A rechargeable battery which may be used with most presently available hearing aids (or other appliances) with no modification to the existing hearing aid is needed in order to use the described wireless charging system. The battery may be known a "Dynamic battery" as the battery is actively charged by means of an inductor circuit built into the battery housing itself or added onto the battery. The hearing aid may simply be placed within the charger housing (or cradle) to charge the battery. No electrical connection by either wires or electrical contacts is needed to recharge the battery, which is located inside the hearing aid housing. Moreover, the battery need not be removed from the hearing aid (or other appliance).
|
1. A rechargeable battery which may be recharged without removal from an appliance, the battery comprising:
an inductive charging circuit formed within a first portion of a housing of a battery cell; and a rechargeable battery, formed within a second portion of a housing of the battery cell.
2. The rechargeable battery of
an inductor coil having a diameter substantially the same as the battery case; a ceramic substrate, formed within the diameter of the inductor coil; and an inductive charging circuit, formed on the ceramic substrate.
3. The rechargeable battery of
an inductor coil having a diameter substantially the same as the battery case, said inductor coil formed around the rechargeable battery; a battery terminal contact, for conducting current from the battery to the appliance; and an inductive charging circuit, formed on the battery contact.
4. The rechargeable battery of
|
The present application claims priority from Provisional U.S. Patent Application No. 60/270,147 filed on Feb. 22, 2001, and incorporated herein by reference.
The present invention relates to a rechargeable battery particularly for use in hearing aids or the like. In particular, the present invention is directed toward a hearing aid battery with a built-in inductive charging coil for recharging the hearing aid battery in situ.
Each hearing aid needs a battery power source to provide electrical current to its components. In Prior Art hearing aids, standard non-rechargeable batteries are used. Such batteries may last less than seven days before going dead. Constant replacement of hearing aid batteries is time consuming, expensive, environmentally unfriendly, and in many cases, a trying task.
Because of the small physical size of the batteries and the hearing aid housing, a large number of individuals who could benefit from the use of hearing aids are unable to do so because of their inability to open and close the access doors to the battery compartment in the hearing aid. It is very hard for most people, and impossible for others, particularly the elderly, who make up a large portion of hearing aid users.
Rechargeable batteries are known in the art. Various types of chemical compounds and mixtures for such batteries are know (e.g., Nickel and Cadmium, or NiCad). However, such Prior Art rechargeable batteries usually require removal of the battery or battery pack in order to charge the battery, or require the use of electrical contacts on the appliance for battery charging.
For example, cellular phones are generally provided with a removable battery pack which may be either charged while attached to the phone, or after removal, through use of a "charging stand". Cordless phones may use a built-in (e.g., hard wired) battery pack which may be charged when the phone is placed in its cradle. While such designs work well for fairly large appliances such as cellular phones or cordless phones, the use of external electrical contacts or removable battery packs may not be suitable for some applications, such as hearing aids.
External electrical connections may be difficult to physically implement on an object as small as a hearing aid, and moreover, may present a shock hazard to the user (as well as potential corrosion problems when placed in contact with the alimentary canal). Removable battery packs present the same or similar problem to prior art hearing aids as described above - such a removable pack would be so small as to make it difficult, if not impossible, for a user to manipulate (especially elderly users which comprise a large majority of hearing aid customers). In addition, providing a removable battery pack would necessitate seam lines on the hearing aid housing and electrical contacts, both of which may increase the size and cost of the hearing aid or present sharp edges which are unacceptable in an in-the-ear design.
Rechargeable batteries in standard sizes (e.g., "D", "C", "AA" and "AAA") are also known in the art and may be purchased as substitutes for standard non-rechargeable batteries. Generally, such rechargeable batteries do not last as long as a comparative alkaline battery before recharging is required. When recharging is required, the batteries must generally be removed from their battery compartment (unless a separate charging port and circuit are provided) and placed in a stand-alone charger.
Presuming that a rechargeable battery could be provided for appliances as small as a hearing aid (or the like), such a solution would not solve the fundamental underlying problem of battery insertion and removal. In contrast, such a solution would only increase the frequency at which a hearing aid battery would need to be removed and replaced.
Inductive chargers are known in the art for use with small appliances such as electric toothbrushes and the like. Current passes through an inductive coil in a charging stand. A current is induced in a mating coil in the appliance when the appliance is placed in the charging stand. This current is then used to charge the batteries within the appliance. Such inductive chargers are particularly useful for appliances used in wet environments such as electric toothbrushes and other dental care items. Such chargers, however, have the advantage of being able to mechanically locate the appliance in a predetermined orientation (e.g., via a tab or other locating device) in relationship to the charging coil such that the appliance and charger are at optimal position for inducing current.
One approach to solving the hearing aid battery problem would be to apply such a Prior Art inductive charging system to a hearing aid (or other small appliance) design. Mattatall, U.S. Pat. No. 4,379,988, issued Apr. 12, 1983 and incorporated herein by reference, discloses such a design. However, to implement such a design would require that the hearing aid manufacturer re-design the hearing aid (or other small appliance) to include the necessary charging circuitry. To the best of applicant's knowledge, no hearing aid designer has yet undertaken such a design change, and no commercial embodiment of the Mattatall Patent has yet been placed into production. Mattatall also discloses (Col. 5, lines 212) the use of an LED for rectifying current and for indicating to the user when the hearing aid is in optimal position for charging. Hearing aids, being very small, may be difficult to properly orient with relationship to an inductive charger. Thus, Mattatall uses his LED to allow the user to manually position the hearing aid for charging purposes.
Even if such a design were commercially available, it would still present problems to users. For example, existing hearing aid users would be forced to discard their present hearing aids and purchase a new, rechargeable model, if such a recharging feature were desired. Moreover, most rechargeable appliances (as in Mattatall) feature "built-in" batteries, such that when the battery is no longer capable of being charged, the entire appliance must be discarded. Moreover, it may be difficult for users to manually position the hearing aid in the charger for optimal current induction.
Rohde, U.S. Pat. No. 5,959,433, issued Sep. 28, 1999, and incorporated herein by reference, discloses battery pack for a laptop or the like, with an inductive charging circuit. The design of Rhode allows the battery pack to be removed and placed on an inductive charger without the need for physical electrical connections. There are several problems with this design. To begin with, it is not cost-effective to install an inductive charging circuit in a battery pack which already contains external electrical contacts.
As illustrated in
Moreover, the Rohde design appears to require that the battery pack be removed before charging. As noted above, the use of removable batteries or battery packs does not solve the fundamental problem with hearing aids and other small appliances where removal of the battery pack presents difficulty to the user. In addition, it does not appear that the device of Rohde would be scalable to something as small as a hearing aid.
Thus, a need still exists in the art to provide a method and apparatus for recharging a battery for a hearing aid (or other small appliance) without requiring removal of the battery from the appliance, without require the use of external physical electrical contacts, and without requiring the re-design of the appliance to incorporate such a charging circuit. The present invention solves all of these problems.
The object of the invention is to provide a user-friendly system of recharging existing hearing aid batteries, saving time, money and frustration. Rechargeable batteries are available for a variety of applications, but have not been utilized in hearing aids. The invention utilizes a wireless solution of charging a battery by inductively coupling energy between the battery and the charging unit. Therefore, no removal of the battery from the hearing aid is necessary. The user may simply place the hearing aid into the charging cradle at night for recharge.
The present invention further provides an inductive charging circuit within the housing of a standard hearing aid battery cell. By placing the inductive charging circuit within a standard hearing aid battery cell, a user can convert a Prior Art hearing aid which uses disposable batteries into a rechargeable hearing aid, simply be substituting the rechargeable battery/charger of the present invention for the non-rechargeable battery. The hearing aid (or other small appliance) may then be readily recharged without the need for battery removal. Moreover, the user need not remove the battery for months or even years. In addition, in an alternative embodiment, a novel charging station is provided with a rotatable induction coil. The induction coil may be automatically rotated by a controller until optimal current induction in the hearing aid battery coil occurs. This feature allows the hearing aid to be charged regardless of its relative position to the charging stand.
The Wireless Battery Charging System for hearing aids of the present invention may comprise two main components. The first of these is the combined battery and inductive charging coil and associated electronics which is referred to in the present invention as a "dynamic battery".
Referring to
Again referring to
The components of inductor circuit 32 of
Control circuit to control the charging process and its stages may comprise digital control logic 22 containing a single chip processor and discreet components. Digital control logic 22 may monitor the charging process and determine when the rechargeable battery is fully charged by use of a timing mechanism or other means. Digital to analog converter 23 may convert digital charging information into an analog signal driving output stage 24, which powers an electromagnetic sending core 25.
Electromagnetic sending core 25 may comprise a motorized mechanism combined with a shaft angle de-encoder 26 which in turn supports a re-positioning mechanism for sending core 25. A digital display readout 27 may provide information of the charging process as charging/charged.
The functionality of the overall system may now be described in connection with
Since the physical size of the batteries charging component is very small, the position of the sending core toward the inducting circuit of the battery may be critical. The solution to this is a controlled positioning system for the sending core. When a charging process is started, the sending core may be turned approximately 200 Degree in both directions via a motorized mechanism as illustrated in FIG. 2. Each position within a degree is reported to the CPU control logic 22 utilizing shaft angle encoder/decoder 26. At the same time, driver current (producing the magnetic field) for the sending core 25 is digitized and measured by the CPU control logic 22. The tuned inducting circuit of the battery will naturally absorb energy from the sending core magnetic field, which is measurable. CPU control logic 22 will determine the final position of sending core 25 based upon the driver current measurement and realign the position of sending core 25 for an optimal charging process.
Thus, the hearing aid with the battery of the present invention can be placed in almost any orientation within a charging stand and still be charged. Unlike Prior Art inductive charging appliances, the hearing aid need not be in a predetermined orientation. Unlike Mattatall, the hearing aid need not be reoriented manually based upon LED intensity. The user need only place the hearing aids (or other small appliances) in the charging stand and turn the unit on.
Referring to
A Again referring to
The components of inductor circuit 52 of
As illustrated in
While the preferred embodiment and various alternative embodiments of the invention have been disclosed and described in detail herein, it may be apparent to those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope thereof.
For example, while disclosed herein as being applied to hearing aids and the like, the present invention could also be applied to other battery operated appliances such as watches, cellular phones, Personal Digital Assistants (PDAs), Flashlights, Toys, and the like. Battery sizes other than hearing aid batteries may be used (e.g., watch batteries, AAA, AA, C, D, and other sizes) without departing from the spirit and scope of the present invention.
Patent | Priority | Assignee | Title |
10115520, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Systems and method for wireless power transfer |
10714986, | Jun 11 2010 | Mojo Mobility, Inc. | Intelligent initiation of inductive charging process |
11114886, | Apr 12 2013 | Mojo Mobility, Inc. | Powering or charging small-volume or small-surface receivers or devices |
11121580, | Jun 01 2006 | Mojo Mobility, Inc. | Power source, charging system, and inductive receiver for mobile devices |
11201500, | Jan 31 2006 | Mojo Mobility, Inc. | Efficiencies and flexibilities in inductive (wireless) charging |
11211975, | May 07 2008 | Mojo Mobility, Inc. | Contextually aware charging of mobile devices |
11283306, | Jun 11 2010 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Magnet with multiple opposing poles on a surface for use with magnetically sensitive components |
11292349, | Apr 12 2013 | Mojo Mobility Inc. | System and method for powering or charging receivers or devices having small surface areas or volumes |
11316371, | Jan 31 2006 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
11329511, | Jun 01 2006 | Mojo Mobility Inc. | Power source, charging system, and inductive receiver for mobile devices |
11342792, | Jan 31 2006 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
11349315, | Jan 31 2006 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
11398747, | Jan 18 2011 | Mojo Mobility, Inc. | Inductive powering and/or charging with more than one power level and/or frequency |
11404909, | Jan 31 2006 | Mojo Mobillity Inc. | Systems for inductive charging of portable devices that include a frequency-dependent shield for reduction of electromagnetic interference and heat during inductive charging |
11411433, | Jan 31 2006 | Mojo Mobility, Inc. | Multi-coil system for inductive charging of portable devices at different power levels |
11444485, | Feb 05 2019 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Inductive charging system with charging electronics physically separated from charging coil |
11462942, | Jan 31 2006 | Mojo Mobility, Inc. | Efficiencies and method flexibilities in inductive (wireless) charging |
11569685, | Jan 31 2006 | Mojo Mobility Inc. | System and method for inductive charging of portable devices |
11601017, | Jun 01 2006 | Power source, charging system, and inductive receiver for mobile devices | |
11606119, | May 07 2008 | Mojo Mobility Inc. | Metal layer for inductive power transfer |
11811238, | Feb 05 2019 | Mojo Mobility Inc. | Inductive charging system with charging electronics physically separated from charging coil |
11929202, | Apr 12 2013 | Mojo Mobility Inc. | System and method for powering or charging receivers or devices having small surface areas or volumes |
6906495, | May 13 2002 | PHILIPS IP VENTURES B V | Contact-less power transfer |
6967462, | Jun 05 2003 | NASA Glenn Research Center | Charging of devices by microwave power beaming |
7274168, | Sep 19 2002 | Quallion LLC | Battery charging system distinguishing primary and secondary batteries |
7525283, | May 13 2002 | PHILIPS IP VENTURES B V | Contact-less power transfer |
7714537, | May 13 2002 | PHILIPS IP VENTURES B V | Contact-less power transfer |
7863861, | May 13 2002 | PHILIPS IP VENTURES B V | Contact-less power transfer |
7948208, | Jun 01 2006 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Power source, charging system, and inductive receiver for mobile devices |
7952322, | Jan 31 2006 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Inductive power source and charging system |
7952324, | May 13 2002 | PHILIPS IP VENTURES B V | Contact-less power transfer |
8022775, | Oct 08 2009 | Etymotic Research, Inc.; ETYMOTIC RESEARCH, INC | Systems and methods for maintaining a drive signal to a resonant circuit at a resonant frequency |
8027497, | Nov 08 2006 | Sivantos GmbH | Hearing device with rechargeable battery and movably mounted charging contacts |
8116492, | Nov 08 2006 | Sivantos GmbH | Rechargeable hearing device |
8169185, | Jan 31 2006 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | System and method for inductive charging of portable devices |
8174233, | Oct 08 2009 | III Holdings 7, LLC | Magnetically coupled battery charging system |
8174234, | Oct 08 2009 | III Holdings 7, LLC | Magnetically coupled battery charging system |
8237402, | Oct 08 2009 | III Holdings 7, LLC | Magnetically coupled battery charging system |
8355297, | Nov 05 2009 | Devon Works, LLC | Watch assembly having a plurality of time-coordinated belts |
8460816, | Oct 08 2009 | ETYMOTIC RESEARCH, INC | Rechargeable battery assemblies and methods of constructing rechargeable battery assemblies |
8497658, | Jan 22 2009 | Qualcomm Incorporated | Adaptive power control for wireless charging of devices |
8629652, | Jun 01 2006 | Mojo Mobility, Inc. | Power source, charging system, and inductive receiver for mobile devices |
8629654, | Jan 31 2006 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
8644542, | Sep 08 2009 | SIVANTOS PTE LTD | Hearing aid with wireless battery charging capability |
8693293, | Nov 05 2009 | Devon Works, LLC | Watch assembly having a plurality of time-coordinated belts |
8823319, | Jan 22 2009 | Qualcomm Incorporated | Adaptive power control for wireless charging of devices |
8855554, | Mar 05 2008 | Qualcomm Incorporated | Packaging and details of a wireless power device |
8890470, | Jun 11 2010 | MOJO MOBILITY, INC | System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith |
8896264, | Jun 11 2010 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Inductive charging with support for multiple charging protocols |
8901881, | Jun 11 2010 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Intelligent initiation of inductive charging process |
8947047, | Jan 31 2006 | Mojo Mobility, Inc. | Efficiency and flexibility in inductive charging |
8970166, | Dec 16 2008 | Energizer Brands, LLC | Inductive battery systems and methods of operation |
9106083, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Systems and method for positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system |
9112362, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Methods for improved transfer efficiency in a multi-dimensional inductive charger |
9112363, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Intelligent charging of multiple electric or electronic devices with a multi-dimensional inductive charger |
9112364, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Multi-dimensional inductive charger and applications thereof |
9178369, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system |
9276437, | Jan 31 2006 | Mojo Mobility, Inc. | System and method that provides efficiency and flexiblity in inductive charging |
9277332, | Apr 16 2013 | Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD | Hearing apparatus including coil operable in different operation modes |
9304495, | Nov 05 2009 | Devon Works, LLC | Watch assembly having a plurality of time-coordinated belts |
9356659, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Chargers and methods for wireless power transfer |
9450456, | Apr 21 2008 | WiTricity Corporation | System and method for efficient wireless power transfer to devices located on and outside a charging base |
9461501, | Jun 01 2006 | Mojo Mobility, Inc. | Power source, charging system, and inductive receiver for mobile devices |
9461714, | Mar 05 2008 | Qualcomm Incorporated | Packaging and details of a wireless power device |
9496732, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Systems and methods for wireless power transfer |
9509167, | Sep 10 2012 | Qualcomm Incorporated | Miniature wireless power receiver module |
9559526, | Jan 22 2009 | Qualcomm Incorporated | Adaptive power control for wireless charging of devices |
9577440, | Jan 31 2006 | Mojo Mobility, Inc. | Inductive power source and charging system |
9590445, | Apr 09 2010 | MORGAN STANLEY SENIOR FUNDING, INC | Apparatus for transferring energy to an accumulator and system for charging an electric accumulator |
9602907, | Feb 21 2014 | Alpha Audiotronics, Inc. | Earbud charging case |
9722447, | Nov 13 2012 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment |
9729980, | Apr 16 2013 | Samsung Electronics Co., Ltd. | Hearing apparatus including coil operable in different operation modes |
9793721, | Jan 31 2006 | Mojo Mobility, Inc. | Distributed charging of mobile devices |
9837846, | Apr 12 2013 | MOJO MOBILITY INC ; MOJO MOBILITY, INC | System and method for powering or charging receivers or devices having small surface areas or volumes |
9960635, | Dec 29 2015 | CW ENTERPRISE HOLDINGS, LLC | Wireless battery recharger and application |
9979230, | Apr 21 2008 | WiTricity Corporation | Short range efficient wireless power transfer including a charging base transmitter built into a desktop component and a power relay integrated into a desktop |
ER4334, | |||
ER5894, | |||
ER7451, |
Patent | Priority | Assignee | Title |
4379988, | Jan 19 1981 | Molded hearing aid and battery charger | |
5712919, | Apr 15 1994 | Multi-Line Designs, Inc. | Hearing aid apparatus powered by capacitor |
5959433, | Aug 22 1997 | LAIRDTECHNOLOGEIS, INC | Universal inductive battery charger system |
6310960, | Feb 23 1998 | VARTA MICROBATTERY GMBH | Rechargeable hearing aid system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 22 2002 | Gary, Skuro | (assignment on the face of the patent) | / | |||
Mar 07 2002 | ZINK, UWE | SKURO, GARY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012797 | /0364 | |
Nov 18 2015 | SKURO, GARY | Sivantos GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039895 | /0159 | |
Nov 18 2015 | RESONATE INDUSTRIES, INC | Sivantos GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039895 | /0159 |
Date | Maintenance Fee Events |
Jul 12 2006 | REM: Maintenance Fee Reminder Mailed. |
Oct 24 2006 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Oct 24 2006 | M2554: Surcharge for late Payment, Small Entity. |
Aug 02 2010 | REM: Maintenance Fee Reminder Mailed. |
Oct 29 2010 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 29 2010 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Aug 01 2014 | REM: Maintenance Fee Reminder Mailed. |
Sep 03 2014 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Sep 03 2014 | M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Date | Maintenance Schedule |
Dec 24 2005 | 4 years fee payment window open |
Jun 24 2006 | 6 months grace period start (w surcharge) |
Dec 24 2006 | patent expiry (for year 4) |
Dec 24 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 24 2009 | 8 years fee payment window open |
Jun 24 2010 | 6 months grace period start (w surcharge) |
Dec 24 2010 | patent expiry (for year 8) |
Dec 24 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 24 2013 | 12 years fee payment window open |
Jun 24 2014 | 6 months grace period start (w surcharge) |
Dec 24 2014 | patent expiry (for year 12) |
Dec 24 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |