A massively scalable architecture for providing a self-monitoring and self-correcting storage system that is capable of handling hundreds of millions of users and tens of billions of files. The system includes one or more clusters storing data elements that are received from a plurality of clients. Each cluster comprises a plurality of storage servers. The storage system facilitates the addition of new storage servers, and the fast recovery of failed storage servers, by logging system transactions in multiple journals of different lengths. When a storage server fails, a cluster backup determines the time of failure and replays one of the journals in order to bring the failed storage server up to date.
|
9. A computing method comprising:
receiving client requests to store data elements in a storage system having a plurality of storage clusters, wherein each storage cluster has a plurality of storage servers, and wherein the data elements are replicated on each of the plurality of storage servers in a given storage cluster; storing the data elements in each of the storage servers of one of the storage clusters; monitoring the storage servers to detect when a storage server fails; and wherein receiving a client request includes recording the request in at least one journal.
13. A computer-readable medium having computer-executable instructions for storing information in a storage system having error detection and recovery comprising:
receiving client requests to store data elements in a storage system having a plurality of storage clusters, wherein each storage cluster has a plurality of storage servers, and wherein the data elements are replicated on each of the plurality of storage servers in a given storage cluster; storing the data elements in each of the storage servers of one of the storage clusters; monitoring the storage servers to detect when a storage server fails; and wherein receiving a client request includes recording the request in at least one journal.
3. A storage system comprising:
a plurality of clusters storing data elements from a plurality of clients, wherein each cluster comprises a plurality of storage servers, and wherein the data elements are replicated on each of the plurality of storage servers in a given cluster; a storage monitor communicatively coupled to the clusters for detecting when one of the storage servers fails; a storage manager communicatively coupled to the storage monitor, wherein the storage monitor informs the storage manager when one of the storage servers fails; and wherein each cluster includes a cluster backup that records requests to store the data elements stored by the storage servers of the respective cluster.
8. A computing method comprising:
receiving client requests to store data elements in a storage system having a plurality of storage clusters, wherein each storage cluster has a plurality of storage servers; storing the data elements in each of the storage servers of one of the storage clusters, wherein storing the data elements includes assigning each client a storage partition within one of the clusters; monitoring the storage servers to detect when a storage server fails; and promoting one of the storage servers to perform services of the failed storage server, wherein promoting one of the storage servers includes promoting one of the storage servers to assign each client a storage partition within one of the clusters.
1. A storage system comprising:
a plurality of clusters storing data elements from a plurality of clients, wherein each cluster comprises a plurality of storage servers; a storage monitor communicatively coupled to the clusters for detecting when one of the storage servers fails; a storage manager communicatively coupled to the storage monitor, wherein the storage monitor informs the storage manager when one of the storage servers fails; and a partition master communicatively coupled to the plurality of clusters to assign each client a storage partition within one of the clusters, wherein the storage manager commands one of the storage servers to operate as the partition master in the event that the partition master fails.
2. A storage system comprising:
a plurality of clusters storing data elements from a plurality of clients, wherein each cluster comprises a plurality of storage servers; a storage monitor communicatively coupled to the clusters for detecting when one of the storage servers fails; a storage manager communicatively coupled to the storage monitor, wherein the storage monitor informs the storage manager when one of the storage servers fails; and a write master included in each cluster to receive the data elements from the clients and to direct the storage servers to store the received data elements, wherein the storage manager commands one of the storage servers to operate as the write master in the event that the write master fails.
12. A computer-readable medium having computer-executable instructions for storing information in a storage system having error detection and recovery comprising:
receiving client requests to store data elements in a storage system having a plurality of storage clusters, wherein each storage cluster has a plurality of storage servers; storing the data elements in each of the storage servers of one of the storage clusters, wherein storing the data elements includes assigning each client a storage partition within one of the clusters; monitoring the storage servers to detect when a storage server fails; and promoting one of the storage servers to perform services of the failed storage server, wherein promoting one of the storage servers includes promoting one of the storage servers to assign each client a storage partition within one of the clusters.
4. The storage system of
5. The storage system of
6. The storage system of
7. The storage system of
10. The method of
11. The method of
|
This application is related to the co-assigned and co-filed U.S. Patent applications titled "Scalable Storage System" (U.S. patent application Ser. No. 09/266,458), "Extensible Storage System" (U.S. patent application Ser. No. 09/266,512 which is U.S. Pat. No. 6,393,466), and "Storage System Having Multi-Level Query Resolution Mechanism" (U.S. patent application Ser. No. 09/266,459), which are hereby incorporated by reference.
This invention relates generally to information systems and more particularly to a computing system having a self-monitoring and self-correcting architecture that is capable of storing information for millions of users.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright client has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the software and data as described below and in the drawing hereto: Copyright© 1998, Microsoft Corporation, All Rights Reserved.
The Internet is a worldwide collection of networks that span over 100 countries and connect millions of computers. In 1997 traffic on the Internet doubled every 100 days. At the end of 1997, more than 100 million people were using the Internet. Reports indicate that the Internet is growing faster than all preceding information technologies including radio and television. The World Wide Web (WWW) is one of the fastest growing facets of the Internet and represents the computers that support the hypertext transfer protocol (HTTP) which is a common protocol for exchanging information.
Because there is no central authority controlling the WWW, finding useful information within the WWW can be a daunting task. In an effort to ease this burden, specialized web sites, known as "portals", seek to provide a single access point for users. Many of these portals implement software, referred to as robots or crawlers, that traverse the WWW in order to collect information and generate a searchable catalog. Thus, a key element to these systems is a massive storage system that holds the voluminous catalog. In addition, recent portals allow each user to customize the information, thereby further burdening the storage system with personalization data for millions of users. For these reasons, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for a scalable storage system that is capable of efficiently and reliably handling millions of accesses per day.
A massively scalable architecture has been developed for providing a highly reliable storage system that is capable of handling hundreds of millions of users and tens of billions of files. The storage system includes a plurality of storage clusters, each storage cluster having one or more storage servers. Each client, such as a user, application, user group, community, etc., is assigned a unique partition within one of the storage clusters. Within each cluster, however, the data stored in each partition is replicated across multiple storage servers. Thus, the storage system can be easily scaled as the number of reads increases by adding individual storage servers to each storage cluster. In addition, the storage system easily scales to handle an increase in the number of writes, or as the number of files per cluster exceeds a predefined limit, by adding new storage clusters to the storage system. In this manner, the storage system provides redundancy for reads and writes, thereby achieving virtually no downtime when individual servers fail.
In one embodiment the storage clusters include a write master, a cluster backup and one or more storage servers. One storage cluster, such as storage cluster zero, further includes a partition master that maps individual clients into a unique partition that stores the particular information. One beneficial aspect of this technique is that the partition map isolates the clients from knowing where the data is located. Directory paths are generated directly from a partition ID and an element ID, thereby eliminating time consuming path lookups. In addition, partition IDs and element IDs are assigned so as to balance the directory structure.
Clients access the storage system through a plurality of web servers. In one embodiment, each web server executes Internet Information Server (IIS) on the Windows© NT operating system. Each web server has an application interface layer, such as Internet Server API, (ISAPI) that retrieves the client specific information from the storage servers.
According to one aspect, the storage system includes a storage manager for configuring and controlling the storage system. In another embodiment, the storage system includes a storage monitor that performs various checks on the partition master, the write master, the cluster backup and on each storage server. The storage monitor informs the storage manager when a failure is detected. In response to the failure message, the storage manager promotes one of the storage servers to perform the lost functionality. In this manner, the storage system self-corrects most failures without requiring administrator interaction.
According to another aspect, the storage system facilitates the addition of new storage servers, and the fast recovery of failed storage servers, by logging system transactions in multiple journals of different lengths. When a storage server fails, the cluster backup determines the time of failure and attempts to replay one of the journals in order to bring the failed storage server up to date.
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof and, which show by way of illustration, specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that other embodiments may be utilized and that logical, mechanical, electrical and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The detailed description is divided into three sections. The first section describes the hardware and the operating environment that is suitable for use as a server within the inventive storage system described below. The second section provides a detailed description of the inventive storage system and provides methods for operating an exemplary embodiment of the invention. Finally, the third section provides a conclusion of the detailed description.
The exemplary hardware and operating environment of
The system bus 23 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory may also be referred to as simply the memory, and includes read only memory (ROM) 24 and random access memory (RAM) 25. Basic input/output system (BIOS) 26 contains routines that help to transfer information between elements within computer 20, such as during start-up, and is stored in ROM 24. Computer 20 further includes hard disk drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30 for reading from or writing to a removable optical disk 31 such as a CD ROM or other optical media.
The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface 33, and an optical disk drive interface 34, respectively. The drives and their associated computer-readable media provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for the computer 20. It should be appreciated by those skilled in the art that any type of computer-readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only memories (ROMs), and the like, may be used in the exemplary operating environment.
A number of program modules may be stored by hard disk 27, magnetic disk 29, optical disk 31, ROM 24, or RAM 25, including an operating system 35, one or more application programs 36, other program modules 37, and program data 38. A user may enter commands and information into the personal computer 20 through input devices such as a keyboard 40 and pointing device 42. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to processing unit 21 through serial port interface 46 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game port, or a universal serial bus (USB). Monitor 47 or other type of display device is also connected to the system bus 23 via an interface, such as a video adapter 48. In addition to the monitor, computers typically include other peripheral output devices (not shown), such as speakers and printers.
The computer 20 may operate in a networked environment using logical connections to one or more remote computers, such as remote computer 49. These logical connections are achieved by a communication device coupled to or a part of the computer 20; the invention is not limited to a particular type of communications device. The remote computer 49 may be another computer, a server, a router, a network PC, a client, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 20, although only a memory storage device 50 has been illustrated in FIG. 1. The logical connections depicted in
When used in a LAN-networking environment, the computer 20 is connected to the local network 51 through a network interface or adapter 53, which is one type of communications device. When used in a WAN-networking environment, the computer 20 typically includes a modem 54, a type of communications device, or any other type of communications device for establishing communications over the wide area network 52, such as the Internet. The modem 54, which may be internal or external, is connected to the system bus 23 via the serial port interface 46. In a networked environment, program modules depicted relative to the personal computer 20, or portions thereof, may be stored in the remote memory storage device. It is appreciated that the network connections shown are exemplary and other means of and communications devices for establishing a communications link between the computers may be used.
The hardware and operating environment in conjunction with which embodiments of the invention may be practiced has been described. The computer in conjunction with which embodiments of the invention may be practiced may be a conventional computer, a distributed computer, or any other type of computer; the invention is not so limited. Such a computer typically includes one or more processing units as its processor, and a computer-readable medium such as a memory. The computer may also include a communications device such as a network adapter or a modem, so that it is able to communicatively couple other computers.
