An extended shaft for connecting a standard, transmission mounted power take-off device to an auxiliary device which permits non-interference mounting configurations of the auxiliary device to the power take-off device. The extended shaft further provides mounting bracketry to prevent stresses when thermal expansion or contraction of relevant parts occurs during the operation of the motor vehicle or power take-off device.
|
1. In the combination of an engine which operates a work performing mechanism remotely located from said engine wherein said combination includes a transmission operatively connected to said engine and to said work performing mechanism by a power takeoff device connected to said transmission and having a housing and an output shaft connectable to said work performing mechanism for operating said mechanism in a work performing mode, the improvement wherein said combination further includes an extension mechanism for remotely mounting said work performing mechanism a preselected spaced distance from said power takeoff device, said extension mechanism comprising a housing extending across said preselected spaced distance and being connected to said transmission and to said housing of said power takeoff device and further including a shaft located and internally rotatably supported via sealed, lubricated bearings within said housing and extending across said preselected spaced distance from said power takeoff device to said work performing mechanism and being connected at a first end to said output shaft of said power takeoff device and at a second end to said work performing mechanism, whereby when said power takeoff device is operatively connected to said transmission and said engine is operating so as to be operatively engaged with said transmission, said combination operates said work performing mechanism.
2. The combination of
3. The combination of
4. The combination of
a transmission mounting bracket, said transmission mounting bracket including a bracket aperture having a first diameter; a housing flange located proximal the length of a surface of said housing of said extension mechanism; said housing flange including a housing flange aperture having a second diameter; a spacer sleeve disposed through said housing flange aperture and abutting a surface of said transmission mounting bracket; and a fastener inserted through said spacer sleeve and fixedly connected at said bracket aperture; wherein said combination of bracketry provides support to said extension mechanism and permits movement of said housing flange with respect to said transmission mounting bracket.
5. The combination of
6. The combination of
a transmission mounting bracket, said transmission mounting bracket including a bracket aperture having a first diameter; a housing flange located proximal the length of a surface of said housing; said housing flange including a housing flange aperture having a second diameter; a spacer sleeve disposed through said bracket aperture and abutting a surface of said housing flange; and a fastener inserted through said spacer sleeve and fixedly connected at said housing flange aperture; wherein said combination of bracketry provides support to said extension mechanism and permits movement of said housing flange with respect to said transmission mounting bracket.
|
This application is a Continuation-in-Part of U.S. patent application Ser. No. 09/435,819, filed Nov. 8, 1999, now U.S. Pat. No. 6,263,749, the entirety of which is hereby incorporated by reference.
This invention relates to an extended shaft for connecting a standard, transmission mounted power take-off device to an auxiliary device, which permits non-interference mounting configurations of the auxiliary device to a power take-off device. The invention further provides mounting bracketry to prevent stresses when thermal expansion or contraction of relevant parts occurs during the operation of the motor vehicle or power take-off device.
Power take-off devices are ubiquitously employed throughout the trucking industry to power auxiliary devices. For example, power take-off devices are often used to provide power to hydraulic pumps which in turn provide hydraulic fluid to cylinders which perform auxiliary operations associated with the vehicle (e.g. raise and lower a dump bed, operate a garbage compactor and the like).
In certain situations, power take-off devices are not employed. Rather, the hydraulic pump (or other auxiliary device) is directly driven by the crankshaft of the vehicle's engine. More specifically, a driveshaft assembly is employed to connect the input shaft of the hydraulic pump to the crank shaft of the engine, thereby providing power to the hydraulic pump as the engine is operated. This type of arrangement generally requires that the hydraulic pump be placed at the front end of the vehicle. This creates one or a combination of problems. For example, when mounted in this front location, the front bumper of the vehicle oftentimes must be extended to accommodate the usually large pumps. Further, the radiators in such equipped vehicles frequently need to be cored or relocated to accommodate the mounting position of the hydraulic pump, a practice which may soon be prohibited by a new Environmental Protection Agency emissions law taking effect in the year 2002. In particular, this can result in restricted or reduced airflow to the radiator.
Other problems arise in equipping motor vehicles with hydraulic pumps because certain hydraulic pumps are of such a design that it is not possible to directly mount them to a standard power take-off device. For example, hydraulic pumps used in certain applications must be so large or heavy as to frustrate the plausibility of directly mounting them to a standard power take-off device because to do so would impart too much stress on the mounting areas. In other instances the large size of the hydraulic pump prohibits it from fitting into the envelope (space) that would otherwise be conveniently available for its use.
In view of the above, it is apparent that there exists a need in the art for an extended shaft capable of operably coupling to both a power take-off device and to an auxiliary device which overcomes the above drawbacks. It is a purpose of this invention to fulfill this need in the art, as well as other needs which will become apparent to the skilled artisan once given the following disclosure.
Generally speaking, this invention fulfills the above described needs in the art by providing: in the combination of an engine which operates a work performing mechanism remotely located from the engine wherein the combination includes a transmission operatively connected to the engine and to the work performing mechanism by a power takeoff device connected to the transmission and having a housing and an output shaft connectable to the work performing mechanism for operating the mechanism in a work performing mode, the improvement wherein the combination further includes an extension mechanism for remotely mounting the work performing mechanism a preselected spaced distance from the power takeoff device, the extension mechanism comprising a housing extending across the preselected spaced distance and being connected to the transmission and to the housing of the power takeoff device and further including a shaft located and internally rotatably supported via sealed, lubricated bearings within the housing and extending across the preselected spaced distance from the power takeoff device to the work performing mechanism and being connected at a first end to the output shaft of the power takeoff device and at a second end to the work performing mechanism, whereby when the power takeoff device is operatively connected to the transmission and the engine is operating so as to be operatively engaged with the transmission, the combination operates the work performing mechanism.
Referring initially to
More specifically, drive shaft 5 is rotatably supported proximal the center of the inner tubular structure of support tube 1 by bearings 13. Bearings 13, as standard, non-sealed shaft bearings, are located proximal each longitudinal end of support tube 1. They serve to simultaneously support and permit the rotation of drive shaft 5 within the confines of the support tube 1.
Drive shaft 5 is preferably a solid, one piece shaft. In an alternative embodiment, drive shaft 5 may be multiple shafts whose ends abut and are joined by a collar or sleeve. In order to reduce friction as the drive shaft 5 is operated, support tube 1 is filled with a conventional lubricant such as oil or any other suitable lubricant known in the art. The lubricant is conveniently added to support tube 1 via fill port 23 located in the wall 24 of support tube 1. Shaft seals 27 serve to seal the tubular structure and prevent leakage of lubricant therefrom, such seals 27 being located proximal mounting bracket 6 and mounting adapter 9 at each end of support tube 1.
In order to allow for the expansion and contraction of gases within extended shaft 100 during operation and thereby to protect the integrity of shaft seals 27 (by preventing pressure build-up), breather 25 is included and is located in tubular wall 24. Breather 25 may be a conventional breather of known construction which permits passage of air in and out of support tube 1.
In an alternative embodiment, illustrated in
Referring now to
Referring again to
In each of the above arrangements, the mounting bracketry, according to the subject invention, will allow for the thermal expansion of the materials. For example, as the system heats up or cools down during or after operation, and the various parts, often of different materials, expand or contract, support tube flange 3 is capable of moving or sliding along spacer sleeves 19 in the directions as indicated by the arrows "A" in FIG. 3. Specifically, this sliding movement allows for differences in length changes in both the (housing of) transmission 103 and extended shaft 100, substantially reducing the amount of stress imparted on the system during and after its operation. This feature is particularly useful when the materials constituting the system have substantially different coefficients of thermal expansion. For example, in conventional practice, the walls of the transmission 103 housing are made of aluminum or an aluminum alloy, whereas the walls of support tube 1 are made of low-carbon steel. In such an arrangement, the coefficient of thermal expansion differs between the two materials by a factor of roughly 2. Therefore, the rates of expansion and contraction of these materials at a given temperature differ significantly.
Certain embodiments, such as illustrated in
Referring again now to
It is understood, of course, that in an alternative embodiment, any suitable form of driven device may be attached or driven at this output end 21 of the drive shaft 5. For example, a pulley may be connected to supply power to other auxiliary devices that are typically driven by other means (ie. front crankshaft, auxiliary engine, etc.) and which are too large to mount in the envelope (space) otherwise provided.
As further illustrated in
When assembled, the apertures of power take-off mounting bracket 6 and power take-off mounting adapter 7 are in alignment with cap screw 8 disposed immovably through each. In this arrangement, cap screw 8 secures power take-off mounting bracket 6 to power take-off mounting adapter 7, which is further securely connected to power take-off device 107. This effectively secures support tube 1 to power take-off device 107. In this secured or attached position, drive shaft 5, which has a splined shaft end 11, is in communication with a shaft (not shown for sake of clarity) of power take-off device 107 at its splined end. This connection or intercommunication between splined shaft end 11 and a shaft of power take-off device 107, allows power take-off device 107 to transmit power through drive shaft 5 to hydraulic pump 105.
In an alternative embodiment, extended shaft 100 may be mounted to power take-off device 107 with bracketry similar to that which mounts support tube 1 to transmission 103. In this embodiment, spacer sleeves are included for receipt of cap screw 8. In this arrangement, slip movement of power take-off mounting bracket 6 is possible along these spacer sleeves to allow for thermal expansion or contraction of the relevant parts during the heating and cooling of the materials in the system or simply to accommodate for other stresses experienced during use.
Once given the above disclosure, many other features, modifications, and improvements will become apparent to the skilled artisan. Such other features modifications, and improvements are therefore considered to be part of this invention, the scope of which is to be determined by the following claims:
Patent | Priority | Assignee | Title |
11731507, | Apr 20 2017 | Oshkosh Defense, LLC | Transfer case neutral override and remote pump mounting |
7543520, | Jan 27 2006 | GM Global Technology Operations LLC | Extension housing to transmission case attachment |
8167583, | Oct 24 2008 | BLUE LEAF I P , INC | Pump support coupler system |
8381846, | Dec 14 2003 | All terrain vehicle power takeoff | |
8991274, | Jul 06 2012 | BLUE LEAF I P , INC | Mounting surface of an agricultural work vehicle power takeoff system |
9297426, | Jun 18 2008 | Parker Intangibles, LLC | Power take-off with remotely mounted clutch assembly and lubricated spline |
Patent | Priority | Assignee | Title |
1190804, | |||
1194994, | |||
1446326, | |||
1456201, | |||
1533531, | |||
1589093, | |||
2100677, | |||
2103971, | |||
2232992, | |||
2971386, | |||
3039317, | |||
3982442, | Dec 20 1974 | The Singer Company | Precision shaft regulator mechanism |
4026124, | Jul 22 1974 | Kuboto Tekko Kabushiki Kaisha | Case for axle having universal joint |
4118951, | Jul 28 1977 | Drive unit for selectively effecting driving or free-wheeling condition of propeller shafting | |
4425817, | Mar 16 1981 | MERITOR HEAVY VEHICLE TECHNOLOGY, LLC A DE LIMITED COMPANY | Lubrication system for a power take off assembly and a drive shaft therefor |
4430905, | Feb 07 1980 | Bendiberica S.A. | Motor vehicle steering column |
4487020, | Feb 06 1981 | Mechanical Technology Incorporated | Power control for heat engines |
4618016, | Feb 07 1983 | Motor vehicle such as a tractor | |
4744436, | Jul 12 1985 | Nissan Motor Co., Ltd. | Adapter case assembly in four-wheel drive vehicle |
5070982, | Apr 12 1990 | Eaton Corporation | Power take-off engagement mechanism |
5228355, | Nov 15 1991 | Parker Intangibles LLC | PTO unit for a transmission or the like including a lubrication system operable only when the PTO is in operation |
5383374, | May 05 1993 | Eaton Corporation | Countershaft driven auxiliary drive unit |
5400862, | Apr 21 1993 | Twin Disc Incorporated | Power takeoff straddle bearing |
5439306, | Dec 16 1991 | Societe Nationale Industrielle et Aerospatiale | Device for assembling two elements of materials having different coefficients of thermal expansion |
5759128, | Sep 04 1995 | Toyota Jidosha Kabushiki Kaisha | Drive assembly having electric motor and differential gear device disposed within rotor of the motor |
5808369, | Sep 25 1995 | Windtrap for power development | |
6263749, | Nov 08 1999 | Muncie Power Products, Inc. | Power take-off extended shaft |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 19 2001 | Muncie Power Products, Inc. | (assignment on the face of the patent) | / | |||
Aug 30 2001 | WESLEY, LARRY E | MUNCIE POWER PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012171 | /0785 |
Date | Maintenance Fee Events |
Feb 27 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 04 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 12 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 31 2005 | 4 years fee payment window open |
Jul 01 2006 | 6 months grace period start (w surcharge) |
Dec 31 2006 | patent expiry (for year 4) |
Dec 31 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 31 2009 | 8 years fee payment window open |
Jul 01 2010 | 6 months grace period start (w surcharge) |
Dec 31 2010 | patent expiry (for year 8) |
Dec 31 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 31 2013 | 12 years fee payment window open |
Jul 01 2014 | 6 months grace period start (w surcharge) |
Dec 31 2014 | patent expiry (for year 12) |
Dec 31 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |