Disclosed are methods and apparatus for providing endless transformation of the polarization of light. A polarization splitter splits light having an input polarization into beams having substantially orthogonal polarizations. The beams are provided as substantially copolarized to a pair of optical waveguides which are selectively optically coupled. Electrodes apply selected electric fields to the optical waveguides for providing transformation of the input polarization to a selected output polarization. The outputs of the optical waveguides are provided as substantially orthogonally polarized to a combiner for providing a beam of output light having the selected output polarization.
|
30. A method of transforming the polarization of light from a predetermined polarization to a selected polarization, comprising the steps of:
splitting an input beam of the light of the predetermined polarization into first and second beams; providing first and second electrooptic optical waveguides, selected lengths of the optical waveguides being optically coupled; providing the first and second beams, respectively, to the first and second electrooptic optical waveguides, each having a respective output, the step of providing including providing the first and second beams to the optical waveguides as substantially copolarized; selecting first and second electric fields to apply, respectively, to the first and second electrooptic optical waveguides; applying the first and second selected electric fields, respectively, to the first and second electrooptic optical waveguides; combining the first and second beams downstream of the outputs of the first and second electrooptic optical waveguides to form an output beam having the selected polarization, and wherein the step of selecting the first and second electric fields includes selecting the fields such that the first and second beams are varied such that the beams, when combined, form the output beam having the selected polarization.
1. An optical apparatus for transforming the polarization of light from an input polarization to a selected output polarization, comprising:
a pair of electrooptic optical waveguides including at least one coupled section, each electrooptical optical waveguide of said pair having an input and an output; a plurality of electrodes for exposing said optical waveguides of said pair to selected electric fields; an input beam splitter having an input and two outputs, the input for receiving light having the input polarization and for splitting the light into two outputs, each of the outputs in optical communication with a different input of said optical waveguides of said pair, said optical communication achieved so as to provide substantially copolarized light to said electrooptic optical waveguides of said pair; and an optical combiner having first and second combiner inputs and a combiner output, each of said inputs in optical communication with a different output of said optical waveguides of said pair of optical waveguides, the optical communication being achieved such that said combiner inputs receive light from said pair of optical waveguides as substantially orthogonally polarized; and whereby selective application of voltages to said electrodes produces said electric fields such that the light having the input polarization and entering one of an input of a first of said electrooptic optical waveguides and said input of said splitter is transformed to light having the selected polarization and emanating from one of an output of one of said electrooptic optical waveguides and said output of said combiner.
41. A method of transforming the polarization of light from a predetermined polarization to a selected polarization, comprising the steps of:
splitting an input beam of the light of the predetermined- polarization into first and second beams; providing first and second electrooptic optical waveguides, selected lengths of the optical waveguides being optically coupled; providing the first and second beams, respectively, to the first and second electrooptic optical waveguides, each having a respective output, the step of providing including providing the first and second beams to the optical waveguides as substantially copolarized; selecting first and second electric fields to apply, respectively, to the first and second electrooptic optical waveguides; applying the first and second selected electric fields, respectively, to the first and second electrooptic optical waveguides; combining the first and second beams downstream of the outputs of the first and second electrooptic optical waveguides to form an output beam having the selected polarization, and wherein the step of selecting the first and second electric fields includes selecting the fields such that the first and second beams are varied such that the beams, when combined, form the output beam having the selected polarization and wherein the step of combining the first and second beams includes providing an output polarization splitter having first and second inputs and an output, and providing the light from the outputs of the first and second optical waveguides, respectively, to the first and second inputs, respectively, of the output polarization splitter, the first and second beams being provided to the inputs of the output polarization splitter as substantially orthogonally polarized.
11. An optical apparatus for selectively controlling the polarization of light, comprising:
at least first and second transformer sections, each of said transformer sections including an electrooptic substrate material; a pair of optical waveguides disposed with said electrooptic substrate material; at least one section of coplanar electrode structure disposed with said electrooptic substrate material and having an inner electrode spaced from a pair of outer electrodes by a pair of gaps and wherein a first length of each optical waveguide of said pair is disposed proximate a different gap of said pair of gaps for being exposed to electric fields developed proximate said different gap; and wherein said optical waveguides of said pair are selectively optically coupled for selectively transferring light energy therebetween; said pairs of optical waveguides of said transformer sections being in optical communication to form first and second optical waveguides each having an input end and an output end downstream of said input end; a polarization splitter having an input and two outputs, the outputs for providing substantially orthogonally polarized components of the light entering said input of said polarization splitter, one of said outputs in optical communication with the input of said first optical waveguide and the other of said outputs in optical communication with said input of said second optical waveguide, said optical communication being achieved such that the light received by first and second optical waveguides is substantially copolarized; and an optical combiner having first and second combiner inputs and a combiner output, one of said combiner inputs in optical communication with the output of said first optical waveguide and the other said combiner inputs in optical communication with the output of said second optical waveguide, whereby selective application of voltages between said inner electrodes and said outer electrodes of said transformer sections can selectively transform light of a predetermined polarization entering said input of said input polarization splitter into output light, emanating from the combiner output of said output combiner, having a selected polarization.
35. A method of transforming the polarization of light from a predetermined polarization to a selected polarization, comprising the steps of:
splitting an input beam of the light of the predetermined polarization into first and second beams; providing first and second electrooptic optical waveguides, selected lengths of the optical waveguides being optically coupled; providing the first and second beams, respectively, to the first and second electrooptic optical waveguides, each having a respective output, the step of providing including providing the first and second beams to the optical waveguides as substantially copolarized; selecting first and second electric fields to apply, respectively, to the first and second electrooptic optical waveguides; applying the first and second selected electric fields, respectively, to the first and second electrooptic optical waveguides; combining the first and second beams downstream of the outputs of the first and second electrooptic optical waveguides to form an output beam having the selected polarization, and wherein the step of selecting the first and second electric fields includes selecting the fields such that the first and second beams are varied such that the beams, when combined, form the output beam having the selected polarization and wherein wherein the step of providing first and second electrooptic optical waveguides includes the step of providing first and second optical waveguides disposed with a lithium niobate substrate material and wherein the step of applying first and second selected electric fields includes disposing at least one section of coplanar electrode structure with the electrooptic substrate material, the coplanar electrode structure having an inner electrode spaced from a pair of outer electrodes by a pair of gaps and disposing a first length of each optical waveguide of the pair proximate a different gap of the pair of gaps, and selectively applying voltages between the inner and outer electrodes for providing the first electric field proximate one of the gaps and the second electric field proximate the other of the gaps for exposure of the first lengths of the optical waveguides to the first and second electric fields.
6. An optical apparatus for transforming the polarization of light from an input polarization to a selected output polarization, comprising:
a pair of electrooptic optical waveguides including at least one coupled section, each electrooptical optical waveguide of said pair having an input and an output; a plurality of electrodes for exposing said optical waveguides of said pair to selected electric fields and at least one of the following: an input beam splitter having an input and two outputs, the input for receiving light having the input polarization and for splitting the light into two outputs, each of the outputs in optical communication with a different input of said optical waveguides of said pair, said optical communication achieved so as to provide substantially copolarized light to said electrooptic optical waveguides of said pair; and an optical combiner having first and second combiner inputs and a combiner output, each of said inputs in optical communication with a different output of said optical waveguides of said pair of optical waveguides, the optical communication being achieved such that said outputs receive light from said pair of optical waveguides as substantially orthogonally polarized; and whereby selective application of voltages to said electrodes produces said electric fields such that the light having the input polarization and entering one of an input of a first of said electrooptic optical waveguides and said input of said splitter is transformed to light having the selected polarization and emanating from one of an output of one of said electrooptic optical waveguides and said output of said combiner and wherein said plurality of electrodes includes a plurality of sections of coplanar electrodes, each section including an inner electrode spaced from a pair of outer electrodes by a pair of gaps and wherein for each coplanar electrode section a selected length of each optical waveguide of said pair is disposed proximate a different gap of said pair of gaps for being exposed to electric field lines extending between those electrodes spaced so as to form said different gap, and wherein said at least one coupled section includes a plurality of coupled sections of said pair of optical waveguides, said coupled sections being alternately interposed with said sections of coplanar electrodes. 39. A method of transforming the polarization of light from a predetermined polarization to a selected polarization, comprising the steps of:
splitting an input beam of the light of the predetermined polarization into first and second beams; providing first and second electrooptic optical waveguides, selected lengths of the optical waveguides being optically coupled; providing the first and second beams, respectively, to the first and second electrooptic optical waveguides, each having a respective output, the step of providing including providing the first and second beams to the optical waveguides as substantially copolarized; selecting first and second electric fields to apply, respectively, to the first and second electrooptic optical waveguides; applying the first and second selected electric fields, respectively, to the first and second electrooptic optical waveguides; combining the first and second beams downstream of the outputs of the first and second electrooptic optical waveguides to form an output beam having the selected polarization, and wherein the step of selecting the first and second electric fields includes selecting the fields such that the first and second beams are varied such that the beams, when combined, form the output beam having the selected polarization and wherein the step of providing first and second electrooptic optical waveguides includes the step of providing first and second optical waveguides disposed with a lithium niobate substrate material and wherein the step of applying first and second electric fields includes disposing a plurality of coplanar electrode sections with the electrooptic substrate material, each section of the plurality including an inner electrode spaced from a pair of outer electrodes by a pair of gaps, for each coplanar electrode section, disposing a length of each optical waveguide proximate a different gap of the pair of gaps of the coplanar electrode section; and selectively applying voltages between the inner and outer electrodes of the plurality of coplanar electrode sections for providing the first and second electric fields proximate the gaps of the sections for exposure of the lengths of the electrooptic optical waveguides to the first and second electric fields; and wherein the step of providing first and second optical waveguides includes providing a plurality of coupling sections of the first and second waveguides wherein the waveguides are disposed within selected distances or each other, the coupling section being alternatively interposed with and distinct from the coplanar electrode sections.
36. A method of transforming the polarization of light from a predetermined polarization to a selected polarization, comprising the steps of:
splitting an input beam of the light of the predetermined polarization into first and second beams; providing first and second electrooptic optical waveguides, selected lengths of the optical waveguides being optically coupled; providing the first and second beams, respectively, to the first and second electrooptic optical waveguides, each having a respective output, the step of providing including providing the first and second beams to the optical waveguides as substantially copolarized; selecting first and second electric fields to apply, respectively, to the first and second electrooptic optical waveguides; applying the first and second selected electric fields, respectively, to the first and second electrooptic optical waveguides; combining the first and second beams downstream of the outputs of the first and second electrooptic optical waveguides to form an output beam having the selected polarization, and wherein the step of selecting the first and second electric fields includes selecting the fields such that the first and second beams are varied such that the beams, when combined, form the output beam having the selected polarization and wherein the step of providing first and second electrooptic optical waveguides includes the step of providing first and second optical waveguides disposed with a lithium niobate substrate material and wherein the step of applying first and second selected electric fields includes disposing first and second sections of coplanar electrode structure with the electrooptic substrate material, each section of coplanar electrode structure having an inner electrode spaced from a pair of outer electrodes by a pair of gaps; and disposing a first length of each optical waveguide proximate a different gap of the pair of gaps of the first coplanar electrode section; disposing a second length of each optical waveguide of the pair proximate a different gap of the pair of gaps of the second coplanar electrode section, the second lengths each having an optical path length at a wavelength of the light having the predetermined polarization that is longer than the optical path length of the first lengths at that wavelength; and selectively applying voltages between the inner and outer electrodes of the first coplanar electrode structure section and between the inner and outer electrodes of the second coplanar electrode structure section for providing the first and second electric fields proximate the gaps for exposure of the first second lengths of the optical waveguides to the first and second electric fields.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
7. The optical apparatus of
8. The optical apparatus of
9. The optical apparatus of
10. The apparatus of
12. The optical apparatus of
13. The optical apparatus of
14. The optical apparatus of
15. The optical apparatus of
said at least one transformer section further includes first and second coupling sections for providing said selected optical coupling, said first coupling section including a first selected coupling length along each of said optical waveguides of said pair wherein said optical waveguides are disposed within a selected distance of each other, and said second coupling section including a second selected coupling length along each of said optical waveguides of said pair wherein said optical waveguides of said pair are disposed within a second selected distance of each other, said coupling sections and said coplanar electrode sections being distinct and alternatively interposed.