Upon establishing the communication session, the selected web server 145 accesses storage system 104 via network 144 and retrieves data that is specific to Internet user 110. As discussed in detail below, storage system 104 includes a plurality of storage clusters 150. For example,
Each storage cluster 150 includes one or more storage servers. Data is replicated across each storage server within each storage cluster 150. In this manner, storage system 104 provides redundancy for reads and writes, thereby achieving virtually no downtime when individual storage servers fail. Furthermore, storage system 104 can be easily scaled to handle an increase in read requests by installing additional storage servers within each storage cluster 150. Storage system 104 can also easily scale to handle an increase in write requests by installing additional storage clusters 150. Similarly, as the number of files per storage cluster 150 exceeds a predefined limit, additional storage clusters 150 may be easily added to storage system 104 in order to add storage capacity.
In order to translate clients to a corresponding partition within storage clusters 150, storage system 104 maintains a partitioning logic, referred to as a partition map. In one embodiment, the partition map is stored at a predetermined partition on a predetermined storage cluster 150, such as partition zero of storage cluster 1500. One beneficial feature of this technique is that users 110 are isolated from knowing where their home directory is located. Furthermore, in one embodiment, storage system 104 automatically moves partitions from one storage cluster 150 to another in order to balance current loading conditions.
Applications 152 represent any suitable executable software module that communicates with users 110 via web server software 155. In one embodiment, applications 152 conform to the Microsoft Internet Application Programming Interface (ISAPI) and are implemented as ISAPI extensions. As ISAPI extensions, applications 152 are dynamic-link libraries (DLL's) that are invoked by web server software 155 at startup time.
These ISAPI applications extend the basic, underlying functionality of Microsoft's Internet Information Server (IIS) to deliver advanced Web-based Consumer Services. In one embodiment, this ISAPI Extension is an implementation of an HTML-based Message Board compatible with any available browser. In this embodiment, the Message Board ISAPI extension uses the services of storage system 104 through the interfaces exposed by access module 160 to render the Message Board User Interface, accept postings of messages, replies, file attachments, etc. All that content is then stored and retrieved from multiple partitions of the various storage clusters 150 within storage system 104.
Storage access module 160 controls all accesses to storage system 104. More specifically, storage access module 160 defines an application-programming interface (API) that allows applications 152 to transparently access storage system 104. Once a communication session is established between Internet user 110 and web server 145, storage access module 160 retrieves client-specific data from a corresponding partition located within storage system 104 via network 144. In one embodiment, storage access module 160 is also implemented as a dynamic-link library (DLL).
When an access request is received from an application 152, storage access module 160 determines whether partition map cache 172 includes a corresponding entry for mapping the partition name to the appropriate partition ID. If so, storage access module 160 retrieves the stored IP addresses from cache 172 and directly issues the access request. If cache 172 does not contain an entry for the partition name, storage access module 160 requests that the storage cluster 150 maintaining the partition map, such as storage cluster 1500, translate the partition name into a corresponding partition ID. This data is then added by storage access module 160 to the local partition map cache 172.
As changes are made to the partition map via storage cluster 1500, a message is broadcast to each web server 145 and received by storage access module 160. When a change message is received, storage access module 160 makes the appropriate updates to partition map cache 172. This process of proactively updating the local partition map cache 172 on each web server 145 is aimed at keeping the number of roundtrips for partition lookups between web-servers 145 and the partition map stored in storage cluster 1500 to a minimum.
In order to access the storage clusters 150 of storage system 104, storage access module 160 maintains a connection pool between web servers 145 and the various storage servers of the many storage clusters 150 of storage system 104. This connection pool 176 consists of a pre-set number of persistent socket connections between servers of these various storage clusters 150. More connections are established by storage access module 160 as the need arises. The purpose of this connection pool is to reduce the overhead of setting up and tearing down socket connections between web servers 145 and storage clusters 150, which could amount to a significant degradation in performance to application services 152.
Referring again to
Write master 202 parses the write requests into a plurality of data elements and assigns each new element a unique element ID. The data elements extracted from the write request contain both attributes and actual data. As described in detail below, directory paths are generated as a function of the partition ID and the element ID, thereby eliminating the need to invoke time consuming path lookups. Next, write master 202 simultaneously commands each storage server 204 and cluster backup 208 to store the elements including both the attributes and the actual data. In this manner each storage server 204 redundantly stores the elements. In this manner, storage cluster 150 can be easily scaled to handle an increase in the number of reads by adding storage servers 204 to each storage cluster 150.
In order to read data from storage cluster 150, storage access module 160 retrieves an IP for one of the storage servers 204 from either the partition map cache 172 or from partition master 200. In one embodiment, the IP address of one of the storage servers 204 is selected in a round-robin fashion. Additionally, the IP address may be selected based on current load conditions. Storage access module 160 will then use one of the pre-established socket connections from connection pool 176 to communicate with the selected storage server 204 and retrieve the data elements requested.
Each storage server 205 maintains one or more indexes for responding to simple read requests such as retrieving a designated element. In one embodiment, however, storage system 104 includes database cluster 149 that includes one or more database servers, each database server redundantly executing a database such as Microsoft SQL Server. In this embodiment, database cluster 149 is responsible for handling complex queries. In one configuration, storage system 104 includes a database cluster 149 for each class of applications 152. During a write request, write master 202 communicates a set of the extracted attributes to database cluster 149 as well as the partition ID. In this manner, database cluster 149 is able to perform sophisticated queries regarding the data elements stored in storage clusters 150.
According to one feature, storage system 104 is an extensible file store such that each element has a corresponding schema object. The schema object is used to parse the element into the encapsulated data and attributes. Each application 152 executing on web server 145 is able to dynamically define a new type of element for storage within storage system 104. The schema objects are stored in a configuration file that lives on every storage server 205 of storage cluster 150 and are retrieved by write master 202 as a function of the write request. Write master 202 builds a symbol table for each application that interfaces with storage system 104. The symbol table includes each schema object defined by applications 152 and, in one embodiment, is defined in Extensible Markup Language (XML).
Because computing system 102 may potentially store billions of files, partition master 200 attempts to ensure that the underlying file system for each storage server 204 is relatively balanced. More specifically, partition master 200 and write master 202 follow a naming convention that generates paths with the goal of ensuring that the directory structure does not become unbalanced and cause performance degradation.
Because data is replicated across storage server 204, the naming convention reserves the same number of internal storage volumes (drives) for each storage server 204. For example, in one embodiment, each storage server 204 has twenty-one storage volumes. In this configuration, a number of volumes, such as the first five, are reserved for storage of non-client data. The following table illustrates how in one embodiment the first five volumes are reserved:
TABLE 1 | ||
Volume | Reason Reserved | |
A: | Floppy drive | |
B: | Floppy drive | |
C: | Boot partition (operating system) | |
D: | CD ROM | |
E: | Application partition | |
As described above, storage system 104 identifies each partition with a single partition ID. Each partition ID is maintained in a single data unit that, in one embodiment, is 32 bits in length. As illustrated in
In one embodiment, bit region 302 is five bits in length and, therefore, ranges in value from 0 to 31. This value may readily be converted to an alphanumeric character ranging from volume f to z. Bit regions 304 and 306 are nine bits in length. Each of these regions are converted to a directory name according to the following function:
where R represents the value of the bit region and Alpha returns a letter between `A` and `Z`. For example, if R equals 451 decimal, or 0×1C3 in hexadecimal, then the directory name equals `D`+`D`+`01C3`, i.e., `DD01C3`.
Bit region 308 is also nine bits in length, but to ensure that a unique directory name is generated the following equation is used:
where R represents the value of the bit region, Alpha returns a letter between `A` and `Z` and PID represents the entire value of partition ID 300. For example, if partition ID 300 equals 2,307,098,443 decimal, or O×8983874B hexadecimal, then the directory name for bit region 308 equals `T`+`M`+`8983874B`, i.e., `TM8983874B`. In this manner, using the above equations for a partition ID of 2,307,098,443 results in the complete path for the partition location of "R:\YD0011\DD01C3\TM8983874B".
The partition name that is generated is used as the path of the home directory for a corresponding client. Names for each element stored within the partition are generated in a similar manner. As described above, write master 202 assigns an element ID to each element that is to be stored in a given partition.
In one embodiment the control logic necessary to implement partition master 200, write master 202, storage servers 204 and cluster backup 208, is implemented as a single software module, referred to as an Internet-scale File Store (IFS) service, that is operating in one of four corresponding modes. In one embodiment, each storage access module 160 of web servers 145 communicates with the IFS service via sockets. In this configuration, requests from web servers 145 are handled on a first port, such as 2000, while administrative requests are handled on a second port, such as 2001.
Storage manager 147 of storage system 104 displays a graphical user interface (GUI) such that an administrator is able to control and configure storage system 104. For example, using the GUI, the administrator is able to move partitions from one storage cluster 150 to another. In addition, storage monitor 148 continuously monitors storage system 104. In one embodiment, storage manager 147 and storage monitor 148 reside on a single server.
Storage monitor 148 communicates with the IFS service of each storage server 150 in order to monitor the performance and functionality of the corresponding storage server 150. More specifically, storage monitor 148 performs various checks on partition master 200, write master 202, cluster backup 208 and on each storage server 204. For example, storage monitor 148 may create a partition, write a file, read that file and then delete both the file and the partition--all in a sequence, all along tabulating the result and the time it took for each storage server 205 within storage clusters 150 to execute the task.
With storage manager 147 and storage monitor 148, storage system 104 is able to detect and self-correct most failures without requiring administrator interaction. Storage monitor 148 sends a message to storage manager 147 when a failure within one of the storage clusters 150 is detected. In response to the failure message, storage manager 147 promotes one of the storage servers 204 to perform the lost functionality. For example, if partition manager 200 has failed then storage manager 147 selects one of the storage servers 204 to act as a new partition master 200. Storage manager 147 commands the IFS service that is executing on the selected storage manager 147 to switch modes of operation. Similarly, if write master 202 or cluster backup 208 has failed then storage manager 147 selects one of the storage servers 204 and directs the IFS service to change modes of operation and perform the lost functionality.
In addition to the self-correcting operation described above, storage system 104 facilitates the fast addition of new storage servers and recovery of failed storage servers. More specifically, cluster backup 208 maintains multiple journals that log system transactions. Each journal spans a different length of time and includes different indexing schemes such that the shorter journals allow quicker access to more recent transactions. For example, in one embodiment, cluster backup 208 maintains a two-hour journal, a six-hour journal and a twenty-four hour journal.
When a storage server 204 fails, cluster backup 208 determines a time of failure and replays one of the journals in order to bring the failed storage server up to date. Once, the failed storage server 204 is nearly restored the entire storage cluster 150 enters a delayed-write mode, thereby blocking any new writes to storage cluster 150. These blocked writes are queued by storage access module 160 executing on web server 145 and are later resubmitted to storage system 104. During delayed-write mode, the remaining entries of the selected journal are processed such that the restored storage server 204 can be successfully added to storage 150 cluster. Once the storage server 204 is successfully operating, storage manager 147 directs storage cluster 150 to exit delayed-write mode and begin accepting write requests from storage access module 160. When a storage server 204 failed at a time that exceeds the length of the longest journal, storage manager 147 clears the failed storage server 204 and treats the failed storage server 204 as a new, uninitialized server as described below.
In order to add a new storage server 204, cluster backup 208 transfers all of the stored partitions to the new storage server 204. In one embodiment, cluster backup 208 transmits each of the elements stored within each partition. In addition, cluster backup 208 transmits any data structures, such as indexes, that are used to address the partitions, thereby saving the new storage server 204 from having to construct the data structures.
Once all of the partitions have been transferred, cluster backup 208 replays one of the journals based on the amount of time consumed during the data transfer. As described above, when the journal is nearly completely processed, the storage cluster 204 enters delayed-write mode such that the entire journal can be processed and the new storage server 204 can be inserted into storage cluster 150. In this manner, the new storage server 204 completely reflects the partitions stored on the other storage servers 204 upon initial execution.
In the previous section, a system level overview of the operation of exemplary embodiments of the invention was described. In this section, the particular methods performed by the exemplary embodiments are described by reference to a flowchart. The methods to be performed by the embodiments constitute computer programs made up of computer-executable instructions. Describing the methods by reference to a flowchart enables one skilled in the art to develop such programs including such instructions to carry out the methods on suitable computing systems from computer-readable media.
When the communication session requires data to be read from storage system 104, as illustrated in block 408, storage access module 160 retrieves an IP for one of the storage servers 204. The IP address is retrieved from either the partition map cache 172 or from partition master 200. Using the IP address, the storage access module 160 issues a read request to the storage server 204.
In block 410, storage server 204 determines the partition ID and element ID that are necessary to satisfy the read request. For simple read requests, storage server 204 accesses one of the locally maintained indexes. For more complex read requests, storage server 204 queries database cluster 149 to identify the desired partition and element.
In block 412, storage server 204 generates the complete path for the desired partition and element based on the partition ID and the element ID. Based on the path, storage server 204 retrieves the corresponding element and returns the element to the requesting storage access module 160.
For write requests, as illustrated in block 414, storage access module 160 retrieves a corresponding IP address for write master 202 and communicates the write request to write master 202. In block 416, write master 202 parses the write requests into elements and assigns new elements a unique element ID. In block 418, write master 202 simultaneously commands each storage server 204 and cluster backup 208 to store the elements including both attributes and actual data. In addition, write master 202 communicates a set of the extracted attributes to database cluster 149.
The particular methods performed by storage system 104 have been described. The method performed by storage system 104 has been shown by reference to a flowchart including all the blocks from 402 through 416.
A highly scalable storage system that is capable of handling hundreds of millions of users and tens of billions of files has been described. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the present invention.
For example, those of ordinary skill within the art will appreciate that in one embodiment a plurality of clusters store data elements from a plurality of clients. A partition master assigns each client a unique partition within one of the clusters such that each data element of the client is stored in the partition assigned to the client. The data elements stored by each cluster, however, are replicated across one or more storage servers.
According to one aspect, the storage system includes a storage manager and a storage monitor and is able to detect and self-correct most failures without requiring administrator interaction. In one embodiment, the storage system includes a cluster backup that facilitates the addition of new storage servers, and the fast recovery of failed storage servers, by logging system transactions in multiple journals of different lengths. In another embodiment, the architecture includes a cluster of database servers, such as SQL servers, that provides complex queries to the client partitions.
According to another aspect, the storage system facilitates an extensible file store in that each storage element is defined by a corresponding schema object that is used to parse the element into the encapsulated data and attributes. In this manner, applications executing on the web servers are able to dynamically define a new type of element for storage within a storage system. Therefore, it is manifestly intended that this invention be limited only by the following claims and equivalents thereof.
DeMello, Marco A., Hickman, Robert Chris
Patent | Priority | Assignee | Title |
10060636, | Apr 05 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | Heat pump system with refrigerant charge diagnostics |
10069937, | Sep 22 2000 | PTC INC | Retrieving data from a server |
10069939, | Feb 21 2003 | PTC Inc. | Establishing a virtual tunnel between two computers |
10212055, | Oct 03 2006 | PTC Inc. | System and method for dynamically grouping devices based on present device conditions |
10234854, | Feb 28 2011 | COPELAND LP; EMERSUB CXIII, INC | Remote HVAC monitoring and diagnosis |
10274945, | Mar 15 2013 | COPELAND LP; EMERSUB CXIII, INC | HVAC system remote monitoring and diagnosis |
10335906, | Apr 27 2004 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
10352602, | Jul 30 2007 | Emerson Climate Technologies, Inc. | Portable method and apparatus for monitoring refrigerant-cycle systems |
10443863, | Apr 05 2013 | Emerson Climate Technologies, Inc. | Method of monitoring charge condition of heat pump system |
10458404, | Nov 02 2007 | Emerson Climate Technologies, Inc. | Compressor sensor module |
10488090, | Mar 15 2013 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification |
10558229, | Aug 11 2004 | Emerson Climate Technologies Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
10708346, | Apr 17 2002 | PTC Inc. | Scripting of soap commands |
10775084, | Mar 15 2013 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification |
10884403, | Feb 28 2011 | COPELAND LP; EMERSUB CXIII, INC | Remote HVAC monitoring and diagnosis |
11003657, | Oct 12 2010 | Clinicomp International, Inc. | Scalable computer arrangement and method |
6606651, | May 03 2000 | Silicon Valley Bank | Apparatus and method for providing direct local access to file level data in client disk images within storage area networks |
6609213, | Aug 10 2000 | DELL PRODUCTS, L.P. | Cluster-based system and method of recovery from server failures |
6757714, | Jul 28 2000 | PTC INC | Reporting the state of an apparatus to a remote computer |
7003688, | Nov 15 2001 | Innovations In Memory LLC | System and method for a reserved memory area shared by all redundant storage controllers |
7043735, | Jun 08 2000 | Hitachi Ltd | System and method to dynamically select and locate server objects based on version information of the server objects |
7072954, | Mar 29 1999 | Godo Kaisha IP Bridge 1 | Network management system having access manager for managing access to recording medium apparatus |
7117239, | Jul 28 2000 | PTC INC | Reporting the state of an apparatus to a remote computer |
7149792, | Nov 20 2000 | PTC INC | Device registration mechanism |
7152181, | Feb 22 2002 | Oracle International Corporation | Method for highly available transaction recovery for transaction processing systems |
7178149, | Apr 17 2002 | PTC INC | XML scripting of soap commands |
7185014, | Sep 22 2000 | PTC INC | Retrieving data from a server |
7209968, | May 29 2001 | OBJECTIVE SYSTEMS INTEGRATORS, INC | System and method for recovering management of network element(s) responsive to failure of a distributed gateway |
7213063, | Jan 18 2000 | Lucent Technologies Inc | Method, apparatus and system for maintaining connections between computers using connection-oriented protocols |
7237027, | Nov 10 2000 | AGAMI SYSTEMS, INC | Scalable storage system |
7254739, | Nov 19 2003 | International Business Machines Corporation | Error recovery in a client/server application using two independent sockets for communication |
7263521, | Dec 10 2002 | DataCore Software Corporation | Navigation of the content space of a document set |
7293009, | Aug 30 2001 | Oracle International Corporation | System and method for flushing bean cache |
7293068, | May 25 2000 | Hitachi, Ltd. | Method and system for storing duplicate data |
7293073, | Sep 06 2001 | Oracle International Corporation | Exactly once cache framework |
7373345, | Feb 21 2003 | DataCore Software Corporation | Additional hash functions in content-based addressing |
7383317, | Sep 06 2001 | Oracle International Corporation | Exactly once data framework system |
7392302, | Feb 21 2002 | Oracle International Corporation | Systems and methods for automated service migration |
7392317, | Feb 21 2002 | Oracle International Corporation | Systems and methods for migratable services |
7403996, | Feb 21 2002 | Oracle International Corporation | Systems and methods for migratable services |
7406618, | Feb 22 2002 | Oracle International Corporation | Apparatus for highly available transaction recovery for transaction processing systems |
7409420, | Jul 16 2001 | Oracle International Corporation | Method and apparatus for session replication and failover |
7444333, | Aug 30 2001 | Oracle International Corporation | Cluster caching with concurrency checking |
7480816, | Aug 04 2005 | Oracle America, Inc | Failure chain detection and recovery in a group of cooperating systems |
7487244, | Sep 06 2001 | Oracle International Corporation | Exactly once data framework method |
7506342, | Jul 23 2002 | Oracle International Corporation | System and method for implementing J2EE connector architecture |
7571215, | Jul 16 2001 | Oracle International Corporation | Data replication protocol |
7571349, | Aug 18 2006 | Microsoft Technology Licensing, LLC | Configuration replication for system recovery and migration |
7617289, | Feb 22 2002 | Oracle International Corporation | System and method for using a data replication service to manage a configuration repository |
7620842, | Feb 22 2002 | Oracle International Corporation | Method for highly available transaction recovery for transaction processing systems |
7676691, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing nonlinear journaling |
7680836, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for a snapshot of data |
7680842, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for a snapshot of data |
7685126, | Aug 03 2001 | EMC IP HOLDING COMPANY LLC | System and methods for providing a distributed file system utilizing metadata to track information about data stored throughout the system |
7698434, | Aug 29 2002 | Oracle International Corporation | J2EE connector architecture |
7702791, | Jul 16 2001 | Mount Sinai School of Medicine of New York University | Hardware load-balancing apparatus for session replication |
7743033, | Aug 03 2001 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing a distributed file system utilizing metadata to track information about data stored throughout the system |
7752402, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for allowing incremental journaling |
7756898, | Mar 31 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for notifying listeners of events |
7779048, | Apr 13 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods of providing possible value ranges |
7788303, | Oct 21 2005 | EMC IP HOLDING COMPANY LLC | Systems and methods for distributed system scanning |
7797283, | Oct 21 2005 | EMC IP HOLDING COMPANY LLC | Systems and methods for maintaining distributed data |
7822932, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing nonlinear journaling |
7844617, | Dec 22 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods of directory entry encodings |
7848261, | Feb 17 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing a quiescing protocol |
7882068, | Aug 21 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods for adaptive copy on write |
7882071, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for a snapshot of data |
7895224, | Dec 10 2002 | DataCore Software Corporation | Navigation of the content space of a document set |
7899800, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing nonlinear journaling |
7900015, | Apr 13 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods of quota accounting |
7917474, | Oct 21 2005 | EMC IP HOLDING COMPANY LLC | Systems and methods for accessing and updating distributed data |
7921169, | Sep 06 2001 | Oracle International Corporation | System and method for exactly once message store communication |
7930704, | Feb 06 2002 | Oracle International Corporation | J2EE component extension architecture |
7937370, | Sep 22 2000 | PTC INC | Retrieving data from a server |
7937421, | Nov 14 2002 | EMC IP HOLDING COMPANY LLC | Systems and methods for restriping files in a distributed file system |
7949636, | Mar 27 2008 | EMC IP HOLDING COMPANY LLC | Systems and methods for a read only mode for a portion of a storage system |
7949692, | Aug 21 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods for portals into snapshot data |
7953704, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for a snapshot of data |
7953709, | Mar 27 2008 | EMC IP HOLDING COMPANY LLC | Systems and methods for a read only mode for a portion of a storage system |
7962779, | Aug 03 2001 | EMC IP HOLDING COMPANY LLC | Systems and methods for a distributed file system with data recovery |
7966289, | Aug 21 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods for reading objects in a file system |
7966418, | Feb 21 2003 | PTC INC | Establishing a virtual tunnel between two computer programs |
7971021, | Mar 27 2008 | EMC IP HOLDING COMPANY LLC | Systems and methods for managing stalled storage devices |
7971099, | Apr 02 2008 | ServiceNow, Inc | Method for enabling faster recovery of client applications in the event of server failure |
7984324, | Mar 27 2008 | EMC IP HOLDING COMPANY LLC | Systems and methods for managing stalled storage devices |
8005865, | Mar 31 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for notifying listeners of events |
8010493, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for a snapshot of data |
8015156, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for a snapshot of data |
8015216, | Apr 13 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods of providing possible value ranges |
8027984, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods of reverse lookup |
8051425, | Oct 29 2004 | EMC IP HOLDING COMPANY LLC | Distributed system with asynchronous execution systems and methods |
8054765, | Oct 21 2005 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing variable protection |
8055711, | Oct 29 2004 | EMC IP HOLDING COMPANY LLC | Non-blocking commit protocol systems and methods |
8055758, | Jul 28 2000 | PTC INC | Reporting the state of an apparatus to a remote computer |
8060521, | Dec 22 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods of directory entry encodings |
8060886, | Apr 17 2002 | PTC INC | XML scripting of SOAP commands |
8065397, | Dec 26 2006 | PTC INC | Managing configurations of distributed devices |
8082379, | Jan 05 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods for managing semantic locks |
8108543, | Sep 22 2000 | PTC INC | Retrieving data from a server |
8112395, | Aug 03 2001 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing a distributed file system utilizing metadata to track information about data stored throughout the system |
8140623, | Oct 29 2004 | EMC IP HOLDING COMPANY LLC | Non-blocking commit protocol systems and methods |
8150720, | Aug 29 2005 | EMERSON DIGITAL COLD CHAIN, INC | Dispatch management model |
8176013, | Oct 21 2005 | EMC IP HOLDING COMPANY LLC | Systems and methods for accessing and updating distributed data |
8176014, | Aug 30 2001 | Oracle International Corporation | System and method for providing a cache that stores entity beans and employs data invalidation |
8181065, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing nonlinear journaling |
8195905, | Apr 13 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods of quota accounting |
8200632, | Aug 21 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods for adaptive copy on write |
8214334, | Oct 21 2005 | EMC IP HOLDING COMPANY LLC | Systems and methods for distributed system scanning |
8214400, | Oct 21 2005 | EMC IP HOLDING COMPANY LLC | Systems and methods for maintaining distributed data |
8238350, | Oct 29 2004 | EMC IP HOLDING COMPANY LLC | Message batching with checkpoints systems and methods |
8276018, | Apr 30 2010 | GLOBALFOUNDRIES U S INC | Non-volatile memory based reliability and availability mechanisms for a computing device |
8286029, | Dec 21 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for managing unavailable storage devices |
8290919, | Aug 27 2010 | Disney Enterprises, Inc.; DISNEY ENTERPRISES, INC | System and method for distributing and accessing files in a distributed storage system |
8291039, | Feb 21 2003 | PTC INC | Establishing a virtual tunnel between two computer programs |
8356013, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for a snapshot of data |
8356150, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing nonlinear journaling |
8370479, | Oct 03 2006 | PTC INC | System and method for dynamically grouping devices based on present device conditions |
8380556, | Aug 29 2005 | EMERSON DIGITAL COLD CHAIN, INC | Dispatch management model |
8380689, | Aug 18 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing nonlinear journaling |
8386859, | Apr 30 2010 | GLOBALFOUNDRIES U S INC | On-chip non-volatile storage of a test-time profile for efficiency and performance control |
8392368, | Aug 27 2010 | Disney Enterprises, Inc.; DISNEY ENTERPRISES, INC | System and method for distributing and accessing files in a distributed storage system |
8406119, | Dec 20 2001 | PTC INC | Adaptive device-initiated polling |
8478861, | Jul 06 2007 | PTC INC | Managing distributed devices with limited connectivity |
8539056, | Aug 02 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for configuring multiple network interfaces |
8625464, | Feb 17 2006 | EMC IP HOLDING COMPANY LLC | Systems and methods for providing a quiescing protocol |
8630978, | Apr 07 2008 | Malikie Innovations Limited | Method of bi-directional synchronization of user data |
8752074, | Apr 17 2002 | PTC INC | Scripting of soap commands |
8762497, | Sep 22 2000 | PTC INC | Retrieving data from a server |
8768981, | Aug 27 2010 | Disney Enterprises, Inc.; DISNEY ENTERPRISES, INC | System and method for distributing and accessing files in a distributed storage system |
8769095, | Oct 03 2006 | PTC INC | System and method for dynamically grouping devices based on present device conditions |
8788632, | Dec 26 2006 | PTC INC | Managing configurations of distributed devices |
8898294, | Jul 28 2000 | PTC INC | Reporting the state of an apparatus to a remote computer |
8964338, | Jan 11 2012 | EMERSON CLIMATE TECHNOLOGIES, INC | System and method for compressor motor protection |
8966080, | Apr 13 2007 | EMC IP HOLDING COMPANY LLC | Systems and methods of managing resource utilization on a threaded computer system |
8974573, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9002980, | Feb 21 2003 | PTC INC | Establishing a virtual tunnel between two computer programs |
9017461, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9021819, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9023136, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9046900, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
9081394, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9086704, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring a refrigeration-cycle system |
9121407, | Apr 27 2004 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
9140728, | Nov 02 2007 | EMERSON CLIMATE TECHNOLOGIES, INC | Compressor sensor module |
9170902, | Dec 20 2001 | PTC INC | Adaptive device-initiated polling |
9194894, | Nov 02 2007 | Emerson Climate Technologies, Inc. | Compressor sensor module |
9285802, | Feb 28 2011 | COPELAND LP; EMERSUB CXIII, INC | Residential solutions HVAC monitoring and diagnosis |
9304521, | Aug 11 2004 | EMERSON CLIMATE TECHNOLOGIES, INC ; THE STAPLETON GROUP, INC | Air filter monitoring system |
9310094, | Jul 30 2007 | EMERSON CLIMATE TECHNOLOGIES, INC ; THE STAPLETON GROUP, INC | Portable method and apparatus for monitoring refrigerant-cycle systems |
9310439, | Sep 25 2012 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
9491049, | Dec 26 2006 | PTC INC | Managing configurations of distributed devices |
9491071, | Oct 03 2006 | PTC INC | System and method for dynamically grouping devices based on present device conditions |
9551504, | Mar 15 2013 | COPELAND LP; EMERSUB CXIII, INC | HVAC system remote monitoring and diagnosis |
9590413, | Jan 11 2012 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
9591065, | Apr 17 2002 | PTC INC | Scripting of SOAP commands |
9638436, | Mar 15 2013 | COPELAND LP; EMERSUB CXIII, INC | HVAC system remote monitoring and diagnosis |
9669498, | Apr 27 2004 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system and method |
9674067, | Dec 20 2001 | PTC, Inc. | Adaptive device-initiated polling |
9690307, | Aug 11 2004 | Emerson Climate Technologies, Inc. | Method and apparatus for monitoring refrigeration-cycle systems |
9703287, | Feb 28 2011 | COPELAND LP; EMERSUB CXIII, INC | Remote HVAC monitoring and diagnosis |
9712385, | Dec 26 2006 | PTC, Inc. | Managing configurations of distributed devices |
9762168, | Sep 25 2012 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
9765979, | Apr 05 2013 | EMERSON CLIMATE TECHNOLOGIES, INC | Heat-pump system with refrigerant charge diagnostics |
9803902, | Mar 15 2013 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification using two condenser coil temperatures |
9823632, | Sep 07 2006 | Emerson Climate Technologies, Inc. | Compressor data module |
9876346, | Jan 11 2012 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
9885507, | Jul 19 2006 | Emerson Climate Technologies, Inc. | Protection and diagnostic module for a refrigeration system |
Patent | Priority | Assignee | Title |
5815649, | Oct 20 1995 | Alcatel Lucent | Distributed fault tolerant digital data storage subsystem for fault tolerant computer system |
5828847, | Apr 19 1996 | Oracle America, Inc | Dynamic server switching for maximum server availability and load balancing |
6119244, | Aug 25 1998 | NetApp, Inc | Coordinating persistent status information with multiple file servers |
6145094, | May 12 1998 | Oracle America, Inc | Transaction locks for high availability |
6163855, | Apr 17 1998 | Microsoft Technology Licensing, LLC | Method and system for replicated and consistent modifications in a server cluster |
6185695, | Apr 09 1998 | Oracle America, Inc | Method and apparatus for transparent server failover for highly available objects |
6202067, | Apr 07 1998 | WSOU Investments, LLC | Method and apparatus for correct and complete transactions in a fault tolerant distributed database system |
6219801, | Jun 19 1997 | Fujitsu Limited | Work inheriting system |
6243825, | Apr 17 1998 | Microsoft Technology Licensing, LLC | Method and system for transparently failing over a computer name in a server cluster |
6249879, | Nov 04 1997 | Hewlett Packard Enterprise Development LP | Root filesystem failover in a single system image environment |
6266781, | Jul 20 1998 | Alcatel Lucent | Method and apparatus for providing failure detection and recovery with predetermined replication style for distributed applications in a network |
6272648, | Oct 01 1997 | Round Rock Research, LLC | System for communicating a software-generated pulse waveform between two servers in a network |
6279119, | Nov 14 1997 | Stratus Technologies Bermuda LTD | Fault resilient/fault tolerant computing |
6292905, | Oct 02 1997 | Round Rock Research, LLC | Method for providing a fault tolerant network using distributed server processes to remap clustered network resources to other servers during server failure |
6311217, | Jun 04 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for improved cluster administration |
6393466, | Mar 11 1999 | Microsoft Technology Licensing, LLC | Extensible storage system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 11 1999 | Microsoft Corporation | (assignment on the face of the patent) | / | |||
May 05 1999 | DEMELLO, MARCO A | Microsoft Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009978 | /0886 | |
May 12 1999 | HICKMAN, ROBERT CHRIS | Microsoft Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009978 | /0886 | |
Oct 14 2014 | Microsoft Corporation | Microsoft Technology Licensing, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034541 | /0001 |
Date | Maintenance Fee Events |
Jul 21 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 21 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 25 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 18 2006 | 4 years fee payment window open |
Aug 18 2006 | 6 months grace period start (w surcharge) |
Feb 18 2007 | patent expiry (for year 4) |
Feb 18 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 18 2010 | 8 years fee payment window open |
Aug 18 2010 | 6 months grace period start (w surcharge) |
Feb 18 2011 | patent expiry (for year 8) |
Feb 18 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 18 2014 | 12 years fee payment window open |
Aug 18 2014 | 6 months grace period start (w surcharge) |
Feb 18 2015 | patent expiry (for year 12) |
Feb 18 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |