A pharmaceutical composition comprising at least one antifungal agent and at least one chelator, and a method for administering the pharmaceutical composition to a patient having a fungal infection. Another aspect provides a pharmaceutical composition comprising at least one chelator, at least one antifungal agent and at least one monoclonal antibody, wherein the monoclonal antibody is operatively attached to the chelator, and a method of administering this composition to a patient having a fungal infection.

Patent
   6509319
Priority
Aug 26 1997
Filed
Oct 04 2000
Issued
Jan 21 2003
Expiry
Aug 25 2018
Assg.orig
Entity
Small
74
31
EXPIRED
9. A pharmaceutical composition comprising at least one chelator, at least one antifungal agent and at least one monoclonal antibody, wherein said monoclonal antibody is operatively attached to said chelator.
1. A pharmaceutical composition comprising at least one polyene antifungal agent and at least one chelator, the polyene antifungal agent and chelator being selected and present in amounts that provide a greater than additive antifungal action in vitro.
2. The pharmaceutical composition of claim 1, wherein the chelator is selected from the group of chelators consisting of EDTA free acid, EDTA 2Na, EDTA 3Na, EDTA 4Na, EDTA 2K, EDTA 2Li, EDTA 2NH4, EDTA 3K, Ba(II)-EDTA, Ca(II)-EDTA, Co(II)-EDTA, Cu(II)-EDTA, Dy(III)-EDTA, Eu(III)-EDTA, Fe(III)-EDTA, In(III-EDTA, La(III)-EDTA, CyDTA, DHEG, DTPA-OH, DTPA, EDDA, EDDP, EDDPO, EDTA-OH, EDTPO, EGTA, HBED, HDTA, HIDA, IDA, Methyl-EDTA, NTA, NTP, NTPO, O-Bistren, and TTHA.
3. The pharmaceutical composition of claim 1, wherein the antifungal agent is selected from the group of antifungal agents consisting of Ambisome, ABLC, Liposomal Amphotericin, ABCD, Liposomal Nystatin, Amphotericin B, Nystatin, and Natamycin.
4. The pharmaceutical composition of claim 2, wherein the chelator is EDTA.
5. The pharmaceutical composition of claim 3, wherein the antifungal agent is Amphotericin B.
6. The pharmaceutical composition of claim 1, wherein the chelator is EDTA and the antifungal agent is Amphotericin B.
7. The pharmaceutical composition of claim 1, further comprising at least one monoclonal antibody specific for a targeted species of fungus.
8. The pharmaceutical composition of claim 7, where the monoclonal antibody is operatively attached to said chelator.
10. The pharmaceutical composition of claim 9, wherein the chelator is selected from the group of chelators consisting of EDTA free acid, EDTA 2Na, EDTA 3Na, EDTA 4Na, EDTA 2K, EDTA 2Li, EDTA 2NH4, EDTA 3K, Ba(II)-EDTA, Ca(II)-EDTA, Co(II)-EDTA, Cu(II)-EDTA, Dy(III)-EDTA, Eu(III)-EDTA, Fe(III)-EDTA, In(III-EDTA, La(III)-EDTA, CyDTA, DHEG, DTPA-OH, DTPA, EDDA, EDDP, EDDPO, EDTA-OH, EDTPO, EGTA, HBED, HDTA, HIDA, IDA, Methyl-EDTA, NTA, NTP, NTPO, O-Bistren, and TTHA.
11. The pharmaceutical composition of claim 9, wherein the antifungal agent is selected from the group of antifungal agents consisting of Voriconazole, SCH 56592, ER30346, UK 9746, UK 9751, T 8581, Flutrimazole, Cilofungin LY121019, Echinocandin, Pneumocandin, Pradimicins, Benanomicin, Ambisome, ABLC, Liposomal Amphotericin, ABCD, Liposomal Nystatin, Nikkomycin Z, Terbinafine, BF-796, MTCH 24, BTG-137586, RMP-7/Amphotericin B, Omoconazole, Amphotericin B, Nystatin, Natamycin, Clotrimazole, Miconazole, Ketoconazole, Terconazole, Econazole, Itraconazole, Fluconazole, Griseofulvin, and Flucytosine.
12. The pharmaceutical composition of claim 10, wherein the chelator is EDTA.
13. The pharmaceutical composition of claim 11, wherein the antifungal agent is Amphotericin B.
14. The pharmaceutical composition of claim 9, wherein the chelator is EDTA and the antifungal agent is Amphotericin B.
15. The pharmaceutical composition of claim 9, further defined as comprising about 0.001 mg to about 1000 mg of chelator.
16. The pharmaceutical composition of claim 9, further defined as comprising about 0.001 mg to about 1000 mg of antifungal agent.

This is a continuation of application Ser. No. 09/139,522, filed Aug. 25, 1998, now U.S. Pat. No. 6,165,484 Which claims the benefit of U.S. Provisional Application No. 60/056,970 filed Aug. 26, 1997.

This application claims the benefit of U.S. Provisional Application No. 60/056,970, filed Aug. 26, 1997.

1. Field of the Invention

The present invention relates generally to the treatment of fungal infections in mammals. More particularly, the present invention provides methods of treating fungal infections in mammals using pharmaceutical preparations including chelator(s), antifungal agents, and/or monoclonal antibodies. The invention further provides pharmaceutical compositions useful for treating fungal infections.

2. Description of Related Art

Fungi, particularly species of Candida, Aspergillus, and Fusarium are a major cause of infection-related mortality in patients with leukemia and lymphoma. In addition, fungal infection is a major cause of mortality in patients with congenital and acquired deficiencies of the immune system.

For example, several species of Aspergillus are known to cause invasive sinopulmonary infections in seriously immunocompromised patients. Following inhalation of spores, clinical aspergillosis can occur in three major presentations. The first presentation, allergic bronchopulmonary aspergillosis, develops when Aspergillus species colonize the bronchial tree and release antigens that cause a hypersensitivity pneumonitis. The second presentation, aspergilloma or "fungus ball," develops in pulmonary cavities, often in concert with other lung diseases such as tuberculosis. The third form, invasive pulmonary or disseminated aspergillosis, is a life threatening infection with a high mortality rate.

The drug of choice in treatment of invasive aspergillosis, as well as in most other systemic mycoses, is Amphotericin B. Amphotericin B is a polyene antibiotic produced from a strain of Streptomyces nodosus. It is a lipophilic compound which binds to ergosterols in fungal membranes, resulting in the formation of transmembrane channels which allow the escape of metabolites essential to maintaining the viability of the fungal cell. Mammalian cell membranes also contain sterols, and it is believed that this same mechanism of action is responsible for the damaging effects which Amphotericin B is known to exert on mammalian kidney, hematopoietic and central nervous system tissues.

Amphotericin B is not soluble in aqueous solution, and for this reason it is supplied commercially in the form of a colloidal suspension comprising Amphotericin B, desoxycholate, and buffers suspended in a glucose solution. This suspension is usually administered to the patient intravenously over a period of from two to six hours; faster infusions can result in cardiorespiratory arrest. Other possible untoward effects of administering Amphotericin B include fever, nausea and vomiting, diarrhea, renal dysfunction, anemia, hypotension, headache, vertigo, and loss of hearing. Amphotericin B is also available in the form of a phospholipid complex (ABELCET®, e.g.), which offers the advantage of somewhat reduced toxicity for those patients who do not tolerate free Amphotericin B well, although many of the same untoward side effects may be observed in patients receiving this lipid complex form of the drug.

As a consequence of the potential seriousness of its toxic side effects, there is a clear need for an alternative to treating systemic mycoses solely with Amphotericin B and/or other harsh antifungal agents.

The present invention provides an effective method of treating a systemic fungal infection comprising the steps of obtaining a therapeutically effective amount of a pharmaceutical composition comprising at least one chelator, at least one antifungal agent and a pharmaceutical excipient, diluent or adjuvant, and administering said pharmaceutical composition to a patient having a fungal infection.

For the purposes of this disclosure, the phrase "therapeutically effective amount" is defined as a dosage sufficient to induce a fungicidal or fungistatic effect upon fungi contacted by the composition. That amount of the pharmaceutical composition which is therapeutically effective will depend upon the ingredients comprising the composition, as well as the treatment goals.

For the purposes of this disclosure, the phrase "a chelator" denotes one or more chelators. As used herein, the term "chelator" is defined as a molecule comprising nonmetal atoms, two or more of which atoms are capable of linking or binding with a metal ion to form a heterocyclic ring including the metal ion.

For the purposes of this disclosure, the phrase "an antifungal agent" denotes one or more antifingal agents. As used herein, the term "antifungal agent" is defined as a compound having either a fungicidal or fungistatic effect upon fungi contacted by the compound.

As used herein, the term "fungicidal" is defined to mean having a destructive killing action upon fungi. As used herein, the term "fungistatic" is defined to mean having an inhibiting action upon the growth of fungi.

As used herein the terms "contact", "contacted", and "contacting", are used to describe the process by which a pharmacological agent, e.g., any of the compositions disclosed in the present invention, comes in direct juxtaposition with the target cell.

Preferable chelators for use in the present invention include, but are not limited to, ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA); the disodiurn, trisodium, tetrasodium, dipotassium, tripotassiun, dilithium and diammonium salts of EDTA; the barium, calcium, cobalt, copper, dysprosium, europium, iron, indium, lanthanum, magnesium, manganese, nickel, samarium, strontium, and zinc chelates of EDTA; trans-1,2-diaminocyclohexane-N,N,N',N'-tetraaceticacid monohydrate; N,N-bis(2-hydroxyethyl)glycine; 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid; 1,3-diaminopropane-N,N,N',N'-tetraacetic acid; ethylenediamine-N,N'-diacetic acid; ethylenediamine-N,N'-dipropionic acid dihydrochloride; ethylenediamine-N,N'-bis(methylenephosphonic acid)hemihydrate; N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid; ethylenediamine-N,N,N',N'-tetrakis(methylenephosponic acid); O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid; N,N-bis(2-hydroxybenzyl)ethylene diamine-N,N-diacetic acid; 1,6-hexamethylenediamine-N,N,N',N'-tetraacetic acid; N-(2-hydroxyethyl)iminodiacetic acid; iminodiacetic acid; 1,2-diaminopropane-N,N,N',N'-tetraacetic acid; nitrilotriacetic acid; nitrilotripropionic acid; the trisodium salt of nitrilotris(methylenephosphoric acid); 7,19,30-trioxa-1,4,10,13,16,22,27,33-octaazabicyclo[11,11,11]pentatriacontane hexahydrobromide; and triethylenetetraminie-N,N,N',N",N'",N'"-hexaacetic acid. It is contemplated that any chelator which binds barium, calcium, cerium, cobalt, copper, iron, magnesium, manganese, nickel, strontiurn, or zinc will be acceptable for use in the present invention.

More preferably, the chelators for use in conjunction with the present invention may include ethylenediarnine-N,N,N',N'-tetraacetic acid (EDTA); the disodium, trisodium, tetrasodium, dipotassium, tripotassium, dilithium and diammonium salts of EDTA; 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid; 1,3-diaminopropane-N,N,N',N'-tetraacetic acid; O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid; and 7,19,30-trioxa-1,4,10,13,16,22,27,33-octatazbicyclo[11,11,11]pentatriacontane hexahydrobromide.

Most preferably, the chelators for use in the present invention may include ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA); the disodium salt of EDTA; 1,3-diaminopropane-N,N,N',N'-tetraacetic acid; and O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid.

Many antifungal agents are known to those of skill in the art and may be useful in the present invention. For example, antifungal agents contemplated for use in the present invention include, but are not limited to, new third generation triazoles such as UK 109,496 (Voriconazole); SCH 56592; ER30346; UK 9746; UK 9751; T 8581; and Flutrimazole; cell wall active cyclic lipopeptides such as Cilofingin LY121019; LY303366 (Echinocandin); and L-743872 (Pneurnocandin); allylamines such as Terbinafine; imidazolees such as Omoconazole, Ketoconazole, Terconazole, Econazole, Itraconazole and Fluconazole; polyenes such as Amphotericin B, Nystatin, Natamycin, Liposomal Amphotericin B, and Liposomal Nystatin; and other antifungal agents including Griseofulvin; BF-796; MTCH 24; BTG-137586; RMP-7/Amphotericin B; Pradimicins (MNS 18184); Benanomicin; Ambisome; ABLC; ABCD; Nikkomycin Z; and Flucytosine.

More preferably, the antifungal agents for use in conjunction with the present invention may include polyenes such as Amphotericin B, Nystatin, Natamycin, Liposomal Amphotericin B, and Liposomal Nystatin; cell wall active cyclic lipopeptides such as Cilofungin LY121019; LY303366 (Echinocandin); and L-743872 (Pneurnocandin); and other antifungal agents including Griseofulvin and Flucytosine.

Most preferably, the antifungal agents for use in the present invention may include Amphotericin B, Nystatin, Liposomal Amphotericin B, and Liposomal Nystatin.

The present invention also provides an effective method of treating a systemic fungal infection comprising the steps of obtaining a therapeutically effective amount of a pharmaceutical composition comprising at least one chelator operatively attached to a monoclonal antibody, at least one antifungal agent and a pharmaceutical excipient, diluent or adjuvant, and administering said pharmaceutical composition to a patient having a fungal infection. The monoclonal antibody is chosen to bind to a specific fungal antigen, and may be prepared according to any known method. The chelators and antifingal agents may be chosen from those indicated above.

Monoclonal antibodies useful in conjunction with the present invention are those that are specific for a targeted species of fungus. In preferred embodiments, the monoclonal antibodies are operatively attached to chelators. For the purposes of this disclosure, the phrase "a monoclonal antibody" denotes one or more monoclonal antibodies. As used herein, the term "monoclonal antibody" is defined as an antibody derived from a single clone of a B lymphocyte. Furthermore, as used herein, the term "operatively attached" connotes a chemical bond, either covalent or ionic, between the monoclonal antibody and chelator. As used herein, the term "specific" indicates that a chemical site on the monoclonal antibody will recognize and bind with a complementary chemical site on the surface of the cell of at least the fungal pathogen of interest.

The pharmaceutical compositions of the invention are provided to a patient having a fungal infection in an amount sufficient to exert a fungicidal or fungistatic effect upon fungi contacted by the composition. It will be understood with benefit of this disclosure that such dosages may vary considerably according to the patient, the infection presented by the patient, and the particular active ingredients comprising the pharmaceutical composition.

The antifungal agents of the present invention may be administered to a patient in an amount ranging from about 0.001 milligrams per kilogram of body weight per day to about 1000 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.001, 0.002, 0.003, etc.; 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 100, 101, 102, 103, 104, etc.; 500, 501, 502, 503, etc.; 600, 700, 800, 900, and about 1000 mg per kg per day, and including all fractional dosages therebetween.

More preferably, the antifungal agents of the present invention may be administered to a patient in an amount ranging from about 0.01 milligrams per kilogram of body weight per day to about 100 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 60, 70, 80, 90, and about 100 mg per kg per day, and including all fractional dosages therebetween.

Most preferably, the antifungal agents of the present invention may be administered to a patient in an amount ranging from about 0.1 milligrams per kilogram of body weight per day to about 10 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9 and about 10 mg per kg per day, and including all fractional dosages therebetween.

The chelators of the present invention may be administered to a patient in an amount ranging from about 0.001 milligrams per kilogram of body weight per day to about 1000 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.001, 0.002, 0.003, etc.; 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 100, 101, 102, 103, 104, etc.; 500, 501, 502, 503, etc.; 600, 700, 800, 900, and about 1000 mg per kg per day, and including all fractional dosages therebetween.

More preferably the chelators of the present invention may be administered to a patient in an amount ranging from about 0.01 milligrams per kilogram of body weight per day to about 100 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 60, 70, 80, 90, and about 100 mg per kg per day, and including all fractional dosages therebetween.

Most preferably the chelators of the present invention may be administered to a patient in an amount ranging from about 0.1 milligrams per kilogram of body weight per day to about 10 mg per. kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9; and about 10 mg per kg per day, and including all fractional dosages therebetween.

The monoclonal antibodies operatively attached to chelators may be administered to a patient in an amount ranging from about 0.001 milligrams per kilogram of body weight per day to about 1000 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.001, 0.002, 0.003, etc.; 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 100, 101, 102, 103, 104, etc.; 500, 501, 502, 503, etc.; 600, 700, 800, 900, and about 1000 mg per kg per day, and including all fractional dosages therebetween.

More preferably, the monoclonal antibodies operatively attached to chelators may be administered to a patient in an amount ranging from about 0.01 milligrams per kilogram of body weight per day to about 100 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 60, 70, 80, 90, and about 100 mg per kg per day, and including all fractional dosages therebetween.

Most preferably, the monoclonal antibodies operatively attached to chelators may be administered to a patient in an amount ranging from about 0.1 milligrams per kilogram of body weight per day to about 10 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, and about 10, and including all fractional dosages therebetween.

The pharmaceutical compositions of the present invention may be administered by any known route, including parenterally and otherwise. This includes oral, nasal (via nasal spray or nasal inhaler), buccal, rectal, vaginal or topical administration. Administration may also be by orthotopic, intradermal subcutaneous, intramuscular, intraperitoneal or intravenous injection and/or infusion. Such compositions may be administered as pharmaceutically acceptable compositions that include pharmacologically acceptable carriers, buffers or other excipients. The phrase "pharmacologically acceptable" refers to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a human. For treatment of conditions of the lungs, the preferred route is aerosol delivery to the lung via bronchoalveolar lavage or the like.

When administration of the pharmaceutical compositions of the present invention via intravenous injection and/or infusion is the preferred route, the pharmaceutical compositions of the present invention should administered gradually over a period of time ranging from 0.001 h to 100 h. More preferably, when administration of the pharmaceutical compositions of the present invention via intravenous injection and/or infusion is the preferred route, the pharmaceutical compositions of the present invention should administered gradually over a period of time ranging from 0.1 h to 50 h. Most preferably, when administration of the pharmaceutical compositions of the present invention via intravenous injection and/or infusion is the preferred route, the pharmaceutical compositions of the present invention should administered gradually over a period of time ranging from 1 h to 10 h.

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10 and FIG. 11 display plots of microbial population vs. time for cultures of species of Aspergillus, Candida and Fusarium. Response of these cultures to treatment with antimicrobials, chelators, and combinations thereof are indicated.

FIG. 1 shows the inhibitory effect of EDTA on Apergillus flavus in vitro.

FIG. 2 shows the inhibitory effect of EDTA on Aspergillus terreus in vitro.

FIG. 3 shows the inhibitory effect of EDTA on Fusarium oxysporum in vitro.

FIG. 4 shows the inhibitory effect of EDTA on Candida krusei in vitro.

FIG. 5 shows the synergistic inhibition of Aspergillus fumigatus by Amphotericin B and EDTA (1.0 mg/mL) in vitro.

FIG. 6 shows the synergistic inhibition of Aspergillus fumigatus by Amphotericin B and EDTA (0.1 mg/mL) in vitro.

FIG. 7 shows the synergistic inhibition of Aspergillus flavus by Amphotericin B and EDTA (1.0 mg/mL) in vitro.

FIG. 8 shows the synergistic inhibition of Aspergillus flavus by Amphotericin B and EDTA (0.1 mg/mL) in vitro.

FIG. 9 shows the synergistic inhibition of Fusarium solani by Amphotericin B and EDTA in vitro.

FIG. 10 shows the synergistic inhibition of Aspergillus fumigatus by Ambisome and EDTA (0.1 mg/mL) in vitro.

FIG. 11 shows the synergistic inhibition of Fusarium solani by Ambisome and EDTA in vitro.

I. Fungal Infections

Infection is believed to be the cause of death in almost half of all patients who die of lymphoma, and in almost three quarters of patients who die of leukemia. Although bacteria are the causative organisms of many such infections, fungi also play a major role in these infection-related mortalities. As noted in the Background section, species of Candida, Aspergillus, and Fusarium are the major causes of fungal infection-related deaths in patients with leukemia and lymphoma. Additionally, fungal infection is a major cause of mortality in patients with congenital and acquired deficiencies of the immune system.

In their usual role as saprophytes on decaying vegetation, Aspergillus organisms are not contagious. Infection arises when spores of these ubiquitous fungi are aerosolized in the abiotic environment. No underlying predisposition of race, age, or sex leads to the development of Aspergillus infection.

Although Aspergillus infection can be acquired in the community, the largest threat to the immunocompromised patient is exposure to contaminated air in the hospital environment. Patients who have undergone open heart surgery, who have undergone organ or bone marrow transplantation, or who have prolonged neutropenia after anticancer chemotherapy may acquire life-threatening infection either on the wards where they are housed (domiciliary exposure) or when they are taken to the operating theater, radiology suite, or catheterization laboratory for an essential procedure (nondomiciliary exposure). Construction in the hospital, which results in the liberation of large numbers of spores into the immediate environment, is particularly hazardous for these patients (Rubin, 1994; Wade, 1994). Although there is considerable genetic heterogeneity among Aspergillus strains in nature, newly developed molecular typing systems have shown that patients are usually infected with a single strain, a finding that allows the clinician to rapidly assess whether two or more cases are from the same environmental source (Birch et al., 1995).

Several species of Aspergillus are known to cause invasive sinopulmonary infections in seriously immunocompromised patients. Following inhalation of spores, clinical aspergillosis can occur in three major presentations. The first presentation, allergic bronchopulmonary aspergillosis, develops when Aspergillus species colonize the bronchial tree and release antigens that cause a hypersensitivity pneumonitis. The second presentation, aspergilloma or "fungus ball," develops in pulmonary cavities, often in concert with other lung diseases such as tuberculosis. The third form, invasive pulmonary or disseminated aspergillosis, is a life threatening infection with a very high mortality rate.

The present invention provides pharmaceutical compositions and methods for the prevention and treatment of disseminated fungal infections. It is contemplated that the preparations of the invention will be useful in eliminating or inhibiting all types of fungal infections, providing so-called fungicidal or fungistatic effects. For example, the inventors have discovered that chelators have significant growth inhibitory effect against species of Aspergillus (see data in FIG. 1, FIG. 2, FIG. 3 and FIG. 4). The inventors have further demonstrated conclusively and unexpectedly that, when combined with antifungal agents, chelators show additive to synergistic inhibitory activity against the growth of fungal pathogens (see data in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10 and FIG. 11). These discoveries provide the basis for a program of prevention and treatment of systemic fungal infections using any of several embodiments of the inventive pharmaceutical formulations, which may comprise various combinations of chelators, antifungal agents, and any necessary excipients, diluents or adjuvants.

In another aspect, the pharmaceutical formulations provided herein comprise chelators chemically bound, covalently, ionically or otherwise, to monoclonal antibodies which bind to the fungal antigen to be treated. Advantageously, the monoclonal antibodies may serve to deliver the attached chelators directly to their intended fungal targets, where the chelators may then bind trace metals such as iron and calcium which might otherwise serve as fungal virulence factors. The inventors contemplate that this preferred embodiment even more effectively eliminates or inhibits fungal infections by decreasing the tendency of the chelators to bind trace metals with which they may come into contact outside of the immediate vicinity of the infection.

II. Chelators

A chelate is the type of coordination compound in which a central metal ion is attached by coordinate links to two or more nonmetal atoms in the same molecule. Heterocyclic rings are thus formed during chelation, with the metal atom as part of the ring. The molecule comprising the nonmetal linking atoms is termed a chelator. Chelators are used in various chemical applications, for example as titrating agents or as metal ion scavengers. Chelators can be used to remove ions from participation in biological reactions. For example, the well-known chelator ethylenediamine-N,N,N',N',-tetraacetic acid (EDTA) acts as an anticoagulant because it is capable of scavenging calcium ions from the blood.

It is known that iron and other trace metals are essential in the life cycle of microorganisms such as fungi. Without these trace metals, fungi are unable to grow and reproduce. Although iron is abundant in nature, its availability for microbial assimilation is limited owing to the insolubility of ferric ions at neutral or alkaline pH. As a consequence, many fungi have evolved their own specialized trace metal-scavenging molecules, called siderophores, which bind with trace metals and make them available for uptake by the fungi. The chelators used in conjunction with the present invention provide an inhibitory effect upon fungal pathogens by competing with the flingal siderophores for any available trace metal ions. In this way, the chelators present in the pharmaceutical preparations of the invention "steal" the metal ions essential for fungal growth, effectively causing the fungus to "starve to death." The added antifungal agents and/or monoclonal antibodies of the preparations of the invention can then come in and attack the weakened fungi, thereby destroying them or inhibiting their growth.

The inventors have discovered that the chelators of the present invention have significant growth inhibitory effect against species of Aspergillus. Referring to FIG. 1, it will be seen that EDTA exerts an inhibitory effect upon Aspergillus flavus relative to the control population. This effect is most clearly noticeable beginning 12 h after application of the chelator. Referring to FIG. 2 and FIG. 3, similar inhibitory behavior was noticed in cultures of Aspergillus terreus and Fusarium oxysporum following application of EDTA. The inhibitory effect of EDTA on Candida krusei is noticeable only a few hours after contact of the fungus with the chelator, as shown by FIG. 4.

Table 1 provides a representative list of chelators useful in conjunction with the present invention. The list provided in Table 1 is not meant to be exhaustive. Preferred chelators are those which bind trace metal ions with a binding constant ranging from 101 to 10100; more preferred chelators are those which bind trace metal ions with a binding constant ranging from 1010 to 1080; most preferred chelators are those which bind trace metal ions with a binding constant ranging from 1015 to 1060. Also, preferred chelators are those which are readily attached to a monoclonal antibody, for example 1,3-diaminopropane-N,N,N',N'-tetraacetic acid (DTPA). Furthermore, preferred chelators are those which have been shown to have an inhibitory effect upon target fungal pathogens, for example the disodium salt of EDTA.

TABLE 1
CHELATORS
ABBREVIATION FULL NAME
EDTA free acid Ethylenediamine-N,N,N',N',-tetraacetic acid
EDTA 2Na Ethylenediamine-N,N,N',N',-tetraacetic acid,
disodium salt, dihydrate
EDTA 3Na Ethylenediamine-N,N,N',N',-tetraacetic acid,
trisodium salt, trihydrate
EDTA 4Na Ethylenediamine-N,N,N',N'-tetraacetic acid,
tetrasodium salt, tetrahydrate
EDTA 2K Ethylenefisminr-N,N,N',N'-tetraacetic acid,
dipotassium salt, dihydrate
EDTA 2Li Ethylenediamine-N,N,N',N'-tetraacetic acid,
dilithium salt, monhydrate
EDTA 2NH4 Ethylenediamine-N,N,N',N'-tetraacetic
acid, diammonium salt
EDTA 3K Ethylenediamine-N,N,N',N'-tetraacetic acid,
tripotassium salt, dihydrate
Ba(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, barium chelate
Ca(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, calcium chelate
Ce(III)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, cerium chelate
Co(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, cobalt chelate
Cu(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, copper chelate
Dy(III)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, dysprosium chelate
Eu(III)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, europium chelate
Fe(III)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, iron chelate
In(III)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, indium chelate
La(III)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, lanthanum chelate
Mg(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, magnesium chelate
Mn(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, manganese chelate
Ni(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, nickel chelate
Sm(III)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, samarium chelate
Sr(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, strontium chelate
Zn(II)-EDTA Ethylenediamine-N,N,N',N'-tetraacetic
acid, zinc chelate
CyDTA trans-1,2-Diaminocyclohexane-N,N,N',N'-
tetraaceticacid,monohydrate
DHEG N,N-Bis(2-hydroxyethyl)glycine
DTPA-OH 1,3-Diamino-2-hydroxypropane-N,N,N',N'-
tetraacetic acid
DTPA 1,3-Diaminopropane-N,N,N',N'-
tetraacetic acid
EDDA Ethylenediamine-N,N'-diacetic acid
EDDP Ethylenediamine-N,N'-dipropionic acid
dihydrochloride
EDDPO Ethylenediamine-N,N'-bis(methylenephosphonic
acid), hemihydrate
EDTA-OH N-(2-Hydroxyethyl)ethylenediamine-N,N',N'-
triacetic acid
EDTPO Ethylenediamine-N,N,N',N'-
tetrakis(methylenephosponic acid)
EGTA O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-
tetraacetic acid
HBED N,N-bis(2-hydroxybenzyl)ethylenediamine-
N,N-diacetic acid
HDTA 1,6-Hexamethylenediamine-N,N,N',N'-
tetraacetic acid
HIDA N-(2-Hydroxyethyl)iminodiacetic acid
IDA Iminodiacetic acid
Methyl-EDTA 1,2-Diaminopropane-N,N,N',N'-tetraacetic acid
NTA Nitrilotriacetic acid
NTP Nitrilotripropionic acid
NTPO Nitrilotris(methylenephosphoric acid), trisodium salt
O-Bistren 7,19,30-Trioxa-1,4,10,13,16,22,27,33 -
octaabicyclo [11,11,11] pentatriacontane,
hexahydrobromide
TTHA Triethylenetetramine-N,N,N',N",N'",N'"-
hexaacetic acid

III. Monoclonal Antibodies

Monoclonal antibodies are antibodies derived from a single clone of B lymphocytes. As such, they are homogenous in structure and antigen specificity, making them useful as vectors for directing radionuclides, drugs, or toxins to tissues of interest such as malignant cells.

In one embodiment, the pharmaceutical formulations of the invention may comprise chelators chemically attached to monoclonal antibodies which have been designed to bind to the fungal antigen site of interest. Advantageously, the monoclonal antibodies may serve to deliver the attached chelators directly to their intended fungal targets, where the chelators may then bind trace metals which exist in the vicinity of the fungal cell. By delivering the chelator directly to its intended target, scavenging of any nearby trace metals which might otherwise serve as fungal virulence factors is assured.

Means for preparing and characterizing antibodies are well known in the art (See, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference). The methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogenic composition and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically the animal used for production of anti-antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig or a goat. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

As is well known in the art, a given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen to a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers. Means for conjugating a polypeptide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimidobenzoyl-N-hydroxysuccinimide ester, carbodiimide and bis-diazotized benzidine.

As is also well known in the art, the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Exemplary and preferred adjuvants include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculous), incomplete Freund's adjuvants and aluminumn hydroxide adjuvant.

The amount of immnunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal). The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster injection, may also be given. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate MAbs.

MAbs may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Pat. No. 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified administration of approximately 106 Aspergillus fumigatus conidia (or other species, such as Aspergillus flavus, Aspergillus terreus, Candida krusei, or Fusarium solani, or any other fungal pathogen known to affect humans) in 1.0 mL of sterile NaCl solution with 1.0 mL of Freund's incomplete adjuvant. The immnunizing composition is administered in a manner effective to stimulate antibody producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred as this is most routinely used and generally gives a higher percentage of stable fusions.

Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5×107 to 2×108 lymphocytes.

The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render then incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).

Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, pp. 65-66, 1986; Campbell, pp. 75-83, 1984). For example, where the immunized animal is a mouse, one may use P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0 Bul; for rats, one may use R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6 are all useful in connection with human cell fusions.

One preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-NS-1-Ag4-1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.

Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 proportion, though the proportion may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described by Kohler and Milstein (1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, by Gefter et al. (1977). The use of electrically induced fusion methods is also appropriate (Goding pp. 71-74, 1986).

Fusion procedures usually produce viable hybrids at low frequencies, about 1×10-6 to 1×10-8. However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, unfused cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by culturing in a selective medium. The selective medium is generally one that contains an agent that blocks the de novo synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.

The preferred selection medium is HAT. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells.

This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supermatants (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunobinding assays, and the like.

The selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clones can then be propagated indefinitely to provide MAbs. The cell lines may be exploited for MAb production in two basic ways. A sample of the hybridorna can be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide MAbs in high concentration. The individual cell lines could also be cultured in vitro, where the MAbs are naturally secreted into the culture medium from which they can be readily obtained in high concentrations. MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography.

The inventors also contemplate the use of a molecular cloning approach to generate monoclonals. For this, combinatorial immunoglobulin phagemid libraries are prepared from RNA isolated from the spleen of the immunized animal, and phagemids expressing appropriate antibodies are selected by panning using cells expressing the antigen and control cells. The advantages of this approach over conventional hybridoma techniques are that approximately 104 times as many antibodies can be produced and screened in a single round, and that new specificities are generated by H and L chain combination which further increases the chance of finding appropriate antibodies.

IV. Attachment of Chelators to Monoclonal Antibodies

Methods for attachment of chelators to proteins, including monoclonal antibodies, are well known in the art. One of the earliest efforts at attachment of metal-binding groups to proteins was that of Gelewitz et al. (1954) who coupled azo-phenanthroline and azo-oxine to albumin; attempts were made to analyze the products by calorimetric titration with iron. Later, Sokolovsky et al., (1967) converted lysozyme tyrosine to 3-aminotyrosine, and discussed the potential of this procedure to yield new heavy-atom derivatives for x-ray crystallography. Benisek and Richards (1968) explored the use of picolinimidate to produce metal-binding sites on proteins, with a similar goal.

The first chelate-protein conjugates that were stable enough for use in vivo were the protein azophenyl-EDTAs of Sundberg et al. (1974) which resulted from the initial ideas of Baldeschwieler [Meares et al. (1984)]. Those protein azophenyl-EDTA compounds were studied over the years 1974-1979, during which the basic requirements of protein-chelate directed toward in vivo use were explored (Goodwin et al., 1975; Meares et al., 1976; Leung et al., 1978; DeRiemer et al., 1979).

In 1976, Krejcarek and Tucker activated DTPA by a mixed anhydride method and coupled it to albumin (Krejcarek and Tucker, 1976). The product bound 111In stably enough for many applications in vivo, and has been used by many nuclear medicine researchers since (Khaw et al., 1980; Scheinberg, 1982). The procedure was subsequently improved by Hnatowich et al. (1983). Comparison of the stability of 111In complexes in human serum under physiological conditions shows that the indium is lost from DTPA complexes much more rapidly than from phenyl-EDTA complexes, whether bound to a protein or not (Yeh et al., 1979). However, 111In-DTPA complexes decompose slowly enough so that they are useful in many diagnostic procedures, including those involving antibodies.

By 1979, a general method for converting α-amino acids to bifunctional chelating agents had been devised (Yeh et al., 1979). This has permitted the synthesis of a wide range of structures from materials with an interesting choice of useful sidechains.

Typically, an amino acid such as L-phenylalanine is nitrated, esterified, and allowed to react with an anmine RNH2. If R=H, the final product will be an EDTA analog, whereas if R=H2NCH2CH2--, the final product will be a DTPA analog. The amide is reduced, and the amines are carboxymethylated to form a chelating group, and then the aromatic nitro group is reduced to an amine. This aromatic amine can be further modified in several ways to form useful derivatives. For example, treatment with nitric acid renders a diazonium compound which may react with several different amino acid residues.

As noted above, in embodiments of the invention where the chelator is operatively attached to a monoclonal antibody, it is contemplated that such attachment may be by either covalent or ionic bond. One example of such an attachment is the diazophenyl coupling described above, but any other means of chemically binding a chelator to a monoclonal antibody may be used.

V. Antifungal Agents

Fungal infections and the drugs used to treat them have traditionally been divided into two classes: superficial and systemic. This distinction is becoming increasingly arbitrary, however, as some of the drugs previously used to treat only one class of infection or the other are now used in both cases, with the differences being ones of mode of administration and/or concentration of active ingredient. Also, some infections, for example superficial mycoses, may now be treated either systemically or topically.

The classes of drugs used currently to treat systemic fungal infections include the polyenes, the imidazoles and triazoles, griseofulvin, and flucytosine. The polyenes bind to ergosterols in fungal membranes, resulting in the formation of transmembrane channels which allow the escape of metabolites essential to maintaining the viability of the fungal cell. Polyenes are highly toxic. The imidazoles and triazoles are structurally related and share the same antifungal spectrum and mechanism of action, namely the inhibition of the fungal sterol 14-α-demethylase enzyme system. Griseofulvin was isolated from a species of Penicillium and acts by inhibiting fungal mitosis. Flucytosine is a fluorinated pyrimidine which acts upon fungi by inhibiting thymidylate synthetase.

In addition to the above well-known classes of antifungal agents, some compounds more traditionally thought of as antibacterial agents, for example minocycline (a tetracycline derivative), have been demonstrated to have a fungistatic or fuingicidal effect on the surface of a venous catheter when administered in combination with a chelator, for example EDTA, and other compounds. See, for example, U.S. Pat. No. 5,362,754 by Raad et al., or U.S. patent application Ser. No. 08/317,309 by Raad et al., both of which are herein incorporated by reference.

Antifungal agents particularly preferred in connection with the present invention include the polyenes, most preferably Amphotericin B and liposomal Amphotericin B. The inventors have demonstrated that Amphotericin B acts synergistically in concert with the chelator EDTA to inhibit species of Aspergillus and Fusarium. A drug combination is said to exhibit synergism when the combination achieves a desired effect one order of magnitude or greater than the analogous effect of the most potent individual constituent of the combination. For example, referring to FIG. 5, Amphotericin B at a concentration of 1 μg/mL and EDTA at a concentration of 1 mg/mL act synergistically to inhibit the growth of Aspergillus fumigatus by a margin of almost two orders of magnitude relative to EDTA acting alone. The same effect is observed when the concentration of EDTA is reduced to 0.1 mg/mL (FIG. 6). Likewise, Amphotericin B and EDTA inhibit Aspergillus flavus synergistically, whether EDTA is present at 1.0 mg/mL or 0.1 mg/mL (FIG. 7 and FIG. 8). This synergism extends to inhibition of Fusarium solani as well, as seen in FIG. 9. FIG. 10 and FIG. 11 show the synergistic inhibitory effect of liposomal Amphotericin B and EDTA against A. fumigatus and F. solani.

The inventors have demonstrated, remarkably and for the first time, that the chelators and antifungal agents of the present invention act together in a synergistic fashion to inhibit fungal pathogens. It is contemplated that as a consequence of this synergism described above between the chelators and the antifungal agents of the present invention, decreased dosages of antifungal agent will be sufficient to induce a fungicidal effect in a patient with a fungal infection, relative to the dosage required when administering an antifungal agent alone. Advantageously, a decreased dosage of antifungal agent, when used in conjunction with the chelators of the present invention, will serve to minimize any undesirable side effects which antifungal agents may induce in patients to whom they are administered.

Table 2 provides a representative list of antifungal agents useful in conjunction with the present invention. The list provided in Table 2 is not meant to be exhaustive.

TABLE 2
ANTIFUNGAL AGENTS
UK 109,496 (Voriconazole) Terbinafine
SCH 56592 BF-796
ER30346 MTCH 24
UK 9746 BTG-137586
UK 9751 RMP-7/ Amphotericin B
T 8581 Omoconazole
Flutrimazole Amphotericin B
Cilofungin LY121019 Nystatin
LY303366 (Echinocandin) Natamycin
L-743872 (Pneumocandin) Clotrimazole
Pradimicins (MNS 18184) Miconazole
Benanomicin Ketoconazole
Ambisome Terconazole
ABLC Econazole
Liposomal Amphotericin Itraconazole
ABCD Fluconazole
Liposomal Nystatin Griseofulvin
Nikkomycin Z Flucytosine

VI. Pharmaceutical Compositions and Routes of Administration

Pharmaceutical compositions of the instant invention comprise an effective amount of at least a chelator dissolved or dispersed in a pharmaceutically acceptable carrier, such as a pharmaceutically acceptable buffer, solvent or diluent, or aqueous medium. Pharmaceutical compositions of the instant invention may also comprise an effective amount of a chelator and an antifungal agent dissolved or dispersed in a pharmaceutically acceptable carrier, such as a pharmaceutically acceptable buffer, solvent or diluent, or aqueous medium. Additionally, pharmaceutical compositions of the instant invention may comprise an effective amount of a chelator operatively attached to a monoclonal antibody dissolved or dispersed in a pharmaceutically acceptable carrier, such as a pharmaceutically acceptable buffer, solvent or diluent, or aqueous medium. Also, pharmaceutical compositions of the instant invention comprise an effective amount of a chelator operatively attached to a monoclonal antibody, as well as an antifungal agent, all dissolved or dispersed in a pharmaceutically acceptable carrier, such as a pharmaceutically acceptable buffer, solvent or diluent, or aqueous medium. Such compositions also can be referred to as inocula.

The phrases "pharmaceutically acceptable" or "pharmacologically acceptable" refer to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a human. As used herein the terms "pharmaceutically acceptable carrier" and "pharmaceutically acceptable buffer, solvent or diluent" include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

The therapeutic compositions of the present invention may include classic pharmaceutical preparations. Administration of therapeutic compositions according to the present invention will be via any common route so long as the target tissue is available via that route. This includes oral, nasal, buccal, rectal, vaginal or topical. Alternatively, administration will be by orthotopic, intradermal subcutaneous, intramuscular, intraperitoneal or intravenous injection. Such compositions would normally be administered as pharmaceutically acceptable compositions that include physiologically acceptable carriers, buffers or other excipients. For treatment of conditions of the lungs, the preferred route is aerosol delivery to the lung.

An effective amount of the therapeutic composition is determined based on the intended goal. The term "unit dose" or "dosage" refers to physically discrete units suitable for use in a subject, each unit containing a predetermined-quantity of the therapeutic composition calculated to produce the desired responses, discussed above, in association with its administration, i.e., the appropriate route and treatment regimen. The quantity to be administered, both according to number of treatments and unit dose, depends on the protection desired.

Precise amounts of the therapeutic composition also depend on the judgment of the practitioner and are peculiar to each individual. Factors affecting dose include physical and clinical state of the patient, the route of administration, the intended goal of treatment (alleviation of symptoms versus cure) and the potency, stability and toxicity of the particular therapeutic substance.

Additional formulations are suitable for oral administration. Oral formulations include such typical excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate and the like. The compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders. When the route is topical, the form may be a cream, ointment, salve or spray.

As used herein the terms "contact", "contacted", and "contacting", are used to describe the process by which an effective amount of a pharmacological agent, e.g., any of the compounds disclosed in the present invention, comes in direct juxtaposition with the target cell.

For methods of treating manmmals, pharmaceutical compositions may be administered by a variety of techniques, such as parenteral, topical or oral administration. For example, the compositions of the instant invention may also be formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, sub-cutaneous, or even intraperitoneal routes. The preparation of an aqueous composition that contains one of the inventive compounds as an active ingredient will be known to those of skill in the art in light of the present disclosure. Typically, such compositions can be prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for use in preparing solutions or suspensions upon the addition of a liquid prior to injection can also be employed; and the preparations can also be emulsified.

Solutions of the inventive compositions as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oil and injectable organic esters such as ethyloleate. Aqueous carriers include water, alcoholic/aqueous solutions, saline solutions, parenteral vehicles such as sodium chloride, Ringer's dextrose, etc. Intravenous vehicles include fluid and nutrient replenishers. Preservatives include antimicrobial agents, anti-oxidants, chelating agents and inert gases. The pH and exact concentration of the various components the pharmaceutical composition are adjusted according to well known parameters. Sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions may also be useful. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.

The compositions of the instant invention may also be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts include the acid addition salts (formed, e.g., with any free amino groups present), which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with any free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

The carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antftingal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the compounds of the present invention in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile, injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Upon formulation,solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.

For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage could be dissolved in 1 mL of isotonic NaCl solution and either added to 1000 mL of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variations in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.

VII. Prevention and Treatment of Disseminated Fungal Infections

The pharmaceutical compositions of the invention will be provided to a patient having a fungal infection in an amount sufficient to exert a fungicidal or fungistatic effect upon fungi contacted by the composition. It will be understood with benefit of this disclosure that such dosages may vary considerably according to the patient, the infection presented by the patient, and the particular active ingredients comprising the pharmaceutical composition.

The antifungal agents of the present invention may be administered to a patient in an amount ranging from about 0.001 milligrams per kilogram of body weight per day to about 1000 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.001, 0.002, 0.003, etc.; 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 100, 101, 102, 103, 104, etc.; 500, 501, 502, 503, etc.; 600, 700, 800, 900, and about 1000 mg per kg per day, and including all fractional dosages therebetween.

More preferably, the antifungal agents of the present invention may be administered to a patient in an amount ranging from about 0.01 milligrams per kilogram of body weight per day to about 100 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 60, 70, 80, 90, and about 100 mg per kg per day, and including all fractional dosages therebetween.

Most preferably, the antifungal agents of the present invention may be administered to a patient in an amount ranging from about 0.1 milligrams per kilogram of body weight per day to about 10 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9 and about 10 mg per kg per day, and including all fractional dosages therebetween.

The chelators of the present invention may be administered to a patient in an amount ranging from about 0.001 milligrams per kilogram of body weight per day to about 1000 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.001, 0.002, 0.003, etc.; 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 100, 101, 102, 103, 104, etc.; 500, 501, 502, 503, etc.; 600, 700, 800, 900, and about 1000 mg per kg per day, and including all fractional dosages therebetween.

More preferably the chelators of the present invention may be administered to a patient in an amount ranging from about 0.01 milligrams per kilogram of body weight per day to about 100 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 60, 70, 80, 90, and about 100 mg per kg per day, and including all fractional dosages therebetween.

Most preferably the chelators of the present invention may be administered to a patient in an amount ranging from about 0.1 milligrams per kilogram of body weight per day to about 10 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, and about 10 mg per kg per day, and including all fractional dosages therebetween.

The monoclonal antibodies operatively attached to chelators may be administered to a patient in an amount ranging from about 0.001 milligrams per kilogram of body weight per day to about 1000 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.001, 0.002, 0.003, etc.; 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 100, 101, 102, 103, 104, etc.; 500, 501, 502, 503, etc.; 600, 700, 800, 900, and about 1000 mg per kg per day, and including all fractional dosages therebetween.

More preferably, the monoclonal antibodies operatively attached to chelators may be administered to a patient in an amount ranging from about 0.01 milligrams per kilogram of body weight per day to about 100 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.01, 0.02, 0.03, etc.; 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, 10, etc.; 12, 13, 14, etc.; 50, 51, 52, 53, 54, etc.; 60, 70, 80, 90, and about 100 mg per kg per day, and including all fractional dosages therebetween.

Most preferably, the monoclonal antibodies operatively attached to chelators may be administered to a patient in an amount ranging from about 0.1 milligrams per kilogram of body weight per day to about 10 mg per kg per day, including all intermediate dosages therebetween. It will be readily understood that "intermediate dosages", in these contexts, means any dosages between the quoted ranges, such as about 0.1. 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, etc.; 3, 4, 5, 6, 7, 8, 9, and about 10 mg per kg per day, and including all fractional dosages therebetween.

The pharmaceutical compositions of the present invention may be administered by any known route, including parenterally and otherwise. This includes oral, nasal (via nasal spray or nasal inhaler), buccal, rectal, vaginal or topical administration. Administration may also be by orthotopic, intradermal subcutaneous, intramuscular, intraperitoneal or intravenous injection and/or infusion. Such compositions may be administered as pharmaceutically acceptable compositions that include pharmacologically acceptable carriers, buffers or other excipients. The phrase "pharmacologically acceptable" refers to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to a human. For treatment of conditions of the lungs, the preferred route is aerosol delivery to the lung via bronchoalveolar lavage or the like.

VIII. Packaging and Kits

The container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which the linked antibody/chelator may be placed, and preferably, suitably aliquoted. Where a second or third antifungal agent, other chelator, or additional component is provided, the kit will also generally contain a second, third or other additional container into which this component may be placed. The kits of the present invention will also typically include a means for containing the antibody/chelator, antifungal agent, other chelator, and any other reagent containers in close confinement for commercial sale. Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

The goal of this study was to determine if there is a synergistic effect between EDTA and Amphotericin B and EDTA and Ambisome respectively. The data collected are displayed in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10 and FIG. 11. These figures are discussed elsewhere in the Detailed Description section. The studies were conducted in a laboratory incubator at a constant temperature of 30°C C.

The medium was a single lot of liquid RPMI 1640 medium (Whittaker Bioproducts, Inc., Walkersville, Md.) supplemented with 0.3 g of L-glutamine per liter and 0.165 M MOPS buffer (34.54 g/liter) and without sodium bicarbonate.

Test inocula contained approximately 1×103 to 1×104 conidia/mL. To induce conidium and sporangiophore formation, fungi were grown on sabouraud dextrose agar plates at 35°C C. for 5 to 7 days. Each fungus was then covered with approximately 2 mL sterile 0.85% saline water. The suspension was then harvested by gently probing the colonies with sterile glass rods. The resulting mixture of conidia or sporangiophores and hyphal fragments was withdrawn and filtered through a sterile 4×4 gauze to a sterile tube. The homogenous suspension was later mixed with a vortex mixer for 30 s and the densities of the suspension were read and adjusted to a range of 80 to 85% transmittance. Inoculum of 0.1 mL was delivered to each flask containing 20 mL of RPMI and drug dilution series. The final conidia concentration ranged from 1×103 to 1×104 conidia/mL. A control flask was maintained without any drugs. The flasks were incubated in a shaker at 30°C C. for 24 to 48 h. Glass beads were added to all flasks with visible fungal growth in an attempt to homogenize the solution and achieve even distribution of conidia for culture. Cultures were done at 0, 4, 24, and 48 h on sabouraud dextrose agar plates and incubated at 35°C C. for 48 h.

Amphotericin B for injection, USP (Gensia Laboratories, LTD.) was suspended and diluted in sterile water and stored at 1 mg/mL in a glass vile in the dark at -70°C C.

Ambisome was obtained in 50 mg vials and used immediately upon opening of the vial. Typically, 50 mg of Ambisome was diluted in 12 mL of sterile water. Further dilutions were performed as needed.

Edetate disodium INJ., USP (Abbott Laboratories, North Chicago, Ill.) was stored at a concentration of 150 mg/mL at 4°C C.

Further dilutions were made to achieve the desired concentration of each drug at the time of the study. For Amphotericin B and Ambisome, the concentration was 1.0 μg/mL and for EDTA the concentrations were 0.1 and 1.0 mg/mL.

The goal of this study was to determine if chelators have an inhibitory effect on species of Aspergillus, Fusarium, and Candida. The data collected are displayed in FIG. 1, FIG. 2, FIG. 3 and FIG. 4. These figures are discussed elsewhere in the Detailed Description section. A spectrophotometer was used at a frequency of 660 nm to measure the absorbency of the solution.

For molds, all inocula were started at 1×104 conidia/mL. For yeast and bacteria, all inocula were started at 1×106 cfu/mL. The medium used was Mueller-Hinton.

The concentration of chelator in these studies was 0.35 mg EDTA per mL water.

In vivo studies will be conducted with either rabbits or mice, both of which are suitable animal models. Immunosupression with cyclophosphamide should be given intravenously 3 days prior to commencement of the study in order to achieve neutropenia by the day of animal infection.

Treatment with all drugs begins 18 to 24 h after infection and continues for 10 days.

All animals surviving to day 11 are sacrificed. Their lungs, kidneys, liver, and spleen are removed and transferred into 5 mL of sterile saline, homogenized in a tissue grinder for 15 to 30 sec, and diluted to 10-1, 10-2, 10-3, and 10-4. A total of 1.0 mL of each dilution is spread onto a sabouraud dextrose agar plate and allowed to grow by incubating them at 37°C C. The plates are then counted for quantitative analysis. Also, histopathology analysis will be conducted on all organs analyzed.

All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

Benisek and Richards, J. Biol. Chem., 243:4267, 1968.

Campbell, In: Monoclonal Antibody Technology, Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 13, Burden and Von Knippenberg, (Eds.), Amsterdam, Elseview, pp 75-83, 1984

DeRiemer, Meares, Goodwin, Diamanti, J. Med. Chem., 22:019, 1979.

Gefter et al., Somatic Cell Genet., 3:231-236, 1977.

Gelewitz, Riedemann, Klotz, Arch. Biochem. Biophys., 53:411, 1954.

Goding, 1986, In: Monoclonal Antibodies: Principles and Practice, 2nd ed., Academic Press, Orlando, Fla., pp. 60-61, 65-66, 71-74, 1986.

Goodwin, Sundberg, Diamanti, Meares, In: Radiopharmaceuticals, Society of Nuclear Medicine, New York, p. 80, 1975.

Hnatowich, Layne, Childs, Lanteigne, Davis, Griffin, Doherty, Science, 220:613, 1983.

Khaw, Fallon, Strauss, Haber, Science, 209:295, 1980.

Kohler and Milstein, Nature, 256:495-497, 1975.

Krejcarek and Tucker, "Covalent attachment of chelating groups to macromolecules," Biochem. Biophys. Res. Commun., 77:581-585, 1977.

Leung, Meares, Goodwin, Int. J. Appl. Radiot. Isot., 29:687, 1978.

Meares, Goodwin, Leung, Girgis, Silvester, Nunn, Lavender, "Covalent attachment of metal chelates to proteins: The stability in vivo and in vitro of the conjugate of albumin with a chelate of 111indium," Proc. Natl. Acad Sci. U.S.A., 73:3803-3806, 1976.

Meares and Wensel, Accts. Chem. Res., 17:202, 1984.

Sokolovsky, Riordan, Vallee, Biochem. Biophys. Res. Commun., 27:20, 1967.

Sundberg, Meares, Goodwin, Diamanti, Nature, 250:587; J. Med. Chem., 17:1304, 1974.

Yeh, Meares, Goodwin, J. Radioanal. Chem., 53:327, 1979.

Yeh, Sherman, Meares, "A new route to "bifunctional" chelating agents: conversion of amino adds to analogs of ethylenedinitrilotetraacetic acid," Anal. Biochem., 100:152-159, 1979.

U.S. Pat. No. 5,362,754 by Raad et al.

U.S. patent application Ser. No. 08/317,309 by Raad et al.

Raad, Issam, Sherertz, Robert, Hachem, Ray

Patent Priority Assignee Title
10040872, Oct 22 2012 CYDEX PHARMACEUTICALS, INC Alkylated cyclodextrin compositions and processes for preparing and using the same
10092728, Nov 20 2012 Rochester Medical Corporation Sheath for securing urinary catheter
10117951, Apr 28 2008 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
10143661, Oct 17 2013 CERION, LLC Malic acid stabilized nanoceria particles
10323103, Feb 28 2012 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
10350334, Jun 11 2009 Becton, Dickinson and Company Catheter locking solution having antimicrobial and anticoagulation properties
10435639, Sep 05 2006 CERION, LLC Fuel additive containing lattice engineered cerium dioxide nanoparticles
10569051, Mar 14 2011 Rochester Medical Corporation, a subsidiary of C. R. Bard, Inc. Catheter grip and method
10589003, Nov 18 2005 The Board of Regents of the University of Texas System Methods for coating surfaces with antimicrobial agents
10633462, Feb 15 2012 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
10669244, May 21 2004 President and Fellows of Harvard College Synthesis of tetracyclines and analogues thereof
10780177, Apr 28 2008 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
10780244, Nov 20 2012 Rochester Medical Corporation, a subsidiary of C. R. Bard, Inc. Catheter in a bag without additional packaging
10800861, Oct 22 2012 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
10851184, Aug 22 2014 CYDEX PHARMACEUTICALS, INC Fractionated alkylated cyclodextrin compositions and processes for preparing and using the same
10857324, Aug 26 2014 C R BARD, INC Urinary catheter
10874108, May 04 2016 5D HEALTH PROTECTION GROUP LTD Anti-microbial compositions
10874825, Aug 26 2014 C R BARD, INC Urinary catheter
10973874, Oct 21 2014 Hexima Limited Method of treatment
11192866, May 21 2004 President and Fellows of Harvard College Synthesis of tetracyclines and analogues thereof
11208500, Feb 15 2012 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
11547599, Sep 19 2017 Urinary catheter bridging device, systems and methods thereof
11547764, Jun 08 2011 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
11607524, Mar 14 2011 Rochester Medical Corporation Catheter grip and method
11730825, Jun 08 2011 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
11730919, Nov 20 2012 Rochester Medical Corporation Catheter in bag without additional packaging
11795241, Aug 22 2014 Cydex Pharmaceuticals, Inc. Fractionated alkylated cyclodextrin compositions and processes for preparing and using the same
11806402, Apr 28 2008 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
11850370, Aug 26 2014 C. R. Bard, Inc. Urinary catheter
6841546, Mar 14 2001 PARATEK PHARMACEUTICALS, INC Substituted tetracycline compounds as antifungal agents
7045507, Mar 14 2001 PARATEK PHARMACEUTICALS, INC Substituted tetracycline compounds as synergistic antifungal agents
7112561, Dec 08 2003 CPEX PHARMACEUTICALS, INC Pharmaceutical compositions and methods for insulin treatment
7244703, Jun 22 2001 CPEX PHARMACEUTICALS, INC Pharmaceutical compositions and methods for peptide treatment
7601731, Jun 06 2003 Board of Regents, The University of Texas System Antimicrobial flush solutions
7651661, Jan 12 2001 Board of Regents, The University of Texas System Medical devices with broad spectrum antimicrobial activity
7651996, Dec 08 2003 CPEX PHARMACEUTICALS, INC Pharmaceutical compositions and methods for insulin treatment
7763735, Oct 11 2006 The President and Fellows of Harvard College Synthesis of enone intermediate
7807842, May 21 2004 President and Fellows of Harvard College Synthesis of tetracyclines and analogues thereof
7939488, Aug 26 2008 The Clorox Company Natural disinfecting cleaners
7960366, Mar 14 2001 Paratek Pharmaceuticals, Inc. Substituted tetracycline compounds as synergistic antifungal agents
7960559, Oct 11 2006 President and Fellows of Harvard College Synthesis of enone intermediate
8211942, Jun 19 2002 Compositions and methods for dry eye syndrome
8293920, Oct 11 2006 President and Fellows of Harvard College Synthesis of enone intermediate
8362281, Mar 31 2010 General Electric Company Intermediates for hydroxylated contrast enhancement agents
8420699, Jun 19 2002 Composition and methods of treatment using deionized and ozonated solution
8486921, Apr 07 2006 President and Fellows of Harvard College Synthesis of tetracyclines and analogues thereof
8541472, Dec 05 2001 ASEPTICA, INC Antiseptic compositions, methods and systems
8580969, Oct 11 2006 President and Fellows of Harvard College Synthesis of enone intermediate
8598148, May 21 2004 President and Fellows of Harvard College Synthesis of tetracyclines and analogues thereof
8709342, Jun 06 2003 Board of Regents, The University of Texas System Antimicrobial flush solutions
8722020, Mar 31 2010 General Electric Company Hydroxylated contrast enhancement agents
8765977, Mar 31 2010 General Electric Company Hydroxylated contrast enhancement agents and imaging method
8864730, Apr 12 2005 Rochester Medical Corporation Silicone rubber male external catheter with absorbent and adhesive
8883865, Sep 05 2006 CERION, LLC Cerium-containing nanoparticles
8907104, Oct 11 2006 President and Fellows of Harvard College Synthesis of enone intermediate
8921428, Feb 11 2011 Moberg Pharma AB Antifungal composition
8952070, Feb 11 2011 Moberg Pharma AB Antifungal composition
9073829, Apr 30 2009 President and Fellows of Harvard College Synthesis of tetracyclines and intermediates thereto
9078441, Jun 06 2003 Board of Regents, The University of Texas System Antimicrobial flush solutions
9173972, Jul 01 2005 Methods and compositions for promoting wound healing
9221032, Sep 05 2006 CERION, LLC Process for making cerium dioxide nanoparticles
9248058, Apr 12 2005 Rochester Medical Corporation, a subsidiary of C.R. Bard, Inc. Male external catheter with absorbent and adhesive
9248093, Jun 11 2009 Becton, Dickinson and Company Catheter locking solution having antimicrobial and anticoagulation properties
9303223, Sep 05 2006 CERION, LLC Method of making cerium oxide nanoparticles
9314482, Jul 01 2005 Methods and compositions for promoting wound healing
9340738, Sep 05 2006 CERION, LLC Method of making cerium oxide nanoparticles
9365493, May 21 2004 President and Fellows of Harvard College Synthesis of tetracyclines and analogues thereof
9561279, Feb 11 2011 Moberg Pharma AB Antifungal composition
9688644, Apr 30 2009 President and Fellows of Harvard College Synthesis of Tetracyclines and intermediates thereto
9707375, Mar 14 2011 Rochester Medical Corporation Catheter grip and method
9744273, Jun 11 2009 Becton, Dickson and Company Catheter locking solution having antimicrobial and anticoagulation properties
9872969, Nov 20 2012 Rochester Medical Corporation Catheter in bag without additional packaging
9884830, May 21 2004 President and Fellows of Harvard College Synthesis of tetracyclines and analogues thereof
9993803, Sep 05 2006 CERION, LLC Method of preparing cerium dioxide nanoparticles
Patent Priority Assignee Title
4054139, Nov 20 1975 Oligodynamic catheter
4107121, Nov 25 1974 Ceskoslovenska akademie ved Ionogenic hydrophilic water-insoluble gels from partially hydrolyzed acrylonitrile polymers and copolymers, and a method of manufacturing same
4411648, Jun 11 1981 Board of Regents, The University of Texas System Iontophoretic catheter device
4442133, Feb 22 1982 UNIVERSITY OF MEDICINE AND DENTISTRY OF , 100 BERGEN STREET, NEWARK, NEW JERSEY, 07103 Antibiotic bonding of vascular prostheses and other implants
4557934, Jun 21 1983 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing 1-dodecyl-azacycloheptan-2-one
4569673, Jan 12 1984 BRIDGE BLOOD TECHNOLOGIES LLC, NEW YORK LIMITED LIABILITY COMPANY Bacterial barrier for indwelling catheters and other medical devices
4678660, Dec 07 1984 DESERET MEDICAL, INC , A CORP OF DE Thermoplastic polyurethane anticoagulant alloy coating
4749585, Apr 11 1986 University of Medicine and Dentistry of New Jersey Antibiotic bonded prosthesis and process for producing same
4764164, Sep 01 1983 HISAMITSU PHARMACEUTICAL CO , INC Iontophoresis device
4776334, Mar 22 1985 Stanford University Catheter for treatment of tumors
4847049, Dec 18 1985 VITAPHORE CORPORATION, SAN CARLOS, CA, A CORP OF CA Method of forming chelated collagen having bactericidal properties
4886505, Jun 07 1985 BECKTON, DICKINSON AND COMPANY, A CORP OF NJ Antimicrobial surfaces and inhibition of microorganism growth thereby
4895566, Jul 25 1986 C. R. Bard, Inc. Coating medical devices with cationic antibiotics
4906238, Oct 15 1985 Albert R., Greenfeld Exterior antimigration refinements for self-cleaning indwelling therapeutic articles
4917686, Dec 16 1985 Colorado Biomedical, Inc. Antimicrobial device and method
4952419, Aug 31 1987 Eli Lilly and Company Method of making antimicrobial coated implants
4973320, Aug 04 1987 Firma Carl Freudenberg Tissue-compatible medical device and method for manufacturing the same
5002792, Sep 15 1986 Ludlow Corporation Process for making biomedical devices utilizing thermoplastic hydrophilic gels
5013306, Jan 18 1989 Becton, Dickinson and Company Anti-infective and antithrombogenic medical articles and method for their preparation
5037380, May 09 1989 IOMED, LLC; ENCORE MEDICAL ASSET CORORATION Iontophoretic electrode with solution containment system
5071407, Apr 12 1990 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Radially expandable fixation member
5087240, Aug 18 1983 Drug Delivery Systems Inc. Transdermal drug patch with conductive fibers
5143071, Mar 30 1989 Ludlow Corporation Non-stringy adhesive hydrophilic gels
5147291, Jun 11 1990 Sound transmission apparatus for uniformly administering chemical composition through the skin
5202449, Jul 28 1987 Nippon Kayaku Kabushiki Kaisha Process for purifying 7-dimethylamino-6-demethyl-6-deoxytetracycline
5217493, Mar 11 1992 Board of Regents, The University of Texas System Antibacterial coated medical implants
5324275, Oct 02 1992 Board of Regeants, University of Texas System Antimicrobial medical devices
5362754, Nov 12 1992 Board of Regents, The University of Texas System M-EDTA pharmaceutical preparations and uses thereof
5542935, Dec 22 1989 WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ASSIGNEE Therapeutic delivery systems related applications
5688516, Nov 12 1992 Board of Regents, The University of Texas System Non-glycopeptide antimicrobial agents in combination with an anticoagulant, an antithrombotic or a chelating agent, and their uses in, for example, the preparation of medical devices
WO9410838,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 04 2000Board of Regents, The University of Texas System(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 21 2006M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jun 22 2010M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Aug 29 2014REM: Maintenance Fee Reminder Mailed.
Jan 21 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 21 20064 years fee payment window open
Jul 21 20066 months grace period start (w surcharge)
Jan 21 2007patent expiry (for year 4)
Jan 21 20092 years to revive unintentionally abandoned end. (for year 4)
Jan 21 20108 years fee payment window open
Jul 21 20106 months grace period start (w surcharge)
Jan 21 2011patent expiry (for year 8)
Jan 21 20132 years to revive unintentionally abandoned end. (for year 8)
Jan 21 201412 years fee payment window open
Jul 21 20146 months grace period start (w surcharge)
Jan 21 2015patent expiry (for year 12)
Jan 21 20172 years to revive unintentionally abandoned end. (for year 12)