16. The optical apparatus of
17. The optical apparatus of
18. The optical apparatus of
19. The optical apparatus of
20. The optical apparatus of
21. The optical apparatus of
22. The optical apparatus of
23. The optical apparatus of
24. The optical apparatus of
25. The optical apparatus of
26. The optical apparatus of
27. The optical apparatus of
28. The optical apparatus of
29. The optical apparatus of
31. The method of
32. The method of
33. The method of
34. The method of
37. The method of
38. The method of
wherein the step of providing first and second electrooptic optical waveguides having selected coupled sections includes disposing the first lengths within a selected distance of each other for providing a first selected coupling therebetween, disposing the second lengths within a selected distance of each other for providing a second selected optical coupling therebetween, and disposing the third lengths within a selected distance of each other for providing a third selected optical coupling therebetween.
40. The method of
|
This invention relates to methods and apparatus for the control of the phase and magnitude of light, and more particularly, to an endless polarization transformer for transforming the state of polarization (SOP) of light.
In a typical optical communication system, an optical transmitter generates an optical beam and modulates the beam with an electrical signal representative of the information to be transmitted by the communication system. An optical fiber propagates the modulated optical beam to a receiver that demodulates the optical beam to recover the electrical signal. Fiber amplifiers, disposed at appropriate intervals in the fiber optic link between the transmitter and the receiver, maintain the strength of the modulated optical beam. The low loss, light weight, small size, flexibility and high intrinsic bandwidth of optical fiber make optical communication systems highly desirable for the communication of both of digital and analog signals. Examples of optical communication systems include cable TV (CATV) systems, telephone and other cross-country or cross-continent communication systems, and other microwave and RF systems, such as phased array antenna systems used by the military. DWDM (Dense Wavelength Division Multiplexing) systems are also becoming increasingly popular, as they increase the bandwidth of existing optical fibers by transmitting multiple beams, each of a different wavelength and representing a different channel for the communication of information, over the optical fiber.
One important concern with optical communication systems is control of the polarization of the light beam (referred to herein as the state of polarization, or SOP) received by the various optical components in the optical communication system. Polarization is property of light relating to the direction in space of the vibrations of the electromagnetic fields of which light is composed. For example, the electric field of the light can vibrate along either or along both of two orthogonal axes of a coordinate system, where the orthogonal axes of the coordinate system define a plane that is perpendicular to a third axis along which the light propagates. For example, assume that a light beam is propagating along the z axis. The electric field can vibrate solely along the direction of the x axis, can vibrate solely along the direction of the y axis, or can vibrate along both axes, in which case the SOP of the light is determined by the superposition of the orthogonal polarization components, i.e., of the vibrations along the y axis and along the x axis. The superposition can result in the electric field vector tracing out particular shapes in the x-y plane, such as a circle or an ellipse. The shape and the direction in which it is traced (counterclockwise or clockwise) are determined by the relative phase and magnitude of the orthogonal polarization components of the light beam, and correpsond to a particular SOP.
Transmitters and receivers, as well as other components often present in an optical communication system, such as modulators and photonic switches, add-drop multiplexors, etc., are typically designed to operate with light having a particular SOP. However, as is well known to those of ordinary skill in the art, the SOP of a light beam often changes as the beam propagates in the optical communication system. These changes can be random over time. Thus although the transmitter may transmit the proper SOP that would result, if unchanged, in efficient operation of the other components in the optical communication system, the SOP changes as the beam propagates, and the performance of one or more of the components, and hence of the overall optical communication system, can suffer. The use of polarization maintaining optical fiber can reduce the problem of changes of the SOP, but such optical fiber is expensive, does not typically totally eliminate changes of the SOP, and hence is typically only used in short lengths to interconnect adjacent components.
Polarization transformers are known in the art. A polarization transformer can receive the light beam prior to delivery of the beam to the receiver or other optical component and transform the SOP of the beam to the SOP that the receiver or other component is designed to process. For example, it is known in the art that any input SOP can be transformed into any desired output SOP by a cascade of two quarter-wave plates and a half-wave plate. The half-wave plate is placed in between the quarter-wave plates, and each plate is disposed at a selected angle, where the angles can be, and often are, selected to be different. Varying the selected angles varies the SOP to which the input polarization of the beam is transformed.
Mechanical polarization transformers that use a cascade of quarter-wave and half-wave plates are available. However, such mechanical devices are inherently slow, bulky, complex, and not readily miniaturized. Polarization transformers are often combined with devices that track the input or output SOP and a controller for automatically controlling the transformer such that the varying input SOP is continuously transformed to the desired output SOP, which usually should not vary over time.
Another device known in the art is a "fiber squeezer" polarization transformer. However, this device is also mechanical and can require the use of complicated "reset" algorithms. "Reset" is a known phenomenon wherein a polarization transformer is controlled by a parameter that can only vary over a finite range. As the tracking and controlling described above progresses, the control parameter can approach one of its limits, and must be reset to a value within the control parameter range to continue to properly transform the SOP. During the reset the transformed polarization varies from the desired output SOP, and this can result in the loss of signal, and hence information received by the receiver or other component while the transformer is reset. Such loss is considered unacceptable in many applications. A polarization transformer that does not require a reset is known in the art as an "endless" polarization transformer, and is more desirable. The quarter-wave and half-wave transformer cascade discussed above is one example of an endless polarization transformer, because the waveplates can be endlessly rotated without reaching a limit.
Other optical apparatus useful for endless polarization transformation are disclosed in U.S. Pat. Nos. 5,212,743; 5,359,678; and 5,361,270, issued May 18, 1993, Oct. 25, 1994, and Nov. 1, 1994, respectively, and all of which include Heismann as an inventor. These patents are referred to herein as the "Heismann patents," and all are herein incorporated by reference. A polarization transformer using the apparatus disclosed in the Heismann patents uses cascaded electrode sections and a titanium indiffused optical waveguide realized on z-propagating lithium niobate. The cascaded electrode sections apply electric fields to the optical waveguide for inducing a selected phase shift between, and a selected relative amplitude between, the orthogonal components of the polarization of the light propagated by the optical waveguide. (In such a waveguide, the orthogonal components of polarization of the light are often referred to as the TM mode and the TE mode. Transfer of power between the orthogonal polarization components is referred to as mode conversion, and changing the relative phase of the orthogonal polarization components referred to as mode phase shifting.) The voltages are placed on the electrodes to produce electric fields that vary, via the electrooptic effect of the electrooptic lithium niobate substrate, the above conversion and phase shift such that the overall SOP determined by the superposition of the TE and TM modes is the desired output SOP.
The devices disclosed in the Heismann patents are often constructed and operated as the electronic analogs of the quarter-wave plate, half-wave plate, quarter-wave plate mechanical device described above, without, however, the limitations on the speed of operation. Although the devices are useful, readily miniaturized and represent an advance in the art, rather high voltages can be required on the electrodes to produce the necessary electric fields. Producing and controlling such voltages can increase the complexity and expense of optical communication systems. Furthermore, the loss introduced by the apparatus is different for each of the orthogonal polarization components, which can result in the transformed SOP differing from the desired polarization.
Liquid crystal polarization transformers and guided wave polarization transformers are also known in the art, but can suffer from the one of more of the disadvantages noted above in reference to other types of transformers, such as being too slow for many applications.
Additional information on known polarization transformers can be found in "Polarization-State Control Schemes for Heterodyne or Homodyne Optical Fiber Communications," Takanori Okoshi, Journal of Lightwave Technology, Vol. LT-3, No. 6, December 1985, pages 1232-1237, herein incorporated by reference.
Accordingly, it is an object of the present invention to address one or more of the foregoing deficiencies and disadvantages of the prior art.
It is another object of the invention to provide improved methods and apparatus for the control of the relative phase and magnitude of light beams, such as can be useful in applications such as the transformation of the polarization of light.
Other objects will be apparent to those of ordinary skill in the art in light of the following disclosure, including the claims.
In one aspect, the invention provides an optical apparatus for transforming the polarization of light from an input polarization to a selected output polarization. The optical apparatus includes a pair of electrooptic optical waveguides, each electrooptical waveguide of the pair having an input and an output, and the pair having at least one coupled section. A plurality of electrodes are provided for exposing the optical waveguides of said pair to selected electric fields. The apparatus also includes one or both of an input beam splitter and a beam combiner.
The input beam splitter includes an input and two outputs. The input receives light having the input polarization and splits the light into two outputs. Each of the outputs is in optical communication with a different input of the optical waveguides of the pair and this optical communication is achieved so as to provide substantially copolarized light to the electrooptic optical waveguides of the pair.
The optical combiner includes first and second combiner inputs and a combiner output. Each of the inputs is in optical communication with a different output of the optical waveguides of said the of optical waveguides, and this optical communication is achieved such that the inputs receive light from the pair of optical waveguides as substantially orthogonally polarized.
In operation, selective application of voltages to the electrodes produces the electric fields such that the light having the input polarization and entering either one of the inputs of the electrooptical optical waveguide pair or, if the beam splitter is present, the input of the beam splitter, is transformed to light having the selected polarization and emanating from one the outputs of one of the electrooptic optical waveguides, or when present, the output of the beam combiner.
The optical apparatus can include a time delay element for providing a selected time delay between the light signal emanating from the two optical waveguides. The time delay element interposed between one of the waveguides and one of the inputs to the combiner. The time delay can be added for compensating for polarization mode dispersion. Also, the invention can include a linearizing element disposed upstream of the beam splitter such that the input polarization of the light received by the beam splitter is always a linear polarization. A polarization rotator can be disposed between one of the outputs of the electrooptic optical waveguides of the pair and one of the inputs of the combiner for achieving the optical communication between the combiner and the pair of optical waveguides such that the light received by the inputs of the combiner is substantially orthogonally polarized.
The beam splitter can be a polarizing beam splitter, where the outputs thereof provide substantially orthogonal components of the light entering the input of the beam splitter. A polarization rotator is disposed between one of the outputs of the beam splitter and one of the inputs of the electrooptic optical waveguides of the pair for achieving the optical communication with the optical waveguides such that the light provided to the optical waveguide is substantially copolarized.
The plurality of electrodes can include a plurality of sections of coplanar electrodes, where each section includes an inner electrode spaced from a pair of outer electrodes by a pair of gaps. For each coplanar electrode section a selected length of each optical waveguide of the pair is disposed proximate a different gap of the pair of gaps for being exposed to electric field lines extending between those electrodes spaced so as to form the different gap. The at least one coupled section can include a plurality of coupled sections of the pair of optical waveguides, the coupled sections being alternately interposed with the sections of coplanar electrodes.
The at least one coupling section can include the optical waveguides of the pair being disposed within a selected distance of each other for a selected coupling length along each of the optical waveguides. The at least one coupling section can also include a junction between the optical waveguides of the pair of optical waveguides.
The optical apparatus of the invention can also include a SOP element for providing a feedback signal responsive to the output polarization and a controller responsive to the feedback signal and in electric communication with the electrodes for selectively applying voltage to the electrodes responsive to the feedback signal.
In yet another aspect, the invention provides an optical apparatus for selectively controlling the polarization of light. The apparatus includes at least first and second transformer sections. Each of the transformer sections includes the following: an electrooptic substrate material; a pair of optical waveguides disposed with the electrooptic substrate material; and at least one section of coplanar electrode structure disposed with the electrooptic substrate material, where the coplanar electrode section includes an inner electrode spaced from a pair of outer electrodes by a pair of gaps such that a first length of each optical waveguide of the pair is disposed proximate a different gap of the pair of gaps for being exposed to electric fields developed proximate the different gap. The optical waveguides of the pair are selectively optically coupled for selectively transferring light energy therebetween.
In addition, the pairs of optical waveguides of the transformer sections are in optical communication to form first and second optical waveguides each having an input end and an output end downstream of the input end. The optical apparatus also includes a polarization splitter having an input and two outputs, the outputs for providing substantially orthogonally polarized components of the light entering the input of the polarization splitter, one of the outputs in optical communication with the input of the first optical waveguide and the other of the outputs in optical communication with the input of the second optical waveguide, the optical communication being achieved such that the light received by the first and second optical waveguides is substantially copolarized. Also included is an optical combiner having first and second combiner inputs and a combiner output. One of the combiner inputs in optical communication with the output of the first optical waveguide and the other the combiner inputs in optical communication with the output of the second optical waveguide. Selective application of voltages between the inner electrodes and the outer electrodes of the transformer sections can selectively transform light of a predetermined polarization entering the input of the input polarization splitter into output light, emanating from the output of the optical combiner, having a selected polarization.
In another aspect, there is provided according to the invention an optical apparatus for selective control of the phase and magnitude of light, where the optical apparatus includes an electrooptic substrate and an elongate, substantially planar electrode section disposed with the electrooptic substrate, and first and second optical waveguides disposed with the substrate for propagating first and second optical beams, respectively. The electrode section includes an inner electrode disposed between first and second outer electrodes spaced from the inner electrode to form first and second gaps therewith, respectively. A first length of the first optical waveguide is disposed proximate the first gap so as to be exposed to electric field lines extending between the inner and first electrodes and a length of the second optical waveguide is disposed proximate the second gap so as to be exposed to electric field lines extending between the inner and second outer electrodes. The first optical waveguide has an input and an output, and the second optical waveguide has an input and an output.
The lengths of the first and second optical waveguides are further disposed for providing a selected optical coupling therebetween, whereby voltages of the same polarity applied to the outer electrodes relative to the inner electrode primarily affects one of the phase difference between the first and second beams and energy transfer between the first and second beams and voltages of opposite polarity applied to the first and second electrodes relative to the inner electrode primarily affects the other of the phase difference and the energy transfer.
In yet a further aspect, according to the invention there is provided an optical apparatus for selective control of the phase and magnitude of light. The optical apparatus includes an electrooptic substrate, first and second optical waveguides disposed with the substrate for transmitting first and second optical beams, respectively, where each optical waveguide of the pair has an input and an output downstream of the input end, and a plurality of first and second section types alternately interposed. The first section type includes an elongated coplanar electrode section disposed with the electrooptic substrate, the coplanar electrode section including an inner electrode spaced from a pair of outer electrodes by a pair of gaps wherein a selected length of each optical waveguide of the pair is disposed proximate a different gap of the pair of gaps for being exposed to electric fields extending between those electrodes spaced so as to form the different gap. The second section type includes a selected length of the pair of optical waveguides wherein the optical waveguides are spaced from each other so as to provide a selected optical coupling therebetween along the selected length. The plurality of first and second section types includes at least two sections of the first type and two sections of the second type. In operation, a first selected voltage applied between the inner and outer electrodes of one of the first type sections can vary the relative phase between the first and second beams and a second selected voltage applied between the inner electrode and outer electrodes of another of the first type sections can vary the relative magnitude of the first and second beams.
The invention also includes methods practiced in accordance with the teachings herein.
In one aspect, the invention provides a method of transforming the polarization of light from a predetermined polarization to a selected polarization, where the method includes the following steps: splitting an input beam of the light of the predetermined polarization into first and second beams; providing first and second electrooptic optical waveguides, selected lengths of the optical waveguides being optically coupled; providing the first and second beams, respectively, to the first and second electrooptic optical waveguides, each having a respective output, the step of providing including providing the first and second beams to the optical waveguides as substantially copolarized; selecting first and second electric fields to apply, respectively, to the first and second electrooptic optical waveguides; applying the first and second selected electric fields, respectively, to the first and second electrooptic optical waveguides; and combining the first and second beams downstream of the outputs of the first and second electrooptic optical waveguides to form an output beam having the selected polarization. The step of selecting the first and second electric fields includes selecting the fields such that the beams, when combined, form the output beam having the selected polarization.
In another aspect, the invention provides a method of transforming the polarization of light from a predetermined polarization to a selected polarization, where the method includes the following steps: splitting an input beam of the light of the predetermined polarization into first and second beams having substantially orthogonal polarizations; copolarizing the beams; adjusting at least one of the relative phase and the magnitude of the two copolarized beams; orthogonally polarizing the beams; and combining the two beams to form an output beam having the selected polarization, wherein the step of adjusting includes adjusting the at least one of the relative phase and the magnitude of the beams such that the beams, when orthogonally polarized and combined, form the output beam having the selected polarization.
Note that if the light having the predetermined polarization is known to be substantially linearly polarized, or if the some loss of power can be tolerated, the step of splitting the beam need not always be performed. For example, in yet a further aspect of the invention, there is provided a method of transforming input light having a predetermined polarization to output light having a selected polarization, where the method includes the following steps: providing a pair of optical waveguides including at least one coupled section, each optical waveguide of said pair having an input and an output; providing the input light to at least one of the inputs of the pair of electrooptic optical waveguides; varying the index of refraction of at least one section of at least one of waveguides of the pair; rotating the polarization of the light emanating from the output of one of the optical waveguides such the rotated polarization is orthogonal to the polarization of light emanating from the output of the other electrooptic optical waveguide of the pair; and combining the light having the rotated polarization with the light emanating from the output of the other electrooptic optical waveguide to form output light. The step of varying the index of refraction includes varying the index such that the input light having the predetermined polarization is transformed to the output light having the selected polarization. If desired, the input light can be linearized prior to providing the input light to one or both of the optical waveguides of the pair of optical waveguides. When the step of providing a pair of optical waveguides includes providing a pair of electrooptical waveguides, the input light tends to be linearized as it propagates along the electrooptic optical waveguide, if the waveguide propagates predominantly the one of the TM or TE modes, and not the other of the TM and TE modes.
If it is desired to provide output light having a substantially linear polarization, it is not always necessary to perform the step of combining the light from the outputs of the optical waveguides. For example, according to yet an additional aspect of the invention, there is provided a method of transforming input light having a predetermined polarization to output light having a selected polarization, where the method includes the following steps: splitting the input light into two orthogonally polarized beams; rotating the polarization of the light of one of the beams such that the light of the beams is copolarized; providing a pair of optical waveguides including at least one coupled section, each optical waveguide of said pair having an input and an output; providing each of the beams to different input of said optical waveguides of the pair of optical waveguides; and varying the index of refraction of at least one section of at least one of waveguides of the pair such that the light meaning from one of the outputs of the electrooptical waveguides of the pair has the selected polarization.
The steps of providing the pair of optical waveguides recited above can include providing a pair of electrooptic optical waveguides, and the steps of varying the index of refraction of at least one section of at least one of the waveguides can include applying a selected electric field to one or both of the optical waveguides for varying the index of refraction via the electrooptic effect.
A more complete understanding of the invention will be attained from the following detailed description and the accompanying drawings, in which:
Each of the optical waveguides 22A and 22B optically communicates with a different input of the inputs 54 and 58 of the optical combiner 60, and this optical communication is achieved such that the light provided to the inputs 54 and 58 is substantially orthogonally polarized. For example, as shown in
The transformer section 40A includes a coupling section 50 wherein the optical waveguides 22A and 22B are optically coupled for transferring light energy therebetween, as indicated by the wavy lines 52. The coupling section 50 of the pair 21 of the optical waveguides 22A and 22B can support at least two modes. According to the invention, at least one of the relative phase and the relative magnitude of the light beams propagating along the optical waveguides 22A and 22B is adjusted to such that the light 14 having the input polarization is transformed to light emanating from the output 64 having the desired output polarization.
Preferably, the waveguides 22A and 22B are electrooptic and the transformer section 40A exposes each to electric fields 42 for the aforementioned variation of the relative phase and/or the magnitude of the light beams propagating in the optical waveguides 22A and 22B. The electric fields can have symmetric components, as indicated by reference numerals 44, and asymmetric components, as indicated by reference numerals 48, or a combination of both symmetric components 44 and asymmetric components 48, and the aforementioned adjustment of the phase and magnitude is accomplished via the selection of the components 44 and 48 of the electric field 42. Typically, an electrode structure having a plurality of electrodes 120 is provided for selectively exposing the optical waveguides 22A and 22B to the electric fields 42.
Additional transformer sections, such as transformer section 40B, can be included for enhancing the range of output polarizations to which the predetermined input polarization can be transformed, or enhancing the range of predetermined input polarizations that can be transformed to a selected output polarization, or to provide additional degrees of freedom to compensate for non-ideal device characteristics.
A time delay element 62 can be included for providing a selected time delay to one of the components of the output light 68. For example, the time delay element 62 can be included between the output 64 of the optical waveguide 22A and the input 54 of the combiner 60 or between the output 66 of the optical waveguide 22B and the input 58 of the optical combiner 60. The time delay element helps compensate for signal distortion due to Polarization mode dispersion (PMD) introduced by the optical communication system. PMD refers to the phenomenon wherein one orthogonal component of the polarization of a light beam propagates at a different velocity than the other orthogonal component of the polarization, and can result in the output SOP of the light varying from the input SOP, as well as signal distortion. The time delay element 62 can add a selected time delay for compensating for PMD and reducing signal distortion. A typical time delay element 62 known in the art includes a pair of lenses 69 and 71 (see FIG. 6A), at least one of which is mounted on a translatable stage. The translatable stage varies the distance between the lenses for varying the time delay.
In a preferred embodiment of the optical apparatus 10, the apparatus 10 includes three transformer sections 40A-40C, (40C not shown in
Prior art polarization transformers, such as those disclosed in the U.S. Heismann Pat. Nos. 5,212,743, 5,359,678 and 5,361,270, include a titanium indiffused optical waveguide fabricated on x-cut, z-propagating lithium niobate. The titanium indiffused waveguide receives the light having the input polarization and propagates both the orthogonal polarization components thereof, that is, the waveguide propagates both TE and TM modes that makeup the overall SOP of the input light. The overall SOP is transformed via a combination of transfer of energy between the orthogonal polarization components, also referred to as TM-TE or polarization mode conversion, and introduction of a phase shift between the orthogonal polarization components, referred to as TM-TE phase shift, or polarization phase shift. Electrode sections are provided wherein each electrode section includes a common ground electrode on top of the optical waveguide and two outer electrodes placed symmetrically on both sides of the optical waveguide. Polarization mode conversion is induced via the r61 electrooptic coefficient by applying a common voltage to the two outer electrodes relative to the inner electrode and phase shifting between the modes is accomplished via the r22 and r21 electrooptic coefficients by applying opposite voltages to the outer electrodes. Both orthogonal polarizations propagate in the titanium indifused waveguide, and the overall state of polarization (SOP) determined by the superposition of the orthogonal polarization components.
According to one aspect of the present invention, it is disclosed that the functions of polarization mode conversion and polarization mode phase shift in a single waveguide propagating both orthogonal polarizations can be converted to conversion and phase shifting between first and second modes supported by a coupled section of a pair of optical waveguides, where the optical waveguides propagate light of substantially the same polarization. The present invention can thus reduce performance penalties arising from polarization dependent loss and can also advantageously reduce the control voltages used to provide the electric fields 42, because, for example, the r33 electrooptic coefficient can be used to produce the desired conversion and phase shifting between the modes. The present invention can also reduce the sensitivity of the polarization transformer to performance degradation due to misalignment of optical waveguides.
Application of control, or bias, voltages to the electrodes 120 to provide the selected asymmetric and symmetric electric fields, 44 and 48 respectively, is discussed in more detail below.
As is appreciated by those of ordinary skill in the art, in light of the disclosure herein, each of the various components illustrated in
For example, the polarization splitter can be a conventional fiber optic polarization splitter, or can be a free space polarizing beam splitter, such as a plate or cube beamsplitter. Also, as is known in the art, a polarization splitter 12 can be fabricated using an electroptic substrate material, such as lithium niobate. See, for example,
The combiner 60 can be very similar to the polarization splitter 12, with the inputs and outputs reversed, and typically devices known in the art to be suitable for the polarization splitter 12 can also be used as the combiner 60. For example, the combiner 60 can include a cube polarization splitter 90 arranged as shown in FIG. 2A and having inputs 54 and 58, as well as output 64, from which light 68 having the selected output polarization emanates.
One or both of the polarization rotators 38A and 38B can be the low control voltage interdigitated TM-TE mode shifters shown in FIG. 2D and disclosed in "Electro-optic Waveguide TE-TM Mode Converter With Low Drive Voltage," R. C. Alferness and L. L. Buhl, Optics Letters, Vol. 5, No. 11, November 1980, pp. 473-475, herein incorporated by reference. The polarization rotator 38B shown in
As shown in
Farady rotators, such as optical fiber Faraday rotators, are also known in the art and can be used as the polarization rotator 38A and/or 38B.
As shown in
With reference to
The optical waveguides 22A and 22B are disposed within a selected distance of each other, as indicated by reference numeral 104, for a selected length 100 to provide the coupling section 50 of FIG. 1.
Although each transformer section includes providing a selected coupling section 50, the distance 104 within which the optical waveguides 22A and 22B are disposed need not be same for each transformer section, and can be varied to provide a selected and different coupling for one or more of the sections. Furthermore, the transformer sections 40 shown in
Other types of suitable optical waveguides are known in the art. For example, a ridge guide can be formed above the surface of the electrooptic substrate material 110. Such ridge guides 22A and 22B are shown
The operation of transformer sections shown in
Proper control voltages are placed on the electrodes 120 to provide the selected symmetric and asymmetric electric fields 44 and 48, respectively. It is considered that one suitable technique for selecting the control voltages is analogous to the selection of control voltages disclosed in the aforementioned Heismann patents, such as the '743 patent referenced above. For example, in
Similarly, with respect to the present invention and, for example, with reference to
With reference to the
With reference now to
One of ordinary skill in the art, in light of the disclosure herein, understands that the bias voltages can be selected not only in accordance with the techniques disclosed in the aforementioned Heismann reference, but in accordance with other techniques as well. The Heismann patents provide general guidance for selecting voltages such that each of the transformer sections 40A-40C can provide an electronic analog to a waveplate. Accordingly, each of arrangements of transformer sections shown in
The electrodes 42 preferably each include a metallic conductive layer disposed with the electrooptic substrate material 110, such as deposited on the substrate material 110 or deposited on an intervening layer(s) 135 deposited on the substrate material 110, where the intervening layer 135 can be included for variety of reasons, such as for better securing the metallic layer to the substrate material 110, or to reduce the optical loss caused by the metal electrodes. The term "electrode," as used herein, includes metals disposed with the electrooptic substrate material 110, such as metals deposited on the substrate material or attached to the substrate material via intervening layers 135, as well as conductive regions formed in the substrate material via diffusion, doping or other techniques known or developed in the art and suitable for providing structures for supporting electric fields.
The use of matching layers is known in electrooptic devices. See for example, U.S. Pat. No. 5,895,742, entitled "Velocity Matched Traveling Wave Electrooptical Modulator Using A Benzocyclobutane Buffer Layer," filed Jul. 19, 1996 and herein incorporated by reference.
It is also known in the art to provide automatic polarization adjustment, and practice of the invention can include automatic adjustment of the polarization of the output light 68. With reference once again to
The measurement of the fluctuation of the SOP of light and Stokes Parameter Analyzers are discussed in "Real-Time Measurements of Polarization Fluctuations in an Optical Fiber Submarine Cable in a Deep-Sea Trial Using Electrooptic LiNbO3 Device," Yoshinori Namihira and Hiroharu Wakabayashi, Journal of Lightwave Technology, Vol. 7, No. 8, August 1989, pp. 1201-1206, herein incorporated by reference.
It is also known in the art for the controller to include appropriate programming for dithering the transformer sections 40A-40C of for varying the "angles" of the conceptual waveplates corresponding to the transformer sections 40A and 40B or the optical apparatus 10. The resulting dither in the polarization of the output light 68 can be converted into an intensity modulation by a polarizer in combination with phase sensitive detectors. Such a scheme and the apparatus involved are disclosed in the aforementioned Heismann patents, as well as in the article "Automatic polarization demultiplexer for polarization multiplexed transmission systems, by F. Heismann et. al., Electronic Letters, vol. 29, no. 22, Oct. 28, 1993, pages 1965-1966, herein incorporated by reference, and are considered within the scope of the invention.
The SOP element 132 can also provide a feedback signal for controlling the time delay provided by the time delay element 70. For example, as is known in the art, SOP element 132 include a receiver that demodulates information imposed on the input light 14. Selected component(s) of the demodulated signal can have selected values, such as a minimum or a maximum, when PMD delay is properly accounted for, such as by a proper delay introduced by the delay element 70. The SOP element 132 can include such a receiver for providing a feedback signal for controlling the time delay element 135.
The term "controller," as used herein, is intended to encompass at least its customary meaning in the art. A typical controller 135 includes a central processor, which can be programmable, a memory, interfacing input and output circuitry for interfacing with devices and components external to the controller, and a databus for communication between the central processor, the memory and the interfacing input and output circuitry. The memory usually includes a volatile random access memory (RAM) and well as a non volatile memory, such as a hard drive. A display, keyboard, and pointing and selecting device, such as a mouse, can be included as well. In many of the embodiments shown herein, one of ordinary skill will understand the controller to include a power supply for providing the voltages for biasing the electrodes.
One approach to understanding the operation of the apparatus shown in
According to one practice of the invention, the outer electrodes 124N, 120P, 120Q, 120S, 120U, 120V, 120X and 120Y, as well as the outer electrodes of the third transformer section 40C, are maintained at the same potential, and accordingly, as shown in
As understood by those or ordinary skill in the art, in light of the disclosure herein, electrooptic substrate material 110 can be other than lithium niobate, including, but not limited to, semiconductor materials and lithium tantalate, for example.
The transformer sections 40A, 40B, and 40C shown in the foregoing
Shown in
Note that the polarization controller according to the present invention need not include both the polarization splitter 12 and the beam combiner 60, and a beam splitter can also be used in place of the polarizing beam splitter 12. For example, with reference to
The polarization splitter 12 can have a structure similar to the beam combiner 60 of FIG. 2C. The polarization rotators 38A and 38B are the low control voltage interdigitated TM-TE mode shifters shown in FIG. 2D and disclosed in "Electro-optic Waveguide TE-TM Mode Converter With Low Drive Voltage," R. C. Alferness and L. L. Buhl, Optics Letters. Vol. 5, No. 11, November 1980, pp. 473-475, herein incorporated by reference., and include the interdigitated electrodes 120. Alternatively, one or both of the polarization rotators 38A and 38B can be based on structure disclosed in the above-referenced Heismann patents and shown in FIG. 2F. The transformer sections 40A, 40B and 40C are implemented as shown in
Note that the invention can be practiced without the use of electroptic optical waveguides, though perhaps with some sacrifice in speed. For example, with reference to
Note that the term electrooptical "optical waveguide", as used herein, refers to a waveguide behaving electrooptically in those regions of the waveguide where exposure to electric fields is a necessary aspect of the functioning of the present invention. For example, the waveguides 22A and 22B need not behave electrooptically everywhere, such as in the coupled sections 50.
Several embodiments of the invention are disclosed above, and are intended as illustrative of apparatus and methods for practicing the invention, and not as limiting. One of ordinary skill in the art, with knowledge of the present disclosure, can likely envision other embodiments, or variations of the disclosed embodiments, that encompass and achieve the purpose the present invention. Accordingly, these other embodiments and variations are deemed within the scope of the present invention.
It is understood that the following claims are to cover all generic and specific features of the invention described herein, and all statements of the scope of the invention, which, as a matter of language, might be said to fall therebetween.
Patent | Priority | Assignee | Title |
10222637, | Jun 15 2010 | Cisco Technology, Inc | Method and system for integrated power combiners |
11205828, | Jan 07 2020 | Wisconsin Alumni Research Foundation | 2-bit phase quantization waveguide |
6661936, | Feb 11 2000 | XIEON NETWORKS S A R L | Method for characterizing polarization transformers |
6678431, | Feb 21 2002 | PENDRAGON ELECTRONICS AND TELECOMMUNICATIONS RESEARCH LLC | Method for compensating polarization mode dispersion occurring in optical transmission fiber and apparatus therefor |
6771409, | Dec 19 2001 | HC PHOTONICS CORP | Simultaneous wavelength conversion and amplitude modulation in a monolithic quasi-phase-matched (QPM) nonlinear optical crystal |
6771910, | Aug 25 2000 | CIENA LUXEMBOURG S A R L ; Ciena Corporation | Optical bit interleaving |
6801721, | Jun 13 2000 | WSOU Investments, LLC | Polarization mode dispersion compensator for optical fiber communication systems |
6859573, | Feb 17 2000 | Lumentum Operations LLC | Double pass arrangement for a liquid crystal device |
6975454, | Jul 31 2001 | Luna Innovations Incorporated | Variable polarization-dependent-loss source |
7016582, | Mar 04 2002 | SUMITOMO ELECTRIC INDUSTRIES, LTD | Polarized wave holding optical fiber, and method of producing the same |
7206479, | Nov 13 2001 | CommScope Technologies LLC | Polarization beam separator and combiner |
7206513, | Aug 09 2002 | SAMSUNG ELECTRONICS CO , LTD | Polarization mode dispersion compensation apparatus using a photonic crystal structure |
7308204, | May 23 2003 | KDDI Corporation | Noise suppressing method and apparatus thereof |
7330611, | Sep 29 2004 | OPTELIAN ACCESS NETWORKS CORPORATION | Method and apparatus for enhancing the extinction ratio in mode converters |
7359584, | Nov 13 2001 | CommScope Technologies LLC | Polarization beam separator and combiner |
7379235, | Mar 18 2005 | Fujitsu Limited | Reducing polarization dependence of a wavelength dispersion variation monitor |
7495764, | Nov 07 2002 | The United States of America as represented by the Secretary of the Army; Secretary of the Army; ARMY, SECRETARY OF THE | Coherent radar and ladar polarimeter |
7542686, | Feb 20 2004 | Alcatel-Lucent USA Inc | Reset free devices |
7945130, | Nov 15 2007 | Luna Innovations Incorporated | Mode scrambling apparatus for multimode fiber |
8280246, | Nov 27 2008 | France Telecom | Measuring differential group delay in an optical fiber connection |
8780433, | Sep 28 2011 | Luna Innovations Incorporated | Polarization scrambling based on cascaded optical polarization devices having modulated optical retardation |
9014562, | Dec 14 1998 | TELECOM HOLDING PARENT LLC | Optical line terminal arrangement, apparatus and methods |
9134482, | May 15 2012 | Commissariat a l Energie Atomique et aux Energies Alternatives | Polarization splitting optical coupler having an interposed guide segment extending between first and second coplanar waveguides |
9823495, | Jun 15 2010 | Cisco Technology, Inc | Method and system for integrated power combiners |
Patent | Priority | Assignee | Title |
4390236, | Mar 19 1981 | Bell Telephone Laboratories, Incorporated | Tunable polarization independent wavelength filter |
4856094, | Sep 18 1986 | Siemens Aktiengesellschaft | Arrangement for polarization control, such as for an optical heterodyne or homodyne receiver |
5202941, | Dec 02 1991 | Telefonaktiebolaget L M Ericsson | Four section optical coupler |
5212743, | Feb 12 1992 | AT&T Bell Laboratories; American Telephone and Telegraph Company | Automatic polarization controller having broadband, reset-free operation |
5359678, | Jun 18 1993 | American Telephone and Telegraph Company | Apparatus and method employing fast polarization modulation to reduce effects of polarization hole burning and/or polarization dependent loss |
5361270, | Aug 18 1993 | AGERE Systems Inc | Apparatus and method employing polarization modulation to reduce effects of polarization hole burning and/or polarization dependent loss |
5611004, | Jan 30 1996 | Agilent Technologies Inc | Microphotonic polarization independent acousto optical tunable filter and receiver |
5611005, | Apr 26 1996 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | High-speed polarization scrambler with adjustable chirp |
6046839, | Mar 19 1998 | Fujitsu Limited | Polarizaiton scrambler |
6175668, | Feb 26 1999 | Corning Incorporated | Wideband polarization splitter, combiner, isolator and controller |
EP198245, | |||
JP5323243, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 29 1999 | WOOTEN, EDWARD L | UNIPHASE TELECOMMUNICATIONS PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010155 | /0388 | |
Aug 03 1999 | Uniphase Telecommunciations Products, Inc. | (assignment on the face of the patent) | / | |||
Sep 26 2001 | UNIPHASE TELECOMMUNICATIONS PRODUCTS, INC | JDS Uniphase Corporation | MERGER SEE DOCUMENT FOR DETAILS | 013964 | /0406 |
Date | Maintenance Fee Events |
Jun 12 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 10 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 18 2014 | REM: Maintenance Fee Reminder Mailed. |
Dec 10 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 10 2005 | 4 years fee payment window open |
Jun 10 2006 | 6 months grace period start (w surcharge) |
Dec 10 2006 | patent expiry (for year 4) |
Dec 10 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 10 2009 | 8 years fee payment window open |
Jun 10 2010 | 6 months grace period start (w surcharge) |
Dec 10 2010 | patent expiry (for year 8) |
Dec 10 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 10 2013 | 12 years fee payment window open |
Jun 10 2014 | 6 months grace period start (w surcharge) |
Dec 10 2014 | patent expiry (for year 12) |
Dec 10 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |