A structure and process for semiconductor fuses and antifuses in vertical DRAMS provides fuses and antifuses in trench openings formed within a semiconductor substrate. Vertical transistors may be formed in other of the trench openings formed within the semiconductor substrate. The fuse is formed including a semiconductor plug formed within an upper portion of the trench opening and includes conductive leads contacting the semiconductor plug. The antifuse is formed including a semiconductor plug formed within an upper portion of the trench opening and includes conductive leads formed over the semiconductor plug, at least one conductive lead isolated from the semiconductor plug by an antifuse dielectric. Each of the fuse and antifuse are fabricated using a sequence of process operations also used to simultaneously fabricate vertical transistors according to vertical DRAM technology.
|
1. A semiconductor antifuse comprising a trench opening formed within a semiconductor substrate, a plug of semiconductor material filling an upper portion of said trench opening, a first segment of a conductive layer formed over a first portion of the top of said plug, a second segment of said conductive layer formed over a dielectric film which contacts a second portion of said top of said plug, said first segment separated from said second segment, wherein said dielectric film breaks down responsive to a predetermined voltage potential being applied across said antifuse and allows for electric coupling between said plug and said second segment of said conductive layer.
11. In a semiconductor device including a vertical transistor formed within a first trench opening formed within a semiconductor substrate and including a first plug of a polysilicon material formed within an upper portion of said first trench opening and functioning as a gate electrode of said vertical transistor, the improvement comprising an antifuse consisting of:
second plug formed of said polysilicon material formed within a second trench opening formed within said semiconductor substrate, a first discrete segment of a conductive layer formed over a first portion of the top of said second plug, a second discrete segment of said conductive layer formed over a dielectric film which contacts a second portion of said top of said second plug, said first segment separated from said second segment, remaining portions of the top of said second plug being covered by an insulating material, wherein said dielectric film breaks down responsive to a predetermined voltage potential being applied across said antifuse and allows for electrical coupling between said second plug and said second discrete segment of said conductive film.
2. The semiconductor antifuse as in
3. The semiconductor antifuse as in
4. The semiconductor antifuse as in
5. The semiconductor antifuse as in
6. The semiconductor antifuse as in
7. The semiconductor antifuse as in
8. The semiconductor antifuse as in
9. The semiconductor antifuse as in
10. The semiconductor antifuse as in
|
The present invention relates most generally to integrated circuits. More particularly, the present invention relates to apparatuses and methods for providing fuses and antifuses in integrated circuit devices.
In integrated circuit manufacturing, it is often desirable to select particular circuits from an array. For example, redundant parallel circuits may be formed and, after testing one circuit to verify that it functions properly, the other parallel circuit may be removed. Similarly, a parallel circuit which is normally isolated from other circuit elements may be added if needed. One method currently used to remove an unwanted circuit is to form programmable fuse elements in the circuit which are normally closed, then "blow" a fuse element with energy to open the circuit that is not selected. A method currently used to add a desired circuit is to form a programmable antifuse element in a circuit which is normally open then "blow" the antifuse element with energy to close the circuit which has been selected.
Various fuses and antifuses are provided in the conventional art in order to provide for redundant circuits or features to be selected or de-selected as appropriate. Many of the conventional fuses and antifuses formed within integrated circuit devices require the application of energy by means of external intervention into the integrated circuit. External power sources such as lasers are generally undesirable as they require the physical intervention of an external physical energy source which must be directed to a particular circuit feature, the alignment of which is very difficult to achieve, and they can also cause contamination when the fuse or antifuse element is blown. As such, fuses or antifuses which require power applied through external intervention, are generally not desirable. Thus, fuse or antifuse elements which are provided within the integrated circuit and which can be electrically programmed to blow, are more desirable.
In today's advancing integrated circuit manufacturing industry, the trend is towards the vertical integration of device features. Trench openings are formed within semiconductor substrates and various devices may be formed within the trench openings. These devices are vertically integrated downward into the substrate. An example of such a feature integrated into a trench opening is a trench capacitor which is commonly used in the integrated circuit manufacturing industry. Another feature provided in "vertical DRAM" technology, is a vertical transistor provided within a trench opening. A polysilicon or other semiconductive material is used as a plug formed within the trench opening and also serves as the transistor gate. In advanced integration schemes, a single trench opening may include both a trench capacitor formed in the lower portion of a particular trench opening, and a vertical trench transistor formed above and isolated from the trench capacitor, also in the same trench opening.
It would therefore be advantageous to incorporate the formation of fuses and antifuses into vertical DRAM processing technology. As such it is an object of the present invention to provide a method and structure which integrates fuse and antifuse structures into vertical DRAM processing technology.
To achieve these and other objects, and in view of its purposes, the present invention provides semiconductor fuses and antifuses formed within trench structures and which are formed using the process scheme also used to simultaneously form vertical trench transistors using vertical DRAM process technology.
The fuse element includes a polysilicon or other semiconductor material formed within an upper portion of a trench opening and which includes two conductive leads coupled to the top surface of the plug. In response to a predetermined voltage potential applied across the leads, the polysilicon or other semiconductor material "blows" and ceases to become conductive. In this manner a circuit may be opened.
In the antifuse, a thin dielectric layer such as silicon nitride serves as the antifuse element. In the antifuse, as in the fuse, a plug of polysilicon or another semiconductor material formed within the top portion of a trench opening is coupled to a first lead and is isolated from a second lead by means of the dielectric antifuse element. In response to a predetermined voltage potential applied across the leads, the antifuse dielectric element "blows" and allows for the conductive lead formed above it to be coupled to the plug formed of polysilicon or another semiconductor material formed below it. In this manner, the circuit becomes closed.
The present invention also provides a method for forming both the fuse and the antifuse structures. The method utilizes the sequence of process operations used to simultaneously form vertical trench transistors and the like, in other trench openings formed within the substrate. The polysilicon or other semiconductor material which is used as the gate electrode for vertical transistors formed in some trench openings, is also used to form the plug which forms either the fuse element, in the case of the fuse structure, or which contacts the dielectric antifuse element, in the case of the antifuse structure.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, but not restrictive, of the invention.
The invention is best understood from the following detailed description when read in connection with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawing are the following figures:
The fuse and antifuse structures of the present invention may be fabricated onto various substructures. Examples of such substructures are shown in
The plug formed of semiconductor material and which fills the upper portion of the trench opening may be used as part of a fuse structure or an antifuse structure. In the case of the fuse structure, two conductive leads will be formed coupled to the top surface of the plug of semiconductor material. In the case of the antifuse, conductive leads will be formed above the top surface of the plug of semiconductor material, and at least one of the leads will be electrically insulated from the plug by means of thin dielectric film which serves as the antifuse. This dielectric film become mechanically degraded, or "blown", to provide for the two leads to be coupled to each other through the plug of semiconductor material. In this manner, the antifuse dielectric film breaks down.
As is known in the art, a fuse blows in response to a predetermined voltage potential or energy being applied across the terminals of the fuse element. As applied to the present invention, when the predetermined voltage potential or energy is applied across the fuse, the plug of semiconductor material formed within the trench explodes or melts and ceases to provide connection between the two terminals. It should be understood that the features, sizes, and material properties of the fuses, are chosen in conjunction with the predetermined voltage potential or energy which will be used to blow the fuse, and also in conjunction with the operating characteristics of the semiconductor device.
Similarly for antifuses, features, sizes and material qualities are chosen so that the dielectric film which serves as the antifuse element, blows according to a predetermined voltage potential applied across the antifuse terminals and not during the normal operation of the device in which the antifuse in included. When the antifuse dielectric blows, it becomes mechanically defective and allows for contact between the plug of semiconductor material below the dielectric film and the conductive materials formed above the dielectric film.
Now turning to the figures,
In the exemplary embodiment of the substructure shown in
Semiconductor plug 18 fills the upper portion of trench opening 10. According to the preferred embodiment, semiconductor plug 18 may be formed of a polysilicon (polycrystaline silicon) material as commonly used in the art. It can be seen that upper surface 12 of semiconductor plug 18 is essentially coplanar with top surface 8 of TTO film 6. The shown structure may be formed by a polishing procedure carried out after the upper portion of trench opening 10 has been filled with semiconductor material, then a polishing operation such as chemical mechanical polishing, has been carried out to substantially planarize the surface. Semiconductor plug 18 is isolated from beneath by insulating segment 32 formed within the trench opening. Insulating segment 32 may be formed as part of TTO film 6. Trench opening 10 also includes sidewalls 24 and it can be seen that semiconductor material 18 is isolated laterally from substrate 2 by means of a collar oxide film 20 which is formed within the substrate and surrounding the trench opening. Collar oxide film 20 may be formed using conventional methods and forms sidewalls 24 of trench opening 10 into which semiconductor material 18 is added. According to a preferred embodiment, collar oxide 20 may be a silicon dioxide film formed by oxidizing sidewalls 24 of trench opening 10. Collar oxide 20 may include a thickness ranging from 5 to 50 nm.
At this point it should again be stressed that the exemplary embodiments shown in
An advantage of the present invention is that the fuse or antifuse structure which utilizes the top semiconductor plug which fills the trench opening, is formed using the same sequence of process operations also used to form a deep trench capacitor/vertical trench transistor such as that shown in FIG. 3. Trench opening 10 shown in
Still referring to
According to an alternative embodiment, the structure shown in
Antifuse Embodiment
Referring now to
According to a preferred embodiment, semiconductor plug 108 will be a polysilicon material. According to alternative exemplary embodiments, semiconductor materials other than polysilicon may be used. According to various exemplary embodiments wherein a polysilicon material is used as semiconductor plug 108, the polysilicon material may be doped as necessary. Various methods may be used to form the structure shown in FIG. 4. According to an exemplary embodiment, a substructure is formed within trench opening 110, with the portion of the trench opening above insulating layer 114 being void. A semiconductor material is formed over top surface 106 of dielectric film 104 and filling the upper (void) portion of trench opening 110. A polishing operation such as CMP (chemical mechanical polishing) is used to planarize the structure and produce semiconductor plug 108 which includes top surface 116 which is substantially planar with top surface 106 of dielectric film 104.
In addition to being insulated from below by means of insulating layer 114, it should be understood that semiconductor plug 108 is insulated laterally from semiconductor substrate 102 by means of an insulating material such as the collar oxide film 20 shown in FIG. 1. For purposes of clarity and simplicity, this laterally insulating material is not shown in
Now turning to
Gate conductor polysilicon (GC poly) film 124 is formed over antifuse dielectric film 120. GC poly film 124 will be a polysilicon film sufficiently doped to provide good conduction characteristics. Various dopant impurities may be used to dope GC poly film 124 using conventional methods. GC poly film 124 may include a thickness ranging from 5-200 nm according to various exemplary embodiments. Antifuse dielectric film 120 and GC poly film 124 combine to form first composite layer 128.
It should be emphasized again, at this point, that an advantage of the present invention is that the process sequence shown for forming the antifuse devices shown in
Now turning to
The conductive portion of first segment 130 is insulated from semiconductor plug 108 by means of antifuse dielectric film 120. In contrast, second segment 131 includes conductor film 142 which directly contacts top surface 116 of semiconductor plug 108. As such, second segment 131 is electrically coupled to semiconductor plug 108. It can be therefore seen that the structure shown in
Now turning to
When such a predetermined voltage potential is applied across terminals 130 and 131, antifuse dielectric film 120 becomes physically defective and enables the conductive portions of first segment 130 formed above antifuse dielectric film 120, to become physically m contact and electrically coupled to semiconductor plug 108 through top surface 116. In this manner, a predetermined voltage potential can be applied to blow the antifuse structure shown and to close the circuit including segments or terminals 130 and 131. The predetermined voltage potential at which the antifuse will blow is, in turn, determined by the various operating potentials of the semiconductor device to insure that the antifuse only blows when the predetermined voltage potential is applied.
The above principles and considerations also apply to the antifuse structure previously shown in FIG. 8A and which includes two portions of antifuse dielectric layer 120 which must be blown by a predetermined voltage potential applied across the antifuse terminals.
Fuse Embodiment
In addition to being insulated from below by means of insulating layer 114, it should be understood that semiconductor plug 108 is insulated laterally from semiconductor substrate 102 by means of an insulating material such as the collar oxide film 20 shown in FIG. 1. For purposes of clarity and simplicity, this laterally insulating material is not shown in
Now turning to
It can be seen that each of first composite film segment 252 and second composite film segment 254 physically contact and are electrically coupled to semiconductor plug 108. Each of overlap distance 236 and overlap distance 232 may vary according to various exemplary embodiments and will be determined in conjunction with the minimal feature size produced according to the available technology. In an exemplary embodiment, each of overlap distance 232 and overlap distance 236 may range from 0.5 to 10.0 times the minimum feature size achievable, and may range from 0.035 to 40 microns. Also as described in conjunction with the antifuse embodiment, the etch process used to remove portions of films 246 and 242 above top surface 116 of semiconductor plug 108 may be such that an overetch results and void area 250 (outlined by the dashed line) may be formed to extend down from top surface 116 and into semiconductor plug 108.
Now turning to
Composite film segments 252 and 254 may be considered leads or terminals of the fuse element. When a predetermined voltage potential is applied across terminals 252 and 254, current flows from one terminal to the other through fuse element which is semiconductor plug 108. In response to a predetermined voltage potential applied across terminals 252 and 254, fuse element 108 blows, i.e. melts, explodes, or becomes physically incongruent such that conductive segments (terminals) 252 and 254 are no longer electrically coupled to one another. The circuit is thereby opened. The predetermined voltage potential at which the fuse will blow is, in turn, chosen in conjunction with the various operating potentials of the semiconductor device to insure that the fuse only blows as necessary.
The foregoing detailed descriptions are intended to be exemplary, not restrictive of the various embodiments of fuses and antifuses which may be formed according to the present invention. The trench substructure in which the semiconductor plug is formed, is not intended to be limited to the exemplary embodiments described herein. Rather, the semiconductor plug which is formed within a trench opening and onto which an antifuse or fuse structure is fabricated, may be formed within any of various trench substructures. Furthermore, the various structures, dimensions, and materials of the described embodiments, may be varied and still remain within the scope of the present invention. An advantage of the present invention is that for each of the fuse and antifuse, the structures can be formed using a process sequence used to simultaneously fabricate other devices such as vertical trench transistors in the same substrate.
The foregoing description of exemplary embodiments of the invention has been presented for the purposes of illustrating and describing the main points of the concepts of the invention. The present invention is not limited, however, to those embodiments. Rather, the scope of the present invention is as described by the appended claims.
Radens, Carl J., Divakaruni, Rama, Bergner, Wolfgang, Nesbit, Larry
Patent | Priority | Assignee | Title |
10229919, | Aug 25 2016 | SAMSUNG ELECTRONICS CO , LTD | Vertical field effect transistor including integrated antifuse |
10679998, | Aug 25 2016 | SAMSUNG ELECTRONICS CO , LTD | Vertical field effect transistor including integrated antifuse |
10680000, | Aug 25 2016 | SAMSUNG ELECTRONICS CO , LTD | Vertical field effect transistor including integrated antifuse |
11139307, | Aug 25 2016 | SAMSUNG ELECTRONICS CO , LTD | Vertical field effect transistor including integrated antifuse |
11882695, | Aug 25 2016 | Samsung Electronics Co., Ltd. | Vertical field effect transistor including integrated antifuse |
6580144, | Sep 28 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | One time programmable fuse/anti-fuse combination based memory cell |
6750529, | Jul 25 2001 | Seiko Epson Corporation | Semiconductor devices including fuses and multiple insulation layers |
6853049, | Mar 13 2002 | SanDisk Technologies LLC | Silicide-silicon oxide-semiconductor antifuse device and method of making |
6876015, | Jul 25 2001 | Seiko Epson Corporation | Semiconductor devices |
6882027, | May 28 2003 | SAMSUNG ELECTRONICS CO , LTD | Methods and apparatus for providing an antifuse function |
6919234, | Nov 28 2002 | Polaris Innovations Limited | Method for producing an antifuse in a substrate and an antifuse structure for integration in a substrate |
7329565, | Mar 13 2002 | SanDisk Technologies LLC | Silicide-silicon oxide-semiconductor antifuse device and method of making |
7572682, | May 31 2007 | GLOBALFOUNDRIES Inc | Semiconductor structure for fuse and anti-fuse applications |
7576374, | May 15 2003 | Taiwan Semiconductor Manufacturing Company | Semiconductor device with robust polysilicon fuse |
7655509, | Mar 13 2002 | SanDisk Technologies LLC | Silicide-silicon oxide-semiconductor antifuse device and method of making |
7684165, | May 24 2004 | Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E V | Circuit element and method for protecting a load circuit |
7684266, | Apr 11 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Serial system for blowing antifuses |
7795094, | Sep 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Recessed gate dielectric antifuse |
7833860, | Sep 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Recessed gate dielectric antifuse |
7915095, | Mar 13 2002 | SanDisk Technologies LLC | Silicide-silicon oxide-semiconductor antifuse device and method of making |
7977766, | Mar 10 2009 | GLOBALFOUNDRIES U S INC | Trench anti-fuse structures for a programmable integrated circuit |
8076673, | Sep 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Recessed gate dielectric antifuse |
9917090, | Aug 22 2016 | SAMSUNG ELECTRONICS CO , LTD | Vertical antifuse structures |
Patent | Priority | Assignee | Title |
6339559, | Feb 12 2001 | International Business Machines Corporation | Decode scheme for programming antifuses arranged in banks |
6388305, | Dec 17 1999 | GLOBALFOUNDRIES Inc | Electrically programmable antifuses and methods for forming the same |
6396121, | May 31 2000 | International Business Machines Corporation | Structures and methods of anti-fuse formation in SOI |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 25 2000 | DIVAKARUNI, RAMA | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011254 | /0367 | |
Sep 25 2000 | RADENS, CARL J | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011254 | /0367 | |
Sep 27 2000 | BERGNER, WOLFGANG | Infineon Technologies North America Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011229 | /0274 | |
Sep 28 2000 | NESBIT, LARRY | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011254 | /0367 | |
Sep 29 2000 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Sep 29 2000 | Infineon Technologies AG | (assignment on the face of the patent) | / | |||
Apr 02 2003 | Infineon Technologies North America Corp | Infineon Technologies AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013561 | /0269 | |
Apr 25 2006 | Infineon Technologies AG | Qimonda AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023788 | /0535 | |
Oct 09 2014 | Qimonda AG | Infineon Technologies AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035623 | /0001 | |
Jun 29 2015 | International Business Machines Corporation | GLOBALFOUNDRIES U S 2 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036550 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S 2 LLC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S INC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Nov 27 2018 | GLOBALFOUNDRIES Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY AGREEMENT | 049490 | /0001 | |
Oct 22 2020 | GLOBALFOUNDRIES Inc | GLOBALFOUNDRIES U S INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054633 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054636 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES U S INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056987 | /0001 |
Date | Maintenance Fee Events |
May 05 2006 | ASPN: Payor Number Assigned. |
Jun 30 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 15 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 29 2014 | REM: Maintenance Fee Reminder Mailed. |
Jan 20 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Jan 20 2015 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
Jan 21 2006 | 4 years fee payment window open |
Jul 21 2006 | 6 months grace period start (w surcharge) |
Jan 21 2007 | patent expiry (for year 4) |
Jan 21 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 21 2010 | 8 years fee payment window open |
Jul 21 2010 | 6 months grace period start (w surcharge) |
Jan 21 2011 | patent expiry (for year 8) |
Jan 21 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 21 2014 | 12 years fee payment window open |
Jul 21 2014 | 6 months grace period start (w surcharge) |
Jan 21 2015 | patent expiry (for year 12) |
Jan 21 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |