use in electroluminescent devices |
7553557, | Mar 29 2002 | The University of Southern California | Organic light emitting devices with electron blocking layers |
7579773, | Jun 05 2006 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Organic light-emitting device with a phosphor-sensitized fluorescent emission layer |
7582365, | Jan 10 2005 | UNIVERSAL DISPLAY CORPORATION | Reversibly reducible metal complexes as electron transporting materials for OLEDs |
7592539, | Nov 07 2003 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Solid state photosensitive devices which employ isolated photosynthetic complexes |
7598381, | Sep 11 2006 | SOUTHERN CALIFORNIA, THE UNIVERSITY OF | Near-infrared emitting organic compounds and organic devices using the same |
7598388, | May 18 2004 | UNIVERSAL DISPLAY CORPORATION | Carbene containing metal complexes as OLEDs |
7601436, | May 18 2004 | UNIVERSAL DISPLAY CORPORATION | Carbene metal complexes as OLED materials |
7601910, | Sep 06 2001 | The Trustees of Princeton University | Organic photovoltaic devices |
7622667, | Jan 25 2002 | ASCA | Photovoltaic fibers |
7655322, | May 18 2004 | TRUSTEES OF PRINCETON UNIVERSITY, THE | OLEDs utilizing macrocyclic ligand systems |
7655323, | May 18 2004 | UNIVERSAL DISPLAY CORPORATION | OLEDs utilizing macrocyclic ligand systems |
7683536, | Mar 31 2005 | TRUSTEES OF PRINCETON UNIVERSITY, THE | OLEDs utilizing direct injection to the triplet state |
7709100, | Jul 07 2004 | The University of Southern California | Electroluminescent efficiency |
7710017, | Sep 08 2006 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device having a transparent microcavity |
7724796, | Aug 29 2006 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Organic laser |
7776456, | Dec 03 2004 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting devices with an emissive region having emissive and non-emissive layers and method of making |
7795430, | Jan 10 2005 | The University of Southern California; UNIVERSAL DISPLAY CORPORATION | Reversibly reducible metal complexes as electron transporting materials for OLEDs |
7800295, | Sep 15 2006 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device having a microcavity |
7807275, | Apr 21 2005 | UNIVERSAL DISPLAY CORPORATION | Non-blocked phosphorescent OLEDs |
7824778, | Apr 01 2003 | The University of Southern California | Binuclear compounds |
7833074, | Sep 04 2007 | Global Oled Technology LLC | Method of making a top-emitting OLED device having improved power distribution |
7851072, | May 19 2005 | UNIVERSAL DISPLAY CORPORAITON | Stable and efficient electroluminescent materials |
7858507, | Feb 13 2008 | The Regents of the University of Michigan | Method and system for creating photosensitive array with integrated backplane |
7879401, | Dec 22 2006 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Organic vapor jet deposition using an exhaust |
7894694, | Jan 25 2002 | Merck Patent GmbH | Photovoltaic fibers |
7902374, | May 06 2005 | UNIVERSAL DISPLAY CORPORATION | Stability OLED materials and devices |
7915415, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof |
7951392, | Aug 16 2002 | Boston Scientific Scimed, Inc | Microarray drug delivery coatings |
7956192, | May 18 2004 | The University of Southern California; UNIVERSAL DISPLAY CORPORATION | Carbene containing metal complexes as OLEDs |
7964439, | Dec 20 2002 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Methods of fabricating devices by transfer of organic material |
7989090, | Sep 11 2006 | The Trustees of Princeton University; The University of Southern California; The Regents of the University of Michigan | Near infrared emitting organic compounds and organic devices using the same |
7993763, | May 10 2007 | UNIVERSAL DISPLAY CORPORATION | Organometallic compounds having host and dopant functionalities |
8007926, | May 18 2004 | The University of Southern California | Luminescent compounds with carbene ligands |
8007927, | Dec 28 2007 | UNIVERSAL DISPLAY CORPORATION | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
8021763, | Nov 23 2005 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Phosphorescent OLED with interlayer |
8040053, | Feb 09 2008 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device architecture for reducing the number of organic materials |
8043724, | Mar 24 2003 | The University of Southern California | Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir |
8053770, | Oct 14 2008 | UNIVERSAL DISPLAY CORPORATION | Emissive layer patterning for OLED |
8067100, | Sep 29 2008 | UNIVERSAL DISPLAY CORPORATION | Complexes with tridentate ligands |
8105700, | Jul 25 2003 | UNIVERSAL DISPLAY CORPORATION; The University of Southern California | Materials and structures for enhancing the performance of organic light emitting devices |
8114533, | May 18 2004 | UNIVERSAL DISPLAY CORPORATION; The University of Southern California | Carbene metal complexes as OLED materials |
8142909, | Nov 03 2006 | UNIVERSAL DISPLAY CORPORATION | Blue phosphorescent imidazophenanthridine materials |
8148891, | Oct 04 2005 | UNIVERSAL DISPLAY CORPORATION | Electron impeding layer for high efficiency phosphorescent OLEDs |
8221905, | Dec 28 2007 | UNIVERSAL DISPLAY CORPORATION | Carbazole-containing materials in phosphorescent light emitting diodes |
8222072, | Dec 20 2002 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Methods of fabricating devices by low pressure cold welding |
8227801, | Apr 26 2010 | UNIVERSAL DISPLAY CORPORATION | Bicarbzole containing compounds for OLEDs |
8235487, | Jan 05 2009 | KATEEVA, INC | Rapid ink-charging of a dry ink discharge nozzle |
8269317, | Nov 11 2010 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent materials |
8288187, | Jan 20 2010 | UNIVERSAL DISPLAY CORPORATION | Electroluminescent devices for lighting applications |
8310150, | Feb 04 2009 | The Regents of the University of Michigan | Light emitting device with high outcoupling |
8330152, | Dec 02 2009 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture with improved aperture ratio |
8330351, | Apr 20 2006 | UNIVERSAL DISPLAY CORPORATION | Multiple dopant emissive layer OLEDs |
8334545, | Mar 24 2010 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture |
8367223, | Nov 11 2008 | UNIVERSAL DISPLAY CORPORATION | Heteroleptic phosphorescent emitters |
8367850, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group |
8372528, | Mar 24 2003 | The University of Southern California | Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir |
8383202, | Jun 13 2008 | KATEEVA, INC | Method and apparatus for load-locked printing |
8383249, | Oct 04 2007 | UNIVERSAL DISPLAY CORPORATION | Complexes with tridentate ligands |
8409729, | Jul 28 2011 | UNIVERSAL DISPLAY CORPORATION | Host materials for phosphorescent OLEDs |
8415031, | Jan 24 2011 | UNIVERSAL DISPLAY CORPORATION | Electron transporting compounds |
8426035, | Sep 25 2008 | UNIVERSAL DISPLAY CORPORATION | Organoselenium materials and their uses in organic light emitting devices |
8426041, | May 18 2004 | UNIVERSAL DISPLAY CORPORATION; The University of Southern California | Carbene metal complexes as OLED materials |
8431243, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent materials containing iridium complexes |
8432095, | May 11 2011 | UNIVERSAL DISPLAY CORPORATION | Process for fabricating metal bus lines for OLED lighting panels |
8440326, | Jun 30 2008 | UNIVERSAL DISPLAY CORPORATION | Hole transport materials containing triphenylene |
8449990, | Jul 07 2004 | UNIVERSAL DISPLAY CORPORATION | Electroluminescent efficiency |
8450730, | Mar 31 2010 | The Regents of the University of Michigan | Light emitting device having peripheral emissive region |
8465851, | Feb 23 2004 | UNIVERSAL DISPLAY CORPORATION; The University of Southern California | Materials and structures for enhancing the performance of organic light emitting devices |
8466455, | Sep 17 2009 | UNIVERSAL DISPLAY CORPORATION | Device structure |
8476822, | Nov 09 2007 | UNIVERSAL DISPLAY CORPORATION | Saturated color organic light emitting devices |
8492006, | Feb 24 2011 | UNIVERSAL DISPLAY CORPORATION | Germanium-containing red emitter materials for organic light emitting diode |
8502445, | Jul 18 2011 | UNIVERSAL DISPLAY CORPORATION | RGBW OLED display for extended lifetime and reduced power consumption |
8513658, | Sep 04 2008 | UNIVERSAL DISPLAY CORPORATION | White phosphorescent organic light emitting devices |
8519130, | Dec 08 2006 | UNIVERSAL DISPLAY CORPORATION | Method for synthesis of iriduim (III) complexes with sterically demanding ligands |
8519384, | Sep 03 2008 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent materials |
8545996, | Nov 02 2009 | The University of Southern California | Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes |
8552420, | Aug 09 2011 | UNIVERSAL DISPLAY CORPORATION | OLED light panel with controlled brightness variation |
8556389, | Feb 04 2011 | Kateeva, Inc. | Low-profile MEMS thermal printhead die having backside electrical connections |
8557399, | Nov 09 2007 | UNIVERSAL DISPLAY CORPORATION | Stable blue phosphorescent organic light emitting devices |
8557400, | Apr 28 2009 | UNIVERSAL DISPLAY CORPORATION | Iridium complex with methyl-D3 substitution |
8563737, | Feb 23 2011 | UNIVERSAL DISPLAY CORPORATION | Methods of making bis-tridentate carbene complexes of ruthenium and osmium |
8564001, | May 21 2010 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device lighting panel |
8564192, | May 11 2011 | UNIVERSAL DISPLAY CORPORATION | Process for fabricating OLED lighting panels |
8569744, | Mar 30 2009 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture |
8580394, | Nov 19 2009 | The University of Southern California | 3-coordinate copper(I)-carbene complexes |
8580399, | Apr 08 2011 | UNIVERSAL DISPLAY CORPORATION | Substituted oligoazacarbazoles for light emitting diodes |
8580402, | Dec 28 2007 | UNIVERSAL DISPLAY CORPORATION | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
8586203, | May 20 2009 | UNIVERSAL DISPLAY CORPORATION | Metal complexes with boron-nitrogen heterocycle containing ligands |
8586204, | Dec 28 2007 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent emitters and host materials with improved stability |
8596747, | Jun 14 2007 | KATEEVA, INC | Modular printhead for OLED printing |
8603645, | May 19 2005 | UNIVERSAL DISPLAY CORPORATION | Stable and efficient electroluminescent materials |
8632145, | Jun 14 2007 | KATEEVA, INC | Method and apparatus for printing using a facetted drum |
8637345, | Dec 20 2002 | The Trustees of Princeton University | Methods of fabricating devices by low pressure cold welding |
8652652, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Single triphenylene chromophores in phosphorescent light emitting diodes |
8652653, | Jun 30 2008 | UNIVERSAL DISPLAY CORPORATION | Hole transport materials having a sulfur-containing group |
8652656, | Nov 14 2011 | UNIVERSAL DISPLAY CORPORATION | Triphenylene silane hosts |
8659036, | Jun 17 2011 | UNIVERSAL DISPLAY CORPORATION | Fine tuning of emission spectra by combination of multiple emitter spectra |
8664970, | Mar 14 2011 | UNIVERSAL DISPLAY CORPORATION | Method for accelerated lifetesting of large area OLED lighting panels |
8673458, | Jun 11 2010 | UNIVERSAL DISPLAY CORPORATION | Delayed fluorescence OLED |
8685540, | Apr 21 2005 | UNIVERSAL DISPLAY CORPORATION | Non-blocked phosphorescent OLEDs |
8691988, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Metal complexes of cyclometallated imidazo (1,2-f) phenanthridine (1,2-a:1′, 2′-c),quinazoline ligands and isoelectronic and benzannulated analogs thereof |
8692241, | Nov 08 2012 | UNIVERSAL DISPLAY CORPORATION | Transition metal complexes containing triazole and tetrazole carbene ligands |
8709615, | Jul 28 2011 | UNIVERSAL DISPLAY CORPORATION | Heteroleptic iridium complexes as dopants |
8710518, | May 12 2011 | UNIVERSAL DISPLAY CORPORATION | Flexible lighting devices |
8716484, | Dec 05 2012 | UNIVERSAL DISPLAY CORPORATION | Hole transporting materials with twisted aryl groups |
8720366, | Jun 13 2008 | KATEEVA, INC | Method and apparatus for load-locked printing |
8722205, | Mar 23 2009 | UNIVERSAL DISPLAY CORPORATION | Heteroleptic iridium complex |
8723209, | Apr 27 2012 | UNIVERSAL DISPLAY CORPORATION | Out coupling layer containing particle polymer composite |
8728858, | Aug 27 2012 | UNIVERSAL DISPLAY CORPORATION | Multi-nozzle organic vapor jet printing |
8742657, | Jun 11 2010 | UNIVERSAL DISPLAY CORPORATION | Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications |
8748011, | Feb 23 2011 | UNIVERSAL DISPLAY CORPORATION | Ruthenium carbene complexes for OLED material |
8748012, | May 25 2011 | UNIVERSAL DISPLAY CORPORATION | Host materials for OLED |
8754232, | Feb 23 2011 | UNIVERSAL DISPLAY CORPORATION | Methods of making bis-tridentate carbene complexes of ruthenium and osmium |
8764239, | Aug 16 2011 | UNIVERSAL DISPLAY CORPORATION | Dynamic stretchable OLED lamp |
8764255, | Oct 10 2012 | UNIVERSAL DISPLAY CORPORATION | Semi-rigid electronic device with a flexible display |
8766291, | Oct 28 2008 | The Regents of the University of Michigan | Stacked white OLED having separate red, green and blue sub-elements |
8766517, | Feb 03 2010 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device with conducting cover |
8766529, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Metal complexes of cyclometallated imidazo[1,2-Æ’]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof |
8766531, | Dec 14 2012 | UNIVERSAL DISPLAY CORPORATION | Wearable display |
8773013, | May 12 2011 | UNIVERSAL DISPLAY CORPORATION | Three dimensional OLED lamps |
8778508, | Dec 08 2006 | UNIVERSAL DISPLAY CORPORATION | Light-emitting organometallic complexes |
8778511, | Dec 12 2008 | UNIVERSAL DISPLAY CORPORATION | OLED stability via doped hole transport layer |
8795850, | May 19 2011 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent heteroleptic phenylbenzimidazole dopants and new synthetic methodology |
8802186, | Jun 13 2008 | KATEEVA, INC | Method and apparatus for load-locked printing |
8802195, | Jun 13 2008 | KATEEVA, INC | Method and apparatus for load-locked printing |
8807071, | Jun 13 2008 | KATEEVA, INC | Method and apparatus for load-locked printing |
8808799, | May 01 2009 | KATEEVA, INC | Method and apparatus for organic vapor printing |
8808881, | Mar 24 2003 | The University of Southern California | Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir |
8815411, | Nov 09 2007 | University of Southern California | Stable blue phosphorescent organic light emitting devices |
8815415, | Dec 12 2008 | UNIVERSAL DISPLAY CORPORATION | Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes |
8815626, | Feb 04 2011 | KATEEVA, INC | Low-profile MEMS thermal printhead die having backside electrical connections |
8822708, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Benzo-fused thiophene / triphenylene hybrid materials |
8827488, | Oct 01 2008 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture |
8836223, | Apr 18 2012 | UNIVERSAL DISPLAY CORPORATION | OLED panel with fuses |
8866377, | Dec 28 2006 | UNIVERSAL DISPLAY CORPORATION | Long lifetime phosphorescent organic light emitting device (OLED) structures |
8866416, | May 04 2011 | UNIVERSAL DISPLAY CORPORATION | Illumination source using LEDs and OLEDs |
8871361, | Feb 23 2011 | UNIVERSAL DISPLAY CORPORATION | Tetradentate platinum complexes |
8875648, | Jun 13 2008 | KATEEVA, INC | Method and apparatus for load-locked printing |
8883322, | Mar 08 2011 | UNIVERSAL DISPLAY CORPORATION | Pyridyl carbene phosphorescent emitters |
8884316, | Jun 17 2011 | UNIVERSAL DISPLAY CORPORATION | Non-common capping layer on an organic device |
8889864, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof |
8899171, | Jun 13 2008 | KATEEVA, INC | Gas enclosure assembly and system |
8902245, | Apr 07 2011 | UNIVERSAL DISPLAY CORPORATION | Method for driving quad-subpixel display |
8907560, | May 12 2011 | UNIVERSAL DISPLAY CORPORATION | Dynamic OLED lighting |
8912018, | Dec 17 2012 | UNIVERSAL DISPLAY CORPORATION | Manufacturing flexible organic electronic devices |
8926119, | Aug 04 2011 | UNIVERSAL DISPLAY CORPORATION | Extendable light source with variable light emitting area |
8927308, | May 12 2011 | UNIVERSAL DISPLAY CORPORATION | Method of forming bus line designs for large-area OLED lighting |
8927749, | Mar 07 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
8932734, | Oct 08 2010 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
8933468, | Mar 16 2012 | UNIVERSAL DISPLAY CORPORATION | Electronic device with reduced non-device edge area |
8940568, | Aug 31 2012 | UNIVERSAL DISPLAY CORPORATION | Patterning method for OLEDs |
8945722, | Oct 27 2006 | SOUTHERN CALIFORNIA, UNIVERSITY OF, THE; REGENTS OF THE UNIVERSITY OF MICHIGAN, THE | Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs |
8945727, | Sep 25 2008 | UNIVERSAL DISPLAY CORPORATION | Organoselenium materials and their uses in organic light emitting devices |
8946697, | Sep 16 2013 | UNIVERSAL DISPLAY CORPORATION | Iridium complexes with aza-benzo fused ligands |
8951601, | Nov 25 2005 | Seiko Epson Corporation | Electrochemical cell structure and method of fabrication |
8952362, | Aug 31 2012 | The Regents of the University of Michigan | High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion |
8952363, | Jan 16 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
8957579, | Sep 14 2012 | UNIVERSAL DISPLAY CORPORATION | Low image sticking OLED display |
8962073, | Nov 19 2004 | Massachusetts Institute of Technology | Method and apparatus for controlling film deposition |
8962383, | Aug 27 2012 | UNIVERSAL DISPLAY CORPORATION | Multi-nozzle organic vapor jet printing |
8963132, | Mar 25 2010 | UNIVERSAL DISPLAY CORPORATION | Solution processable doped triarylamine hole injection materials |
8968887, | Apr 28 2010 | UNIVERSAL DISPLAY CORPORATION | Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings |
8969116, | Jan 23 2012 | UNIVERSAL DISPLAY CORPORATION | Selective OLED vapor deposition using electric charges |
8969592, | Jan 10 2012 | UNIVERSAL DISPLAY CORPORATION | Heterocyclic host materials |
8979291, | May 07 2013 | UNIVERSAL DISPLAY CORPORATION | Lighting devices including transparent organic light emitting device light panels and having independent control of direct to indirect light |
8981363, | Sep 03 2013 | UNIVERSAL DISPLAY CORPORATION | Flexible substrate for OLED device |
8981640, | May 13 2011 | UNIVERSAL DISPLAY CORPORATION | Simplified patterned light panel |
8986780, | Nov 19 2004 | Massachusetts Institute of Technology | Method and apparatus for depositing LED organic film |
8987451, | Jan 03 2012 | UNIVERSAL DISPLAY CORPORATION | Synthesis of cyclometallated platinum(II) complexes |
9000459, | Mar 12 2013 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture having some blue subpixel components replaced with non-emissive volume containing via or functional electronic component and method of manufacturing thereof |
9005365, | Nov 19 2004 | Massachusetts Institute of Technology | Method and apparatus for depositing LED organic film |
9005771, | May 12 2009 | UNIVERSAL DISPLAY CORPORATION | 2-azatriphenylene materials for organic light emitting diodes |
9005772, | Feb 23 2011 | UNIVERSAL DISPLAY CORPORATION | Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials |
9017826, | Aug 26 2009 | University of Southern California | Visible/near-infrared porphyrin-tape/C60 organic photodetectors |
9018660, | Mar 25 2013 | UNIVERSAL DISPLAY CORPORATION | Lighting devices |
9023670, | Jun 14 2007 | KATEEVA, INC | Modular printhead for OLED printing |
9034483, | Sep 16 2008 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent materials |
9040962, | Apr 28 2010 | UNIVERSAL DISPLAY CORPORATION | Depositing premixed materials |
9041297, | May 20 2013 | UNIVERSAL DISPLAY CORPORATION | Large area lighting system with wireless control |
9048344, | Jun 13 2008 | KATEEVA, INC | Gas enclosure assembly and system |
9051344, | May 06 2005 | UNIVERSAL DISPLAY CORPORATION | Stability OLED materials and devices |
9054323, | Mar 15 2012 | UNIVERSAL DISPLAY CORPORATION | Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds |
9054343, | Jun 17 2011 | UNIVERSAL DISPLAY CORPORATION | Fine tuning of emission spectra by combination of multiple emitter spectra |
9054344, | Jan 20 2010 | UNIVERSAL DISPLAY CORPORATION | Electroluminescent devices for lighting applications |
9059412, | Jul 19 2012 | UNIVERSAL DISPLAY CORPORATION | Transition metal complexes containing substituted imidazole carbene as ligands and their application in OLEDs |
9065063, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof |
9065067, | Oct 28 2008 | The Regents of the University of Michigan | Stacked white OLED having separate red, green and blue sub-elements |
9067947, | Jan 16 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9070884, | Apr 13 2005 | UNIVERSAL DISPLAY CORPORATION | Hybrid OLED having phosphorescent and fluorescent emitters |
9073948, | May 14 2010 | UNIVERSAL DISPLAY CORPORATION | Azaborine compounds as host materials and dopants for PHOLEDs |
9076973, | Sep 03 2008 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent materials |
9093658, | Jun 07 2013 | UNIVERSAL DISPLAY CORPORATION | Pre-stressed flexible OLED |
9118017, | Feb 27 2012 | UNIVERSAL DISPLAY CORPORATION | Host compounds for red phosphorescent OLEDs |
9120290, | Oct 10 2012 | UNIVERSAL DISPLAY CORPORATION | Flexible screen backed with rigid ribs |
9123667, | Oct 04 2011 | UNIVERSAL DISPLAY CORPORATION | Power-efficient RGBW OLED display |
9123903, | Dec 28 2007 | UNIVERSAL DISPLAY CORPORATION | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
9130177, | Jan 13 2011 | UNIVERSAL DISPLAY CORPORATION | 5-substituted 2 phenylquinoline complexes materials for light emitting diode |
9130195, | Nov 22 2013 | UNIVERSAL DISPLAY CORPORATION | Structure to enhance light extraction and lifetime of OLED devices |
9140428, | Jun 11 2010 | UNIVERSAL DISPLAY CORPORATION | Triplet-triplet annihilation up-conversation for display and lighting applications |
9142778, | Nov 15 2013 | UNIVERSAL DISPLAY CORPORATION | High vacuum OLED deposition source and system |
9142786, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent materials |
9142788, | Nov 14 2011 | UNIVERSAL DISPLAY CORPORATION | Host materials for OLEDs |
9153786, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9156870, | Feb 25 2010 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent emitters |
9159945, | Dec 13 2012 | UNIVERSAL DISPLAY CORPORATION | System and method for matching electrode resistances in OLED light panels |
9163174, | Jan 04 2012 | UNIVERSAL DISPLAY CORPORATION | Highly efficient phosphorescent materials |
9166175, | Nov 27 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9170665, | Sep 14 2012 | UNIVERSAL DISPLAY CORPORATION | Lifetime OLED display |
9174433, | Jun 13 2008 | KATEEVA, INC | Method and apparatus for load-locked printing |
9175211, | Mar 03 2010 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent materials |
9178184, | Feb 21 2013 | UNIVERSAL DISPLAY CORPORATION | Deposition of patterned organic thin films |
9178185, | Aug 31 2012 | UNIVERSAL DISPLAY CORPORATION | Patterning method for OLEDS |
9181270, | Feb 28 2014 | UNIVERSAL DISPLAY CORPORATION | Method of making sulfide compounds |
9184397, | Mar 23 2009 | UNIVERSAL DISPLAY CORPORATION | Heteroleptic iridium complexes as dopants |
9184399, | May 04 2012 | UNIVERSAL DISPLAY CORPORATION | Asymmetric hosts with triaryl silane side chains |
9184419, | May 12 2011 | UNIVERSAL DISPLAY CORPORATION | Flexible lighting devices |
9190620, | Mar 01 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9190621, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Materials for organic light emitting diode |
9190623, | Nov 20 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9193745, | Nov 15 2011 | UNIVERSAL DISPLAY CORPORATION | Heteroleptic iridium complex |
9196860, | Dec 04 2012 | UNIVERSAL DISPLAY CORPORATION | Compounds for triplet-triplet annihilation upconversion |
9209411, | Dec 07 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9210810, | Jul 12 2012 | UNIVERSAL DISPLAY CORPORATION | Method of fabricating flexible devices |
9212197, | May 19 2011 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent heteroleptic phenylbenzimidazole dopants |
9214510, | Jan 12 2011 | UNIVERSAL DISPLAY CORPORATION | OLED lighting device with short tolerant structure |
9217004, | Nov 21 2011 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting materials |
9224958, | Jul 19 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9231218, | Jul 10 2012 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent emitters containing dibenzo[1,4]azaborinine structure |
9231227, | Oct 28 2011 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture |
9246036, | Aug 20 2012 | UNIVERSAL DISPLAY CORPORATION | Thin film deposition |
9248643, | Jun 13 2008 | KATEEVA, INC | Method and apparatus for load-locked printing |
9252363, | Oct 04 2012 | UNIVERSAL DISPLAY CORPORATION | Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers |
9252377, | Jul 14 2011 | Dura-Ply Roofing Corporation | Inorganic hosts in OLEDs |
9252397, | Feb 07 2013 | UNIVERSAL DISPLAY CORPORATION | OVJP for printing graded/stepped organic layers |
9257658, | May 19 2011 | UNIVERSAL DISPLAY CORPORATION | Method of making organic electroluminescent materials |
9257665, | Sep 14 2012 | UNIVERSAL DISPLAY CORPORATION | Lifetime OLED display |
9281483, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9287513, | Sep 24 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9293712, | Oct 11 2013 | UNIVERSAL DISPLAY CORPORATION | Disubstituted pyrene compounds with amino group containing ortho aryl group and devices containing the same |
9305978, | Nov 29 2013 | Tsinghua University; Hon Hai Precision Industry Co., Ltd. | Method of making organic light emitting diode array |
9306179, | Nov 08 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9312499, | Jan 05 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9312505, | Sep 25 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9312511, | Mar 16 2012 | UNIVERSAL DISPLAY CORPORATION | Edge barrier film for electronic devices |
9313857, | Aug 04 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9318710, | Jul 30 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9324949, | Jul 16 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9331299, | Apr 11 2014 | UNIVERSAL DISPLAY CORPORATION | Efficient white organic light emitting diodes with high color quality |
9337441, | Apr 15 2014 | UNIVERSAL DISPLAY CORPORATION | OLED lighting panel and methods for fabricating thereof |
9343695, | Aug 13 2014 | UNIVERSAL DISPLAY CORPORATION | Method of fabricating organic light emitting device (OLED) panel of arbitrary shape |
9349954, | Nov 09 2007 | UNIVERSAL DISPLAY CORPORATION | Stable blue phosphorescent organic light emitting devices |
9349955, | Aug 31 2012 | UNIVERSAL DISPLAY CORPORATION | Patterning method for OLEDs |
9356245, | May 18 2004 | UNIVERSAL DISPLAY CORPORATION; The University of Southern California | Carbene metal complexes as OLED materials |
9359549, | Apr 06 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9374872, | Aug 30 2013 | UNIVERSAL DISPLAY CORPORATION | Intelligent dimming lighting |
9379169, | Sep 14 2012 | UNIVERSAL DISPLAY CORPORATION | Very high resolution AMOLED display |
9380675, | Apr 17 2014 | UNIVERSAL DISPLAY CORPORATION | Energy saving OLED lighting system and method |
9384691, | Oct 19 2012 | UNIVERSAL DISPLAY CORPORATION | Transparent display and illumination device |
9385167, | Oct 01 2008 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture |
9385168, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
9385172, | Oct 19 2012 | UNIVERSAL DISPLAY CORPORATION | One-way transparent display |
9385322, | Nov 21 2005 | Massachusetts Institute of Technology | Method and apparatus for depositing LED organic film |
9385340, | Oct 19 2012 | UNIVERSAL DISPLAY CORPORATION | Transparent display and illumination device |
9386657, | Mar 15 2012 | UNIVERSAL DISPLAY CORPORATION | Organic Electroluminescent materials and devices |
9390649, | Nov 27 2013 | UNIVERSAL DISPLAY CORPORATION | Ruggedized wearable display |
9397302, | Oct 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9397309, | Mar 13 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent devices |
9397310, | Jul 14 2011 | UNIVERSAL DISPLAY CORPORATION | Organice electroluminescent materials and devices |
9397312, | May 11 2011 | UNIVERSAL DISPLAY CORPORATION | Process for fabricating metal bus lines for OLED lighting panels |
9397314, | Dec 23 2013 | UNIVERSAL DISPLAY CORPORATION | Thin-form light-enhanced substrate for OLED luminaire |
9401482, | Oct 08 2010 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9406892, | Jan 07 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9412947, | Sep 14 2012 | UNIVERSAL DISPLAY CORPORATION | OLED fabrication using laser transfer |
9419225, | Mar 14 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9424772, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
9435021, | Jul 29 2010 | The University of Sourthern California | Co-deposition methods for the fabrication of organic optoelectronic devices |
9444075, | Nov 26 2014 | UNIVERSAL DISPLAY CORPORATION | Emissive display with photo-switchable polarization |
9447113, | Jan 10 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9450027, | May 12 2011 | UNIVERSAL DISPLAY CORPORATION | Method of forming bus line designs for large-area OLED lighting |
9450195, | Dec 17 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9450198, | Apr 15 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9455411, | Sep 25 2008 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9455417, | Dec 13 2011 | UNIVERSAL DISPLAY CORPORATION | Split electrode for organic devices |
9461254, | Jan 03 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9478758, | May 08 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9484541, | Oct 20 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9484546, | May 15 2013 | UNIVERSAL DISPLAY CORPORATION | OLED with compact contact design and self-aligned insulators |
9493698, | Aug 31 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9496315, | Aug 26 2009 | UNIVERSAL DISPLAY CORPORATION | Top-gate bottom-contact organic transistor |
9496522, | Dec 13 2013 | UNIVERSAL DISPLAY CORPORATION | OLED optically coupled to curved substrate |
9496523, | Jun 19 2015 | UNIVERSAL DISPLAY CORPORATION | Devices and methods to improve light outcoupling from an OLED array |
9502656, | Feb 24 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9502672, | Jun 21 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9502681, | Dec 19 2012 | UNIVERSAL DISPLAY CORPORATION | System and method for a flexible display encapsulation |
9512136, | Nov 26 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9512355, | Dec 09 2011 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting materials |
9518063, | Jan 16 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9530962, | Aug 31 2012 | UNIVERSAL DISPLAY CORPORATION | Patterning method for OLEDs |
9537106, | May 09 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9540329, | Jul 19 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9543532, | Jun 11 2010 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9548459, | Mar 15 2012 | UNIVERSAL DISPLAY CORPORATION | Organic materials for organic light emitting devices |
9548462, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9553274, | Jul 16 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9559151, | Oct 01 2008 | UNIVERSAL DISPLAY CORPORATION | OLED display architecture |
9559314, | Sep 29 2011 | UNIVERSAL DISPLAY CORPORATION | Lamp with multiple flexible OLEDs |
9572232, | May 15 2014 | UNIVERSAL DISPLAY CORPORATION | Biosensing electronic devices |
9577200, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9577201, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9577221, | Sep 26 2012 | UNIVERSAL DISPLAY CORPORATION | Three stack hybrid white OLED for enhanced efficiency and lifetime |
9583707, | Sep 19 2014 | UNIVERSAL DISPLAY CORPORATION | Micro-nozzle and micro-nozzle array for OVJP and method of manufacturing the same |
9583720, | Mar 24 2003 | The University of Southern California | Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir |
9590017, | Jan 18 2013 | UNIVERSAL DISPLAY CORPORATION | High resolution low power consumption OLED display with extended lifetime |
9590180, | Jun 23 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9590194, | Feb 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9590195, | Feb 28 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9604245, | Jun 13 2008 | KATEEVA, INC | Gas enclosure systems and methods utilizing an auxiliary enclosure |
9608206, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9627631, | Jul 30 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9630983, | Sep 03 2008 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent material and devices |
9634264, | Nov 09 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9634265, | Apr 28 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9640781, | Jan 08 2015 | UNIVERSAL DISPLAY CORPORATION | Devices to increase OLED output coupling efficiency with a high refractive index substrate |
9647217, | Feb 24 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9647218, | Nov 14 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9647221, | Jul 14 2011 | UNIVERSAL DISPLAY CORPORATION | Organic light-emitting devices |
9647227, | Apr 13 2005 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting devices |
9653691, | Dec 12 2012 | UNIVERSAL DISPLAY CORPORATION | Phosphorescence-sensitizing fluorescence material system |
9655199, | May 30 2012 | UNIVERSAL DISPLAY CORPORATION | Four component phosphorescent OLED for cool white lighting application |
9661709, | Mar 28 2014 | UNIVERSAL DISPLAY CORPORATION | Integrated LED/OLED lighting system |
9663544, | Jul 25 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9666822, | Dec 17 2013 | The Regents of the University of Michigan | Extended OLED operational lifetime through phosphorescent dopant profile management |
9670185, | Dec 07 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9670404, | Jun 06 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9673401, | Jun 28 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9673406, | May 20 2009 | UNIVERSAL DISPLAY CORPORATION | Metal complexes with boron-nitrogen heterocycle containing ligands |
9673407, | Feb 28 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9673412, | Dec 13 2012 | UNIVERSAL DISPLAY CORPORATION | System and method for matching electrode resistances in OLED light panels |
9680113, | Dec 17 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9685617, | Nov 09 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electronuminescent materials and devices |
9691993, | Apr 09 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9692955, | Mar 21 2016 | UNIVERSAL DISPLAY CORPORATION | Flash optimized using OLED display |
9698140, | Jan 12 2011 | UNIVERSAL DISPLAY CORPORATION | OLED lighting device with short tolerant structure |
9704942, | Jan 12 2011 | UNIVERSAL DISPLAY CORPORATION | OLED lighting device with short tolerant structure |
9711730, | Jan 25 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9725476, | Jul 09 2012 | UNIVERSAL DISPLAY CORPORATION | Silylated metal complexes |
9735373, | Jun 10 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9735377, | May 06 2005 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent emitters and host materials with improved stability |
9735378, | Sep 09 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9735392, | Aug 20 2012 | UNIVERSAL DISPLAY CORPORATION | Thin film deposition |
9741941, | Apr 29 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9741968, | May 30 2012 | UNIVERSAL DISPLAY CORPORATION | Luminaire and individually replaceable components |
9748500, | Jan 15 2015 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting materials |
9748503, | Sep 13 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9748504, | Mar 25 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9755159, | Jan 23 2014 | UNIVERSAL DISPLAY CORPORATION | Organic materials for OLEDs |
9755164, | Jun 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9761807, | Jul 15 2013 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting diode materials |
9761814, | Nov 18 2014 | UNIVERSAL DISPLAY CORPORATION | Organic light-emitting materials and devices |
9761842, | Dec 19 2014 | The Regents of the University of Michigan | Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces |
9773985, | May 21 2012 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9773986, | Nov 19 2009 | The University of Southern California | Copper(I)-carbene complexes and organic electroluminescent devices |
9780316, | Mar 16 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9786858, | Nov 01 2011 | UNIVERSAL DISPLAY CORPORATION | Reducing OLED device efficiency at low luminance |
9799838, | Oct 08 2014 | UNIVERSAL DISPLAY CORPORATION | Fluorinated organic electroluminescent materials and devices |
9812656, | Jun 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9818804, | Sep 18 2015 | UNIVERSAL DISPLAY CORPORATION | Hybrid display |
9818967, | Jun 28 2013 | UNIVERSAL DISPLAY CORPORATION | Barrier covered microlens films |
9818977, | Aug 13 2014 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting device (OLED) panel of arbitrary shape |
9823482, | Aug 19 2013 | UNIVERSAL DISPLAY CORPORATION | Autostereoscopic displays |
9825243, | Aug 18 2014 | UDC Ireland Limited | Methods for fabricating OLEDs on non-uniform substrates and devices made therefrom |
9825260, | Nov 26 2014 | UNIVERSAL DISPLAY CORPORATION | Emissive display with photo-switchable polarization |
9831437, | Aug 20 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9831442, | Jan 16 2009 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9831447, | Oct 08 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9843024, | Dec 03 2014 | UNIVERSAL DISPLAY CORPORATION | Methods for fabricating OLEDs |
9847495, | Jun 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9847496, | Dec 23 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9847497, | Feb 18 2014 | UNIVERSAL DISPLAY CORPORATION; University of Southern California | Organic electroluminescent materials and devices |
9847498, | Apr 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9853227, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9853229, | Oct 23 2013 | University of Southern California | Organic electroluminescent materials and devices |
9853247, | Mar 11 2014 | The Regents of the University of Michigan; UNIVERSAL DISPLAY CORPORATION | Electrophosphorescent organic light emitting concentrator |
9859510, | May 15 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9865672, | May 15 2013 | UNIVERSAL DISPLAY CORPORATION | Macro-image OLED lighting system |
9871212, | Nov 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9871214, | Mar 23 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9871219, | Apr 13 2005 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting devices |
9871229, | Feb 07 2013 | UNIVERSAL DISPLAY CORPORATION | OVJP for printing graded/stepped organic layers |
9876173, | Dec 09 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9876192, | May 12 2014 | UNIVERSAL DISPLAY CORPORATION | Barrier composition and properties |
9882151, | Nov 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9893306, | Feb 10 2006 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9899457, | Apr 24 2015 | UNIVERSAL DISPLAY CORPORATION | Flexible OLED display having increased lifetime |
9899612, | Dec 08 2006 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9899631, | Jul 08 2015 | UNIVERSAL DISPLAY CORPORATION | Flexible multilayer scattering substrate used in OLED |
9905784, | Nov 15 2013 | UNIVERSAL DISPLAY CORPORATION; UNIVERSIAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9905785, | Apr 14 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9911928, | Mar 19 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9911930, | Mar 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9911931, | Jun 26 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9923168, | Mar 16 2012 | UNIVERSAL DISPLAY CORPORATION | Edge barrier film for electronic devices |
9929353, | Apr 02 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9929357, | Jul 22 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9929360, | Jul 08 2016 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9929361, | Feb 16 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9929365, | May 28 2014 | The Regents of the University of Michigan; The University of Southern California | Excited state management |
9932359, | Aug 30 2013 | University of Southern California | Organic electroluminescent materials and devices |
9935276, | Feb 21 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9935277, | Jan 30 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9947728, | Aug 25 2015 | UNIVERSAL DISPLAY CORPORATION | Hybrid MEMS OLED display |
9947880, | Feb 23 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9947895, | Jun 17 2015 | UNIVERSAL DISPLAY CORPORATION | Flexible AMOLED display |
9954180, | Aug 20 2010 | UNIVERSAL DISPLAY CORPORATION | Bicarbazole compounds for OLEDs |
9972793, | Mar 08 2011 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9978956, | Jul 15 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9978958, | Aug 24 2012 | UNIVERSAL DISPLAY CORPORATION | Phosphorescent emitters with phenylimidazole ligands |
9978961, | Jan 08 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9978965, | Jun 17 2015 | UNIVERSAL DISPLAY CORPORATION | Rollable OLED display |
9991463, | Jun 14 2012 | UNIVERSAL DISPLAY CORPORATION | Electronic devices with improved shelf lives |
9997712, | Mar 27 2013 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9997716, | May 27 2014 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
9997726, | Dec 28 2007 | UNIVERSAL DISPLAY CORPORATION | Dibenzothiophene-containing materials in phosphorescent light emitting diodes |
9997727, | Aug 08 2007 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
RE48809, | May 15 2015 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent materials and devices |
Patent | Priority | Assignee | Title |
5641611, | Aug 21 1995 | UNIVERSAL DISPLAY CORPORATION | Method of fabricating organic LED matrices |
5707745, | Dec 13 1994 | The Trustees of Princeton University | Multicolor organic light emitting devices |
5925259, | Aug 04 1995 | International Business Machines Corporation | Lithographic surface or thin layer modification |
5998803, | May 29 1997 | PRINCETON UNIVERSITY, TRUSTEES OF, THE | Organic light emitting device containing a hole injection enhancement layer |
6013538, | Nov 24 1997 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Method of fabricating and patterning OLEDs |
6027630, | Apr 04 1997 | FIRST BANK OF BRUNEWICK | Method for electrochemical fabrication |
WO9619792, | |||
WO9828946, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 21 2000 | The Trustees of Princeton University | (assignment on the face of the patent) | / | |||
Mar 02 2001 | BURROWS, PAUL E | TRUSTEES OF PRINCETON UNIVERSITY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011689 | /0436 | |
Mar 02 2001 | FORREST, STEPHEN R | TRUSTEES OF PRINCETON UNIVERSITY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011689 | /0436 | |
Mar 08 2001 | KIM, CHANGSOON | TRUSTEES OF PRINCETON UNIVERSITY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011689 | /0436 | |
Mar 08 2001 | ZHOU, THEODORE | TRUSTEES OF PRINCETON UNIVERSITY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011689 | /0436 |
Date | Maintenance Fee Events |
Apr 24 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 22 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 22 2013 | ASPN: Payor Number Assigned. |
Mar 26 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 22 2005 | 4 years fee payment window open |
Apr 22 2006 | 6 months grace period start (w surcharge) |
Oct 22 2006 | patent expiry (for year 4) |
Oct 22 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 22 2009 | 8 years fee payment window open |
Apr 22 2010 | 6 months grace period start (w surcharge) |
Oct 22 2010 | patent expiry (for year 8) |
Oct 22 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 22 2013 | 12 years fee payment window open |
Apr 22 2014 | 6 months grace period start (w surcharge) |
Oct 22 2014 | patent expiry (for year 12) |
Oct 22 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |