An improved biopsy needle assembly for efficient removal of multiple biopsy cores from a single needle penetration. The needle apparatus comprises an elongate assembly of paired sleeves with an open notch in the wall of the outer sleeve for engaging a tissue volume in the bore of that sleeve. An inner sleeve or blade member with a sharp blade edge is moveable from a retracted position to an extended position to both (i) excise the tissue volume, and (ii) function as valve means to alter the open notch between an open position and a closed position. The invention provides a looped inflow-outflow passageway system for using high-pressure fluid flows to push or expel the excised tissue from the bore in working end where the excised tissue is captured. The looped passageway system is coupled to a remote pressurization source.

Patent
   6485436
Priority
Aug 10 2000
Filed
Aug 10 2000
Issued
Nov 26 2002
Expiry
Aug 10 2020
Assg.orig
Entity
Small
351
4
all paid
1. A method for excising and removing a tissue volume from a targeted site in the interior of a patient's body, comprising the steps of:
(a) providing an elongate sleeve member that defines a wall around an internal passageway, said internal passageway having an open proximal end and a distal terminal chamber, and an opening in the wall of said terminal chamber for engaging tissue therein;
(b) introducing a distal end of said sleeve member to the targeted site;
(c) actuating a blade member from a first position to second position across said opening in the wall of said terminal chamber thereby excising a volume of tissue engaged in said opening;
(d) wherein the actuation of the blade member in step (c) contemporaneously closes off said opening; and
(e) delivering a high pressure flow of a selected fluid media to a distal end of said terminal chamber thereby expelling the excised tissue volume in the proximal direction in said internal passageway to an open end thereof.
13. A surgical device for excising and extracting soft tissue volumes, comprising:
(a) an elongate member carrying a looped inflow-outflow passageway system comprising:
(i) an outflow passageway extending between a proximal end and a distal terminal chamber;
(ii) an inflow passageway extending between a proximal end and a distal terminus;
(b) wherein the distal terminus of the inflow passageway communicates with the distal terminal chamber of the outflow passageway;
(c) a tissue-receiving opening in a wail surrounding said terminal chamber for receiving a tissue volume, wherein said opening has a first open position for receiving tissue and a second closed position for extracting tissue;
(d) a moveable blade member carried by said elongate member for excising the tissue volume in said tissue-receiving opening and thereby altering said opening between said first open position and said second closed position; and
(e) a pressurization source coupled to said proximal end of the inflow passageway.
2. The method of claim 1 wherein the high pressure fluid flow of step (e) enters said terminal chamber at a location distal to the excised tissue volume captured therein.
3. The method of claim 1 wherein said fluid media is a biocompatible gas or biocompatible liquid.
4. The method of claim 1 wherein a pressurization source provides said high pressure flow in the range of 1 to 500 psi.
5. The method of claim 1 wherein a pressurization source provides said high pressure flow in the range of 5 to 250 psi.
6. The method of claim 1 wherein the sleeve member has a needle-type distal tip and step (b) comprises penetrating said sleeve member through tissue to the targeted site.
7. The method of claim 1 wherein the steps (c) through (e) are repeated to excise and remove successive tissue volumes.
8. The method of claim 7 wherein further comprsing the step of rotating the sleeve member a selected angular dimension between the repetition of steps (c) through (e).
9. The method of claim 1 further comprising the step of receiving the tissue volume within a tissue-collecting structure at the proximal end of said internal passageway.
10. The method of claim 9 further comprising the step of receiving successive tissue volumes in separate chamber portions of a tissue-collecting structure at the proximal end of said internal passageway.
11. The method of claim 1 further comprising the step of cauterizing tissue with at least one electrode incorporated into the sleeve member.
12. The method of claim 1 wherein prior to step (c), the additional step of applying a vacuum force to said internal passageway to suction tissue into said opening.
14. The device of claim 13 further comprising coupling means for coupling a proximal end of the elongate member to a moveable stage of a stereotactic needle localizing assembly.
15. The device of claim 13 further comprising a tissue-collecting structure coupled to a proximal end of said outflow passageway.
16. The device of claim 15 wherein said tissue-collecting structure has a plurality of chamber portions for separately receiving tissue volumes.
17. The device of claim 13 further comprising a vacuum source coupled to a proximal end of said outflow passageway.
18. The system of claim 13 further comprising a controller for controlling an operational parameter of the system selected from the class comprising: actuation for the cutting member, the pressure level and on-off intervals of pressure delivery from a pressurization source; and, the vacuum level and on-off intervals of a vacuum source.
19. The system of claim 13 further comprising a sensing system coupled to said controller for feedback control of said operational parameters, said sensing system capable of sensing parameters selected from the class comprising: a pressure level in the inflow lumen; a change in said pressure level or a rate of change in said pressure level; a selected vacuum level in the interior tissue-extracting passageway, a change in said vacuum level or a rate of change in said vacuum levels.

This invention relates to a medical devices and techniques, and more particularly to a biopsy needle-type probe that is adapted for cutting and removing multiple tissue cores from a single needle penetration, with the tissue extraction accomplished by a looped flow of high-pressure media.

To biopsy tissue from a targeted site in the interior of a patient's body, for example in a breast biopsy, the various prior art methods include (i) use of a biopsy needle; (ii) fine needle aspiration in a stereoatatic needle localizing assembly, or (iii) a skin incision and surgical removal of tissue from the targeted site. When using a biopsy needle, such as a True-Cut® needle, the tissue sample is often smaller than desired for biopsy purposes. Fine needle aspiration using a standard 14 Ga. needle also results in small tissue samples. Open skin incisions are undesirable due to scarring.

What is needed is a tissue cutting probe (i) that can excise and remove tissue through a very small diameter needle probe to provide a minimally invasive procedure; (ii) that can take multiple cores from a single needle penetration; (iii) that can be used manually or m conjunction with a stereotactic locking systen; (iv) that can be scaled upward in dimension to perform a stereotactic lumpectomy procedure by successive removal of tissue cores; and (v) that is inexpensive to manufacture and is therefore disposable.

The present invention comprises an elongate sleeve assembly that can be introduced into the interior of a patient's body for excising and removing small tissue volumes in a minimally invasive procedure. The system of the invention provides a novel pressurization system that uses high positive fluid pressures to push excised tissue from the working end of a probe, in contrast to prior art systems that attempt to pull or aspirate tissue from a working end. The use of high pressure fluid flows to carry tissue along a passageway allows for a very small diameter tissue-extracting lumen. The prior art vacuum sources cannot develop sufficiently strong suction forces to move an excised tissue core within a small diameter tissue-extracting lumen.

In a preferred embodiment, the system provides an elongate needle-type member that carries a looped inflow-outflow passageway system. The distal working end of the needle assembly has a tissue-receiving opening in a wall surrounding a distalmost chamber of a passageway that receives a tissue volume pressed into the opening. A moveable blade member cooperates with the opening to excise the tissue volume captured in the tissue-receiving opening. At the same time, the blade member functions as a valve to alter the opening between a first open position and said second closed position. The looped passageway system comprises (i) an outflow passageway extending between a proximal open end (in the needle handle) and the distalmost chamber thereof, and (ii) an inflow passageway extending between an open proximal end (in the needle handle) and a distal terminus thereof that communicates with the distalmost chamber of the outflow passageway. The pressurization source is connected to the proximal end of the inflow passageway.

In operation, the needle is introduced to the targeted site and the blade member is thereafter actuated to excise tissue engaged within the tissue-receiving opening. The blade member is maintained in the second position which closes off the tissue-receiving opening. The pressurization source is then actuated which delivers a pulse of high pressure fluid flow through the looped inflow and outflow passageways to push the excise tissue from the needle into a collector at the exterior of the patient's body. The excising and extracting steps can be repeated to obtain successive tissue cores from the targeted site with the needle only penetrating to the site once.

The present invention advantageously utilizes positive pressure media flows to transport tissue cores along a very small diameter tissue-extracting lumen, rather than using a negative pressure (vacuum) which has limited effectiveness in a small diameter lumen.

The present invention advantageously can extract multiple tissue cores from a single needle penetration.

The present invention can be coupled to a stereotactic needle localizing assembly for excising relatively large tissue volumes, as in a lumpectomy procedure.

Additional objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.

FIG. 1 is a side view of an exemplary Type "A" biopsy needle of the present invention that is adapted for surgical removal of core of tissue, together with a block diagram of a pressure source.

FIG. 2A is an exploded cut-away view of the working end of the biopsy needle of FIG. 1 in a first position engaging tissue and showing the looped inflow-outflow passageway system of the invention.

FIG. 2B is a view similar to FIG. 2A with the working end in a second position showing cutting of a tissue core.

FIG. 3 is view of exemplary components of the working end of FIG. 2A

FIG. 4 is a sectional view of an alternative cutting member of the present invention.

FIG. 5 is an elevational view of an exemplary Type "B" system adapted for use by a stereotactically-guided stage of a breast biopsy apparatus.

FIG. 6 is a perspective view of a tissue-collecting strucre of the present invention for receiving a plurality of tissue cores.

FIG. 7 is a side view of an alternative needle assembly with an electrode for cauterizing tissue.

1. Type "A" Pressure-Assisted Needle Biopsy System

FIG. 1 illustrates an exemplary biopsy probe or needle apparatus 5 of the present invention. The needle 5 comprises an elongate assembly of first outer sleeve member 10A and second interior sleeve member 10B that extend along longitudinal axis 12. The needle 5 has a distal working end 15 shown in FIG. 2A that is adapted for penetrating tissue with sip tip 16, and thereafter for cutting a core of tissue as will be described below. FIGS. 2A-2B show an enlarged cut-away view of working end 15 wherein it can be seen that outer sleeve 10A defines a side wall 17 around an interior passageway 20 that slidably carries the inner sleeve 10B. The inner sleeve 10B has an interior passageway or bore 22 surrounded by a side wall indicated at 27. The needle assembly is adapted for grasping between the physician's fingers and therefore the inner and outer sleeves 10A and 10B are shown with (optional) gripping body portions indicated at 28a and 28b, respectively.

Referring to FIG. 2A, working end 15 is shown in detail wherein the interior pasageway 20 extends distally to a terminal chamber portion indicated at 30 that carries tissue-engaging opening 32 in a portion of side wall 17 of the outer sleeve 10A. The inner sleeve 10B that slides in interior passageway 20 has a sharp blade-type edge 33 at it distal circumference. It can be seen that by manual sliding of inner sleeve 10B in interior passageway 20 from a first retracted position (see FIG. 3) to a second extended position (see FIG. 3 phantom view), the blade edge 33 of inner sleeve will excise tissue that is engaged within the plane p defined by passageway 20 and the perimeter of opening 32. The distal sliding movement of the blade edge 33 from the first position to the second position will capture the tissue as a core c in the interior passageway 22 of the inner sleeve.

FIGS. 2A-2B and FIG. 3 illustrate the novel pressure-assisted tissue extraction component of the invention that is adapted for removing multiple cores of tissue from a single needle penetration. FIG. 2A shows that outer sleeve 10A carries a longitudinal inflow channel or passageway indicated at 35A for delivering a high pressure flow of fluid media m to the working end 15. Of particular interest, the high pressure flow is reversed in direction by a loop portion 35B of the inflow channel in a tip body indicated at 36. The inflow channel that comprises longitudinal channel portion 35A and loop portion 35B has a distal terminus 40 that is open to the distal end 42 of terminal chamber portion 30 of the interior passageway 20 wherein the excised tissue core c is captured FIG. 2B illustrates the core c being moved in the proximal direction in bore 22 of the inner sleeve under the high pressure flow that is reversed in direction by the loop portion 35B of the inflow channel at the distal end of the needle.

As can be seen in FIGS. 2A and 3, the needle assembly may be fabricated by using a suitable hypo tube for outer sleeve member 10A that has a diameter ranging from about 20 Ga. to 4 Ga. Preferably, the outer sleeve member 10A is from about 16 Ga. to 10 Ga. The axial dimension indicated at ad of the tissue-engaging opening 32 in the side wall of outer sleeve 10A may range from about 1.0 mm. in small diameter instruments to about 15.0 mm. in large diameter instruments. Preferably, the axial dimension ad of opening 32 ranges from about 2.0 mm to 10.0 mm. The distal end 37 of outer sleeve 10A is coupled to tip body 36 that may be of any suitable material such as metal or plastic that has a suitably sharp tip 16. The inflow loop indicated at 35B can be formed into tip body 36 by any suitable means of molding, casing or machine processes. FIG. 2A shows that a plastic extrusion indicated at 38 can provide the longitudinal inflow lumen 35A and be assembled around, or bonded to, outer sleeve 10A and connected to inflow loop 35B and tip body 36 (see FIG. 3).

FIG. 1 shows that a remote high pressure fluid pressurization source 45 is coupled to fitting 46 at the proximal end 48 of inflow channel 35A with any suitable flexible tubing. The pressurization source 45 may provide pressure ranging from about 1.0 psi to 500 psi. Preferably, the pressure used is from about 5.0 psi to 250 psi. The fluid media m that is delivered under pressure from source 45 is any suitable biocompatible gas or liquid, for example CO2, sterile water or saline solution.

In practicing the method of the invention, the physician manually penetrates the needle of FIG. 1 into the patient's body to a first targeted site, for example, in a patient's breast under any type of imaging or localization techniques. While manually stabilizing the outer sleeve 10A, the operator then translates the inner sleeve 10B from the first position to the second position (see FIGS. 2A & 2B) to excise and capture a tissue core c in the pressurizable terminal chamber 30 and bore 22 of inner sleeve 10B. The terminal chamber 30 is pressurizable since the inner sleeve 10B closes off opening 32 in side wall 17 as shown in FIG. 2B. The operator then actuates the fluid pressurization source 45 by any suitable trigger means to cause pressurization of the terminal chamber 30 and bore 22 on the distal side of the tissue core c to expel the core in the proximal direction to proximal end 50 of the interior passageway 22 of the inner sleeve 10B (see FIGS. 1 & 2B). A basket-type collector or any other suitable vented collection structure indicated at 55 is coupled to proximal end 50 of interior passageway 22 to retain the core for biopsy or other diagnostic purposes. Of particular interest, the operator then may translate the inner sleeve 10B back to the first position from the second position, and repeat the above described steps to excise additional tissue cores. In normal operation, tissue will fall naturally into opening 32 in working end 15 and therefore be engaged by the cutting edge 33 of sleeve 10B. Optionally, the operator can use manual pressure on the patient's skin to compress tissue about working end 15 to insure that tissue is pressed into opening 32 and terminal chamber 30. The operator also may rotate the needle assembly 5 between repetitions of the above described steps to take tissue cores c that face in different directions at the targeted site. By practicing this method of the invention, a significant volume of tissue may be excised for biopsy purposes while making only on single needle penetration to the targeted site. It is no longer necessary to use multiple needle penetrations, as sometimes performed in prior art practices. The method of the invention still may be accomplished with a needle having a diameter in the range of 12 to 14 gauge, making the procedure very minimally invasive.

FIG. 4 illustrates an alternative needle assembly 5 that operates as described above but utilizes an outer sleeve 10A that carries an alternative embodinent of inner cutting sleeve member indicated at 60B. FIG. 4 shows a section through a medial portion of the assembly in which outer sleeve 10A again defines wall 17 around interior bore 20 that extends to a terminal chamber 30 (not shown) and tissue-engaging opening 32 as described previously. Inflow passageway 35 A is shown in phantom view. In this embodiment, the cutting sleeve or member 60B with blade edge 33 has a cross section defining width w that cooperates with a slot 62 or slot edge elements 64a and 64b within wall 17 of the outer sleeve 10A. The width w or radial arc of the blade is sufficient to cover the width of opening 32 (see FIG. 2A) when the blade member 60B is moved from a first retracted position to the second extended position (cf. FIGS. 2A & 2B) for the purposes of (i) excising the core of tissue, and (ii) closing off opening 32 to thereby by capture the tissue core in the closed off and sizable terminal chamber. The type of sleeve assembly shown in FIG. 4 may provide advantages for small diameter needles since the passageway 20 for extracting tissue is larger than would be the case if the cutting member were a tubular sleeve, as described previously.

2. Type "B" Pressure-Assisted Needle System for Stereotactic Localization

FIG. 5 illustrates an exemplary Type "B" biopsy needle system 105 of the present invention that functions as the Type "A" system except that is adapted for automated penetration into the patient's body utilizing stereotactic localization of the needle tip. The elements of the Type "B" system that are the same as the Type "A" system have the same reference numerals +100.

In this embodiment, the needle assembly 105 is adapted for detachable coupling to a moveable stage 108 that cooperates with a mammography system table (not shown). For example, Lorad/Trex manufactures a digital spot mammography (DSM) system, with a motorized, programmable biopsy stage that can localize insertion of a needle with reference to x-y-z axes (see Trex Medical Corporation, 37 Apple Ridge Rd., Danbury, Conn. 06810). The stage 108 is moveable to automate insertion of the working end 115 of needle 105 within a targeted lesion.

As shown in FIG. 5, the needle assembly again comprises outer sleeve 110 A that carries slidable cutting sleeve 110B in interior bore 120 of the outer sleeve. The inner sleeve 110B has a longitudinal bore 122 therein for extracting tissue. The needle assembly 105 has distal tip 116 and tissue-engaging opening 132 as described above. Inflow channel 135A has fitting 146 at its proximal end 148 in distal body member 154 of the apparatus. The proximal end 150 of the tissue-exacting bore 122 of the inner sleeve 110B is coupled to tissue-receiving structure or basket 155.

FIG. 5 shows that outer sleeve 110A has its proximal end 156 fixed in distal body member 154. The distal body member 154 has a round, keyed proximal end 157 that allows it to rotate within a receiving bore portion 158 of proximal body member 164 as can be seen in FIG. 5. The proximal body member 164 is shown with exemplary threaded portion 165 for detachable coupling to stage 108 of the stereotactic assembly.

The distal body member 154 that carries outer sleeve 110A is provided with a grip portion 166 that may can carry indicator numbers 167 for rotating the distal body member 154 relative to fixed proximal body member 164 and indicator arrow 168. By this means, successive tissue cores may be taken with tissue-engaging opening 132 facing at various predetermined angles within the targeted tissue. By taking cores at 4 to 8 different radial angles, a substantial total tissue volume may be removed for biopsy or prophylactic purposes. Further, each of several cores retrieved from the tissue-receiving structure 155 can separately marked or numbered to thereafter allow re-assembly of the cores into their original orientations in a graphic image of the excised tissue volume in a graphics software system. Each core, for example, can undergo a rapid frozen section biopsy. Such a graphic image of the several cores and the biopsy analyses can direct further core sampling with the needle assembly rotated in a particular direction if suspicious tissue characteristics are found in some cores and not others. By using a larger diameter needle assembly, for example a 5.0 mm. outer sleeve 110A, successive core removals may provide an automated form of lumpectomy treatment The use of rapid biopsy techniques and the creation of software-based images again can direct the operator to rotate the needle assembly 105 to remove more tissue in a particular angular direction to insure safe margins around a suspicious lesion that is targeted for removal.

As can be seen in FIG. 5, the proximal end 172 of inner sleeve 110B is fitted with a handle member indicated at 175. The handle member 175 is adapted for manual actuation to move inner sleeve 110B relative to outer sleeve 110A to thereby move the working end between the first and second position as shown in FIGS. 2A & 2B. Alternatively, the actuation of inner cutting sleeve 110B may be caused by a spring that will rapidly advance the cutting sleeve within the outer sleeve 110A (not shown). As another alternative, a motorized or otherwise mechanically actuated push-rod 177 phantom view in FIG. 5) may be provided within stage 108 to automate the actuation of sleeve 110B to excise the tissue core.

FIG. 6 shows an alternative embodiment of tissue-receiving cylinder structure indicated at 185 that can be fitted to the needle assembly of FIG. 5. The cylinder structure 185 provides separate basket chamber portions 190a-190e for receiving the successive cores of excised tissue. The cylinder structure 185 is manually rotatable (or automated to rotate) about, and removable from, pin 192 and is carried by handle portion 175 of a needle assembly similar to that of FIG. 5. Each chamber 190a-190e has a diameter that cooperates with diameter of tissue-extracting bore 122 of sleeve 110B. As can be seen in FIG. 6, the cylinder structure 185 is rotated so that each chamber 190a-190e can be aligned with the proximal end 150 of bore 122 of sleeve 110B. The proximal face 194 of the cylinder structure 185 or the walls of cylinders 190a-190e carry vent openings of a selected dimension to allow release of media m that expels the tissue cores from the proximal end 150 of bore 122 (not shown). In operation, the needle assembly 105 can be rotated so that cores are taken facing a number of different pre-set angular directions in the targeted tissue. Then, the cylinder structure 185 can be rotated to collect and identify each tissue core in a separate chamber 190a-190e. The cylinder 185 is removable from the needle assembly for ease of removing the tissue cores. It should be appreciated that any number of chambers are possible, and the cylinder structure 185 with five chambers is shown for convenience only. Preferably, the cylinder structure 185 would have from 4 to 8 chambers to cooperate with 4 to 8 angular pre-sets associated with the rotation of the needle assembly 105 in the stage 108 of the stereotactic assembly.

FIG. 6 further shows another optional component of the invention that comprises a vacuum source 190 in fluid communication with internal bore 122 of inner sleeve 110B via port 192 for suctioning tissue into the opening 132 of the outer sleeve 110A prior to excising the tissue core. As can be easily understood, a manual or automated valve means (not shown) may be provided for closing the open proximal end 150 of interior bore 122 to cause all vacuum forces to be directed from vacuum source 190 to the distal working end of the needle assembly, rather than the proximal end of bore 122 and the basket assembly 155 for collecting tissue (see FIG. 5).

FIG. 7 shows optional electro-cauterizing means of the invention wherein an Rf (radiofrequency) electrical source 195 is coupled to a mono-polar electrode 196 by lead portion 197 on a portion of outer sleeve 110A. By actuation of the electrode in cooperation with a groundpad, the operator can cauterize the treatment site and the needle track after the tissue removal procedure is complete by delivering Rf energy while rotating the needle. The exemplary electrode 196 in FIG. 7 is a thin film electrode insulated from, and bonded to, the outer surface of sleeve 110 A. It should be appreciated that the invention also may provide paired bi-polar electrodes on the surface of sleeve 110A. As another alternative, the entire outer sleeve 110A may serve as an electrode.

It should be appreciated that the present invention has been described in detail in particular embodiments suited for breast biopsy and removal of tissue in a minimally invasive procedure. Similar devices and working ends may be used for tissue removal in any part of a patient's body. For example, the probe may be provided with a rounded working end tip with the tissue-receiving opening and cooperating blade member adapted for cutting, trimming or shaping tissue in an arthrosopic procedure (not shown). The sleeve assembly thus would be suitable for introduction through a trocar sleeve or other cannula In such an endoscopic tissue-cutting instrument, an optional programmable controller can be provided to control the duration of intervals of pressurized inflows from pressurization source 45, as well the level of suction provided by an optional vacuum source 190 (cf. FIG. 6). Further, the controller also can be coupled to an automated mechanism similar to push-rod 177 of FIG. 6 to control the repetitions and seeds of moving the cutting member between the first and second positions. Various mode of operation are possible with such a controller. For example, the controller can modulate or control operational parameters of the assembly, including (i) actuation for the inner cutting member; (ii) pressured levels and on-off intervals of pressure source 45; and, vacuum levels and on-off intervals of the optional vacuum source. Additionally, the surgical system may be provided with feedback sensing systems coupled to the controller for sensing operational parameters of the system while in use. The sensing system, for example, can be adapted to sense a selected parameter such as: a selected pressure level in the inflow lumen; changes in the pressure level or a rate of change in the pressure level; a selected vacuum level in the interior tissue-extracting passageway; a change in the vacuum levels or a rate of change in the vacuum levels. Upon detection of a selected parameter, an optional step in the method of practicing the invention is then for the controller to be programmed to modulate the operational parameters describer previously.

Although particular embodiments of the present invention have been described above in detail, it will be understood that this description is merely for purposes of illustration. Specific features of the invention are shown in some drawings and not in others, and this is for convenience only and any feature may be combined with another in accordance with the invention. Further variations will be apparent to one skilled in the art in light of this disclosure and are intended to fall within the scope of the appended claims.

Shadduck, John H., Truckai, Csaba, Strul, Bruno

Patent Priority Assignee Title
10010307, Aug 10 2005 Vitesco Technologies USA, LLC Single-insertion, multiple sampling biopsy device with linear drive
10028730, Aug 26 2011 Devicor Medical Products, Inc. Biopsy device tissue sample holder with bulk chamber and pathology chamber
10034999, Nov 23 2004 EKOS LLC Steerable device for accessing a target site and methods
10039584, May 17 2012 DFINE, INC. System for use in bone cement preparation and delivery
10058308, Jan 31 2005 C. R. Bard, Inc. Method for operating a biopsy apparatus
10058331, Sep 12 2008 EKOS LLC Enhanced efficacy lung volume reduction devices, methods, and systems
10064607, Aug 28 2013 DEVICOR MEDICAL PRODUCTS, INC Tissue collection assembly for biopsy device
10064609, Aug 05 2005 SenoRx, Inc. Method of collecting one or more tissue specimens
10076316, Oct 01 2008 Covidien LP Needle biopsy device
10078093, Nov 24 2010 Hologic, Inc. System for improved tissue handling and in line analysis of the tissue
10080817, Feb 01 2008 DFINE, INC Bone treatment systems and methods
10136934, Dec 31 2007 DFINE, INC. Bone treatment systems and methods
10149664, Oct 24 2006 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
10166011, Jul 09 2004 Bard Peripheral Vascular, Inc. Transport system for biopsy device
10172594, Oct 06 2006 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
10172659, Dec 06 2004 DFINE, INC. Bone treatment systems and methods
10188397, Mar 15 2013 EKOS LLC Torque alleviating intra-airway lung volume reduction compressive implant structures
10206665, Nov 25 2013 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with translating valve assembly
10226257, Mar 13 2006 EKOS LLC Lung volume reduction devices, methods, and systems
10271827, Mar 19 2002 C. R. Bard, Inc. Disposable biopsy unit
10278754, Apr 30 2007 DFINE, INC. Bone treatment systems and methods
10285673, Mar 20 2013 Bard Peripheral Vascular, Inc. Biopsy device
10285707, Sep 12 2008 EKOS LLC Enhanced efficacy lung volume reduction devices, methods, and systems
10335128, Mar 19 2002 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
10368849, Aug 10 2005 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
10390838, Aug 20 2014 EKOS LLC Tuned strength chronic obstructive pulmonary disease treatment
10413280, Mar 15 2013 Devicor Medical Products, Inc. Biopsy device
10456120, Nov 05 2013 C. R. Bard, Inc. Biopsy device having integrated vacuum
10463350, May 01 2015 C. R. Bard, Inc. Biopsy device
10499888, Jul 09 2004 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
10517577, Dec 13 2006 Devicor Medical Products, Inc. Presentation of biopsy sample by biopsy device
10575833, Aug 12 2009 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
10595831, May 30 2012 Devicor Medical Products, Inc. Control for biopsy device
10617399, Aug 21 2006 C.R. Bard, Inc. Self-contained handheld biopsy needle
10687791, Dec 20 2007 C. R. Bard, Inc. Biopsy device
10722258, Dec 21 2017 GYRUS ACMI INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA Surgical device having atraumatic tissue control
10729856, Jul 29 2016 DEVICOR MEDICAL PRODUCTS, INC Guide and filter for biopsy device
10792021, Apr 10 2014 Biopsy device and system
10820825, Oct 22 2008 Cornell University Method and device for evaluation of local tissue's biological or biomechanical character
10874381, Aug 05 2005 SenoRx, Inc. Biopsy device with fluid delivery to tissue specimens
10888689, Oct 01 2008 Covidien LP Endoscopic ultrasound-guided biliary access system
10905403, Dec 13 2006 Devicor Medical Products, Inc. Presentation of biopsy sample by biopsy device
10966691, Dec 13 2006 Devicor Medical Products, Inc. Biopsy sample storage
11026734, Dec 06 2004 DFINE, INC. Bone treatment systems and methods
11039816, Oct 01 2008 Covidien LP Needle biopsy device with exchangeable needle and integrated needle protection
11096676, Nov 21 2016 C.R. Bard, Inc. Biopsy device having a hydraulic drive assembly
11116483, May 19 2017 Merit Medical Systems, Inc. Rotating biopsy needle
11166702, Jan 31 2005 C.R. Bard, Inc. Quick cycle biopsy system
11179141, Dec 13 2006 Devicor Medical Products, Inc. Biopsy system
11179142, May 01 2015 C.R. Bard, Inc. Biopsy device
11219431, Aug 10 2005 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
11224412, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with translating valve member
11259862, Aug 05 2009 Rocin Laboratories, Inc. Coaxial-driven tissue aspiration instrument system
11298113, Oct 01 2008 Covidien LP Device for needle biopsy with integrated needle protection
11317881, Sep 11 2017 Faxitron Bioptics, LLC Imaging system with adaptive object magnification
11324490, Sep 10 2010 Devicor Medical Products, Inc. Biopsy device tissue sample holder with removable tray
11358149, Mar 05 2014 Faxitron Bioptics, LLC System and method for multi-axis imaging of specimens
11382608, Mar 19 2002 C. R. Bard, Inc. Disposable biopsy unit
11534147, Feb 24 2003 SenoRx, Inc. Biopsy device with a removable sample recieving cartridge
11534148, Nov 05 2013 C. R. Bard, Inc. Biopsy device having integrated vacuum
11559289, Oct 06 2006 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
11566981, Sep 04 2015 Faxitron Bioptics, LLC Multi-axis specimen imaging device with embedded orientation markers
11583261, Oct 24 2006 C. R. Bard, Inc. Large sample low aspect ratio biopsy needle
11589849, Feb 24 2003 SenoRx, Inc. Biopsy device with selectable tissue receiving aperature orientation and site illumination
11672579, Dec 31 2007 DFine Inc. Bone treatment systems and methods
11730434, Nov 04 2016 Hologic, Inc. Specimen radiography system comprising cabinet and a specimen drawer positionable by a controller in the cabinet
11759259, Dec 16 2008 Nico Corporation Tissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications
11779316, Mar 20 2013 Bard Peripheral Vascular, Inc. Biopsy device
11793498, May 19 2017 Merit Medical Systems, Inc. Biopsy needle devices and methods of use
11844500, May 19 2017 Merit Medical Systems, Inc. Semi-automatic biopsy needle device and methods of use
11849928, Aug 10 2005 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
11864742, Mar 24 2010 UNITED STATES ENDOSCOPY GROUP, INC. Biopsy device
11877877, Sep 11 2017 Faxitron Bioptics, LLC Imaging system with adaptive object magnification
6986748, Aug 15 2002 Boston Scientific Scimed, Inc Multiple biopsy apparatus and related method of use
7066893, Jun 06 2002 DEVICOR MEDICAL PRODUCTS, INC Biopsy method
7070597, Oct 18 2001 Ethicon Endo-Surgery, Inc Electrosurgical working end for controlled energy delivery
7115100, Nov 15 2002 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Tissue biopsy and processing device
7276032, Sep 29 2004 DEVICOR MEDICAL PRODUCTS, INC Biopsy apparatus and method
7309849, Nov 19 2003 Ethicon Endo-Surgery, Inc Polymer compositions exhibiting a PTC property and methods of fabrication
7419472, Sep 30 2003 DEVICOR MEDICAL PRODUCTS, INC Biopsy instrument with internal specimen collection mechanism
7445739, Mar 24 2004 DEVICOR MEDICAL PRODUCTS, INC Method of forming a biopsy device
7458940, Nov 06 2000 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Biopsy apparatus
7481775, Mar 04 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device incorporating an adjustable probe sleeve
7497833, Nov 06 2000 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Biopsy apparatus with vacuum relief
7510535, Jun 06 2002 DEVICOR MEDICAL PRODUCTS, INC Biopsy method
7517322, Mar 04 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with variable side aperture
7549984, Jun 16 2004 EKOS LLC Method of compressing a portion of a lung
7556622, May 18 2005 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Selectively openable tissue filter
7559932, Dec 06 2004 DFINE, INC.; DFINE, INC Bone treatment systems and methods
7572236, Aug 05 2005 Senorx, Inc Biopsy device with fluid delivery to tissue specimens
7575556, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Deployment device interface for biopsy device
7588545, Sep 10 2003 Boston Scientific Scimed, Inc Forceps and collection assembly with accompanying mechanisms and related methods of use
7611473, Sep 11 2003 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Tissue extraction and maceration device
7632269, Jan 16 2004 Ethicon Endo-Surgery, Inc Electrosurgical instrument with replaceable cartridge
7662109, Feb 01 2006 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with replaceable probe incorporating static vacuum source dual valve sample stacking retrieval and saline flush
7670282, Jun 14 2004 EKOS LLC Lung access device
7678116, Dec 06 2004 DFINE, INC.; DFINE, INC Bone treatment systems and methods
7717861, Mar 04 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with variable side aperture
7717918, Dec 06 2004 DFINE, INC Bone treatment systems and methods
7722620, Dec 06 2004 DFINE, INC Bone treatment systems and methods
7740594, Sep 29 2004 DEVICOR MEDICAL PRODUCTS, INC Cutter for biopsy device
7740595, Jul 26 2002 Tissue and fluid sampling device
7740596, Sep 29 2004 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with sample storage
7753857, Sep 29 2004 DEVICOR MEDICAL PRODUCTS, INC Tissue sample serial capturing biopsy device
7758515, Sep 29 2004 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with integral vacuum assist and tissue sample and fluid capturing canister
7758601, Jul 18 2005 Method for examining tissue samples and device therefor
7762960, May 13 2005 Boston Scientific Scimed, Inc Biopsy forceps assemblies
7766843, Mar 03 2006 DEVICOR MEDICAL PRODUCTS, INC Biopsy method
7766891, Jul 08 2004 EKOS LLC Lung device with sealing features
7766938, Jul 08 2004 EKOS LLC Pleural effusion treatment device, method and material
7775968, Jun 14 2004 EKOS LLC Guided access to lung tissues
7794408, Mar 28 2003 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Tissue collection device and methods
7806835, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with sharps reduction feature
7828745, Aug 15 2002 Boston Scientific Scimed, Inc. Multiple biopsy apparatus and related method of use
7828748, Aug 05 2005 DEVICOR MEDICAL PRODUCTS, INC Vacuum syringe assisted biopsy device
7837630, Nov 06 2000 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Fluid control element for biopsy apparatus
7854706, Dec 27 2007 DEVICOR MEDICAL PRODUCTS, INC Clutch and valving system for tetherless biopsy device
7854707, Aug 05 2005 DEVICOR MEDICAL PRODUCTS, INC Tissue sample revolver drum biopsy device
7858038, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with illuminated tissue holder
7867173, Aug 05 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with replaceable probe and incorporating vibration insertion assist and static vacuum source sample stacking retrieval
7883476, May 23 2001 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Selectively detachable outer cannula hub
7895725, Dec 30 2004 DEVICOR MEDICAL PRODUCTS, INC Method of manufacturing a needle assembly for use with a biopsy device
7896817, Aug 05 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with manually rotated sample barrel
7909850, Oct 25 1999 Boston Scientific Scimed, Inc. Forceps for medical use
7918804, Aug 05 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with vacuum assisted bleeding control
7938786, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Vacuum timing algorithm for biopsy device
7942896, Nov 25 2003 SciMed Life Systems, Inc. Forceps and collection assembly and related methods of use and manufacture
7955331, Mar 12 2004 Ethicon Endo-Surgery, Inc Electrosurgical instrument and method of use
7959580, Jan 31 2005 C.R. Bard, Inc. Quick cycle biopsy system
7981049, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Engagement interface for biopsy system vacuum module
7981051, Aug 05 2005 Senorx, Inc Biopsy device with fluid delivery to tissue specimens
7988642, Oct 14 2003 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Vacuum assisted biopsy device
7998086, Sep 11 2003 DePuy Mitek, Inc. Tissue extraction and maceration device
8002713, Mar 19 2002 C R BARD, INC Biopsy device and insertable biopsy needle module
8012102, Jan 31 2005 C. R. Bard, Inc. Quick cycle biopsy system
8016772, Mar 19 2002 C. R. Bard, Inc. Biopsy device for removing tissue specimens using a vacuum
8034003, Sep 11 2003 DEPUY SYNTHES PRODUCTS, INC; DEPUY SYNTHES SALES, INC ; DEPUY SPINE, LLC; Depuy Synthes Products, LLC; DEPUY MITEK HOLDING CORPORATION; Synthes USA, LLC Tissue extraction and collection device
8038595, Jan 25 2006 BETH ISRAEL DACONESS MEDICAL CENTER Devices and methods for tissue transplant and regeneration
8038627, Aug 05 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with translating valve mechanism
8048003, Oct 14 2003 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Vacuum assisted biopsy device
8052614, Mar 19 2002 C. R. Bard, Inc. Biopsy device having a vacuum pump
8052615, Jul 09 2004 SONION ROSKILDE A S Length detection system for biopsy device
8052616, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with fine pitch drive train
8070753, Dec 06 2004 DFINE, INC Bone treatment systems and methods
8075495, Jun 18 2008 DEVICOR MEDICAL PRODUCTS, INC Biopsy devices with universal probe
8075558, Apr 30 2002 Ethicon Endo-Surgery, Inc Electrosurgical instrument and method
8083686, Sep 10 2003 Boston Scientific Scimed, Inc. Forceps and collection assembly with accompanying mechanisms and related methods of use
8109885, Mar 19 2002 C R BARD, INC Biopsy device for removing tissue specimens using a vacuum
8109886, Nov 06 2000 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Biopsy apparatus
8109933, Apr 03 2007 DFINE, INC Bone treatment systems and methods
8118755, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Biopsy sample storage
8142455, Mar 13 2006 EKOS LLC Delivery of minimally invasive lung volume reduction devices
8157744, Jul 09 2004 SONION ROSKILDE A S Tissue sample flushing system for biopsy device
8157823, Mar 13 2006 EKOS LLC Lung volume reduction devices, methods, and systems
8157837, Mar 13 2006 EKOS LLC Minimally invasive lung volume reduction device and method
8162851, Mar 29 2003 C R BARD, INC Biopsy needle system having a pressure generating unit
8163031, Jun 09 2004 DFINE, INC. Composites and methods for treating bone
8167818, Nov 06 2000 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Biopsy apparatus with vacuum relief
8172773, Mar 19 2002 C. R. Bard, Inc. Biopsy device and biopsy needle module that can be inserted into the biopsy device
8187204, Oct 01 2007 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Surgical device and method for using same
8187294, Sep 26 2005 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Rotating surgical cutter
8192370, Jul 29 2003 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Biopsy apparatus
8192442, Dec 06 2004 DFINE, INC. Bone treatment systems and methods
8202229, Oct 01 2007 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Surgical device
8231544, Oct 14 2003 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Vacuum assisted biopsy needle set
8235913, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with translating valve member
8241226, Aug 05 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with rotatable tissue sample holder
8251916, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Revolving tissue sample holder for biopsy device
8251917, Aug 21 2006 C R BARD, INC Self-contained handheld biopsy needle
8262585, Aug 10 2005 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
8262586, Oct 24 2006 C R BARD, INC Large sample low aspect ratio biopsy needle
8262587, Aug 15 2002 Boston Scientific Scimed, Inc. Multiple biopsy apparatus and related method of use
8267868, Aug 10 2005 C. R. Bard, Inc. Single-insertion, multiple sample biopsy device with integrated markers
8277393, Nov 06 2000 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Biopsy apparatus
8282574, Aug 10 2005 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
8282660, Mar 13 2006 EKOS LLC Minimally invasive lung volume reduction devices, methods, and systems
8283890, Sep 25 2009 Bard Peripheral Vascular, Inc; SONION ROSKILDE A S Charging station for battery powered biopsy apparatus
8287466, Mar 04 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with variable side aperture
8317725, Aug 05 2005 Senorx, Inc Biopsy device with fluid delivery to tissue specimens
8317726, May 13 2005 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
8348955, Dec 06 2004 DFINE, INC. Bone treatment systems and methods
8366636, Jul 09 2004 SONION ROSKILDE A S Firing system for biopsy device
8430824, Oct 29 2009 Bard Peripheral Vascular, Inc; SONION ROSKILDE A S Biopsy driver assembly having a control circuit for conserving battery power
8430827, Oct 14 2003 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Vacuum assisted biopsy device
8430887, Apr 30 2007 DFINE, INC Bone treatment systems and methods
8444573, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device
8454531, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Icon-based user interface on biopsy system control module
8454532, Dec 27 2007 Devicor Medical Products, Inc. Clutch and valving system for tetherless biopsy device
8460205, Sep 10 2003 Boston Scientific Scimed, Inc. Forceps and collection assembly with accompanying mechanisms and related methods of use
8465471, Aug 05 2009 ROCIN LABORATORIES, INC Endoscopically-guided electro-cauterizing power-assisted fat aspiration system for aspirating visceral fat tissue within the abdomen of a patient
8480595, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with motorized needle cocking
8485987, Oct 06 2006 SONION ROSKILDE A S; Bard Peripheral Vascular, Inc Tissue handling system with reduced operator exposure
8485988, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device
8485989, Sep 01 2009 Bard Peripheral Vascular, Inc; SONION ROSKILDE A S Biopsy apparatus having a tissue sample retrieval mechanism
8487021, Feb 28 2008 DFINE, INC Bone treatment systems and methods
8491496, Sep 29 2004 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with sample storage
8523871, Apr 03 2007 DFINE, INC Bone treatment systems and methods
8529466, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device with rotating stylet blades
8529467, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device with a collapsible stylet
8529468, Jul 01 2009 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Surgical system
8535240, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device with a retracting stylet blade
8556910, Apr 03 2007 DFINE, INC Bone treatment systems and methods
8562542, Mar 28 2003 DePuy Mitek, LLC Tissue collection device and methods
8568332, Nov 06 2000 Suros Surgical Systems, Inc. Biopsy apparatus
8568335, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with vacuum assisted bleeding control
8585610, Sep 11 2003 DePuy Mitek, LLC Tissue extraction and maceration device
8597200, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device
8597201, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device with a flexible transection blade
8597202, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device with a modified cutting edge
8597203, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device with a reduced diameter cannula
8597204, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device with an independent needle
8597205, Dec 20 2007 C. R. Bard, Inc. Biopsy device
8597206, Oct 12 2009 Bard Peripheral Vascular, Inc; SONION ROSKILDE A S Biopsy probe assembly having a mechanism to prevent misalignment of components prior to installation
8603127, Mar 20 2002 GYRUS ACMI, INC Removable anchored lung volume reduction devices and methods
8622928, Dec 30 2004 Devicor Medical Products, Inc. Needle assembly for use with a biopsy device
8632605, Sep 12 2008 EKOS LLC Elongated lung volume reduction devices, methods, and systems
8667973, Apr 08 2003 GYRUS ACMI, INC Bronchoscopic lung volume reduction method
8668707, Mar 13 2006 EKOS LLC Minimally invasive lung volume reduction devices, methods, and systems
8672859, May 13 2005 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
8690793, Mar 16 2009 C R BARD, INC Biopsy device having rotational cutting
8696679, Dec 08 2006 DFINE, INC Bone treatment systems and methods
8702621, Jan 31 2005 C.R. Bard, Inc. Quick cycle biopsy system
8702622, Jan 31 2005 C.R. Bard, Inc. Quick cycle biopsy system
8702623, Dec 18 2008 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with discrete tissue chambers
8708928, Apr 15 2009 Bard Peripheral Vascular, Inc Biopsy apparatus having integrated fluid management
8708929, Apr 15 2009 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
8708930, Apr 15 2009 Bard Peripheral Vascular, Inc. Biopsy apparatus having integrated fluid management
8721563, Aug 10 2005 C. R. Bard, Inc. Single-insertion, multiple sample biopsy device with integrated markers
8721734, May 18 2009 EKOS LLC Cross-sectional modification during deployment of an elongate lung volume reduction device
8728003, Aug 10 2005 C.R. Bard Inc. Single insertion, multiple sample biopsy device with integrated markers
8728004, Mar 29 2003 C.R. Bard, Inc. Biopsy needle system having a pressure generating unit
8728108, Dec 10 2009 Alcon Inc Systems and methods for dynamic pneumatic valve driver
8740809, Mar 30 2010 SITESELECT MEDICAL TECHNOLOGIES, INC Tissue excision device with a retractable backhook
8740921, Mar 13 2006 EKOS LLC Lung volume reduction devices, methods, and systems
8764679, Nov 06 2000 Suros Surgical Systems, Inc. Biopsy apparatus
8764761, Apr 30 2007 DFINE, INC. Bone treatment systems and methods
8771200, Aug 10 2005 C.R. Bard, Inc. Single insertion, multiple sampling biopsy device with linear drive
8795241, May 13 2011 GYRUS ACMI, INC Deployment catheter
8808197, Oct 29 2009 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
8808200, Oct 01 2007 Suros Surgical Systems, Inc. Surgical device and method of using same
8808318, Feb 28 2011 Alcon Inc Surgical probe with increased fluid flow
8818564, Aug 31 2009 Alcon Inc Pneumatic pressure output control by drive valve duty cycle calibration
8821524, May 27 2010 Alcon Inc Feedback control of on/off pneumatic actuators
8845548, Jun 12 2009 Devicor Medical Products, Inc. Cutter drive assembly for biopsy device
8852120, Jan 25 2006 BETH ISRAEL DACONESS MEDICAL CENTER Devices and methods for tissue transplant and regeneration
8858463, Dec 20 2007 C. R. Bard, Inc. Biopsy device
8858464, Jul 01 2009 Suros Surgical Systems, Inc. Surgical system
8864680, Jul 09 2004 SONION ROSKILDE A S Transport system for biopsy device
8864682, Dec 27 2007 Devicor Medical Products, Inc. Clutch and valving system for tetherless biopsy device
8870788, Sep 11 2003 DePuy Mitek, LLC Tissue extraction and collection device
8888800, Mar 13 2006 EKOS LLC Lung volume reduction devices, methods, and systems
8905943, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with rotatable tissue sample holder
8911381, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with translating valve member
8915864, Aug 05 2005 SenoRx, Inc. Biopsy device with fluid delivery to tissue specimens
8926527, Jul 09 2004 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
8926647, Mar 20 2002 GYRUS ACMI, INC Removable anchored lung volume reduction devices and methods
8932233, May 21 2004 DEVICOR MEDICAL PRODUCTS, INC MRI biopsy device
8932310, Mar 13 2006 EKOS LLC Minimally invasive lung volume reduction devices, methods, and systems
8951208, Aug 21 2006 C. R. Bard, Inc. Self-contained handheld biopsy needle
8951209, Mar 19 2002 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
8956319, May 17 2002 GYRUS ACMI, INC One-way valve devices for anchored implantation in a lung
8961430, Aug 10 2005 C.R. Bard, Inc. Single-insertion, multiple sampling biopsy device usable with various transport systems and integrated markers
8968210, Oct 01 2008 BEACON ENDOSCOPIC LLC; Covidien LP Device for needle biopsy with integrated needle protection
8968212, Dec 13 2006 Devicor Medical Products, Inc. Biopsy device with motorized needle cocking
8974484, Sep 11 2001 GYRUS ACMI, INC Removable lung reduction devices, systems, and methods
8974527, Aug 08 2003 GYRUS ACMI, INC Bronchoscopic repair of air leaks in a lung
8979769, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with vacuum assisted bleeding control
8986222, Nov 06 2000 Hologic, Inc. Biopsy apparatus
8986336, Oct 25 2001 GYRUS ACMI, INC Apparatus and method for deployment of a bronchial obstruction device
8992440, Jul 09 2004 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
9005136, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with vacuum assisted bleeding control
9005210, Dec 06 2004 DFINE, INC. Bone treatment systems and methods
9039634, Nov 20 2007 DEVICOR MEDICAL PRODUCTS, INC Biopsy device tissue sample holder rotation control
9044214, Dec 30 2004 Devicor Medical Products, Inc. Needle assembly for use with a biopsy device
9060841, Aug 31 2011 Alcon Inc Enhanced flow vitrectomy probe
9072502, Mar 19 2002 C. R. Bard, Inc. Disposable biopsy unit
9095326, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Biopsy system with vacuum control module
9095327, Mar 04 2005 Devicor Medical Products, Inc. Biopsy device with variable side aperture
9125639, Nov 23 2004 EKOS LLC Steerable device for accessing a target site and methods
9149326, Apr 30 2002 Ethicon Endo-Surgery, Inc. Electrosurgical instrument and method
9161743, Jan 31 2005 C. R. Bard, Inc. Quick cycle biopsy system
9161797, Apr 30 2007 DFINE, INC. Bone treatment systems and methods
9173641, Aug 12 2009 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
9173669, Sep 12 2008 EKOS LLC Enhanced efficacy lung volume reduction devices, methods, and systems
9186128, Oct 01 2008 BEACON ENDOSCOPIC LLC; Covidien LP Needle biopsy device
9192403, Sep 12 2008 EKOS LLC Elongated lung volume reduction devices, methods, and systems
9198669, Mar 31 2006 GYRUS ACMI, INC Articulable anchor
9204925, Aug 14 2008 The Cleveland Clinic Foundation Apparatus and method for treating a neuromuscular defect
9216011, Jun 25 2008 Neodynamics AB Core biopsy arrangement
9216195, Feb 28 2008 DFINE, INC. Bone treatment systems and methods
9220485, Aug 28 2010 Boston Scientific Scimed, Inc Tissue collection and separation device
9226733, Mar 30 2010 Siteselect Medical Technologies, Inc. Tissue excision device with an independent needle
9265485, Sep 29 2004 Devicor Medical Products, Inc. Biopsy device with integral vacuum assist and tissue sample and fluid capturing canister
9282949, Sep 25 2009 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
9326755, Aug 26 2011 DEVICOR MEDICAL PRODUCTS, INC Biopsy device tissue sample holder with bulk chamber and pathology chamber
9332973, Oct 01 2008 BEACON ENDOSCOPIC LLC; Covidien LP Needle biopsy device with exchangeable needle and integrated needle protection
9345457, Dec 13 2006 DEVICOR MEDICAL PRODUCTS, INC Presentation of biopsy sample by biopsy device
9345458, Jul 09 2004 Bard Peripheral Vascular, Inc. Transport system for biopsy device
9392999, May 21 2004 Devicor Medical Products, Inc. MRI biopsy device
9402632, Mar 13 2006 EKOS LLC Lung volume reduction devices, methods, and systems
9402633, Mar 15 2013 EKOS LLC Torque alleviating intra-airway lung volume reduction compressive implant structures
9402971, Mar 13 2006 EKOS LLC Minimally invasive lung volume reduction devices, methods, and systems
9414814, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with rotatable tissue sample holder
9421001, Feb 18 2010 Devicor Medical Products, Inc. Biopsy device tissue sample holder with flow restriction device
9421002, Mar 19 2002 C. R. Bard, Inc. Disposable biopsy unit
9427279, Jan 25 2010 Stryker Corporation Surgical tool arrangement having a handpiece usable with multiple surgical tools
9433403, Nov 20 2007 Devicor Medical Products, Inc. Icon-based user interface on biopsy system control module
9439631, Mar 19 2002 C. R. Bard, Inc. Biopsy device and insertable biopsy needle module
9445854, Feb 01 2008 DFINE, INC Bone treatment systems and methods
9456809, Jul 09 2004 Bard Peripheral Vascular, Inc. Tissue sample flushing system for biopsy device
9462999, Dec 13 2006 Devicor Medical Products, Inc. Biopsy sample storage
9468424, Jun 12 2009 Devicor Medical Products, Inc. Cutter drive assembly for biopsy device
9468425, Sep 29 2004 Devicor Medical Products, Inc. Biopsy device with integral vacuum assist and tissue sample and fluid capturing canister
9474533, May 18 2009 EKOS LLC Cross-sectional modification during deployment of an elongate lung volume reduction device
9486184, Dec 13 2006 Devicor Medical Products, Inc. Biopsy sample storage
9492130, Nov 24 2010 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated System for improved tissue-handling and in line analysis of the tissue
9504453, May 21 2004 Devicor Medical Products, Inc. MRI biopsy device
9504521, Mar 17 2005 Stryker Corporation Surgical tool arrangement
9538994, Dec 27 2007 Devicor Medical Products, Inc. Vacuum sensor and pressure pump for tetherless biopsy device
9566045, Oct 06 2006 Bard Peripheral Vascular, Inc. Tissue handling system with reduced operator exposure
9572613, Apr 30 2007 DFINE, INC. Bone treatment systems and methods
9592317, Apr 14 2009 DFINE, INC. Medical system and method of use
9597118, Jan 07 2009 DFINE, INC. Bone anchor apparatus and method
9610110, Dec 06 2004 DFINE, INC. Bone treatment systems and methods
9622752, Aug 08 2003 GYRUS ACMI, INC Bronchoscopic repair of air leaks in a lung
9638770, May 21 2004 DEVICOR MEDICAL PRODUCTS, INC MRI biopsy apparatus incorporating an imageable penetrating portion
9655599, Aug 12 2009 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
9668717, Mar 04 2005 Devicor Medical Products, Inc. Biopsy device with variable side aperture
9724074, Nov 25 2013 DEVICOR MEDICAL PRODUCTS, INC Biopsy device with translating valve assembly
9757100, Sep 29 2004 Devicor Medical Products, Inc. Biopsy device with integral vacuum assist and tissue sample and fluid capturing canister
9775588, Dec 20 2007 C. R. Bard, Inc. Biopsy device
9782558, Mar 13 2006 EKOS LLC Minimally invasive lung volume reduction devices, methods, and systems
9782565, Oct 01 2008 Covidien LP Endoscopic ultrasound-guided biliary access system
9788818, Aug 28 2010 Boston Scientific Scimed, Inc Tissue collection and separation device
9795365, May 21 2004 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating a sleeve and multi-function obturator
9821085, Feb 28 2008 DFINE, INC. Bone treatment systems and methods
9833279, Aug 05 2009 Rocin Laboratories, Inc. Twin-cannula tissue aspiration instrument system
9872672, Jul 09 2004 Bard Peripheral Vascular, Inc. Length detection system for biopsy device
9877706, Mar 15 2013 DEVICOR MEDICAL PRODUCTS, INC Biopsy device
9901325, Sep 29 2004 Devicor Medical Products, Inc. Biopsy device with sample storage
9901327, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with translating valve member
9901657, Oct 13 2008 DFINE, INC. System for use in bone cement preparation and delivery
9907542, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with translating valve member
9913630, Oct 01 2008 Covidien LP Device for needle biopsy with integrated needle protection
9925314, Aug 05 2009 Rocin Laboratories, Inc. Method of performing intra-abdominal tissue aspiration to ameliorate the metabolic syndrome, or abdominal obesity
9949726, Oct 29 2009 Bard Peripheral Vscular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
9968339, Aug 05 2005 Devicor Medical Products, Inc. Biopsy device with rotatable tissue sample holder
9974523, Dec 13 2006 Devicor Medical Products, Inc. Biopsy sample storage
9999406, Sep 10 2010 DEVICOR MEDICAL PRODUCTS, INC Biopsy device tissue sample holder with removable tray
D640977, Sep 25 2009 SONION ROSKILDE A S; Bard Peripheral Vascular, Inc Charging station for a battery operated biopsy device
RE46135, Aug 05 2005 Devicor Medical Products, Inc. Vacuum syringe assisted biopsy device
Patent Priority Assignee Title
4966162, Jan 25 1989 Flexible encoscope assembly
4982739, Feb 06 1989 Board of Regents for the Univeristy of Oklahoma; BOARD OF REGENTS FOR THE UNIVERSITY OF OKLAHOMA, THE Biosample aspirator
5285795, Sep 12 1991 Clarus Medical, LLC Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
5775333, Mar 24 1994 DEVICOR MEDICAL PRODUCTS, INC Apparatus for automated biopsy and collection of soft tissue
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Jun 14 2006REM: Maintenance Fee Reminder Mailed.
Jul 06 2006M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jul 06 2006M2554: Surcharge for late Payment, Small Entity.
Dec 29 2009M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Jul 03 2014REM: Maintenance Fee Reminder Mailed.
Sep 17 2014M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.
Sep 17 2014M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity.


Date Maintenance Schedule
Nov 26 20054 years fee payment window open
May 26 20066 months grace period start (w surcharge)
Nov 26 2006patent expiry (for year 4)
Nov 26 20082 years to revive unintentionally abandoned end. (for year 4)
Nov 26 20098 years fee payment window open
May 26 20106 months grace period start (w surcharge)
Nov 26 2010patent expiry (for year 8)
Nov 26 20122 years to revive unintentionally abandoned end. (for year 8)
Nov 26 201312 years fee payment window open
May 26 20146 months grace period start (w surcharge)
Nov 26 2014patent expiry (for year 12)
Nov 26 20162 years to revive unintentionally abandoned end. (for year 12)