Self-repairing, fiber reinforced matrix materials include a matrix material including inorganic as well as organic matrices. Disposed within the matrix are hollow fibers having a selectively releasable modifying agent contained therein. The hollow fibers may be inorganic or organic and of any desired length, wall thickness or cross-sectional configuration. The modifying agent is selected from materials capable of beneficially modifying the matrix fiber composite after curing. The modifying agents are selectively released into the surrounding matrix in use in response to a predetermined stimulus be it internal or externally applied. The hollow fibers may be closed off or even coated to provide a way to keep the modifying agent in the fibers until the appropriate time for selective release occurs. Self-repair, smart fiber matrix composite materials capable of repairing microcracks, releasing corrosion inhibitors or permeability modifiers are described as preferred embodiments in concrete and polymer based shaped articles.
|
1. An article comprising: a matrix material having at least one release vessel disposed therein; and at least one releasable modifying agent; wherein said at least one release vessel contains at least one said agent therein until released therefrom; and wherein the agent is released from the release vessel in the matrix material in response to at least one external stimulus, the agent effective to modify at least a portion of the matrix material.
2. An article according to
3. An article according to
4. An article according to
6. An article according to
9. An article according to
11. An article according to
12. An article according to
13. An article according to
16. An article according to
17. An article according to
18. An article according to
19. An article according to
20. An article according to
24. An article according to
28. An article according to
29. An article according to
30. An article according to
33. An article according to
36. An article according to
37. An article according to
41. An article according to
43. An article according to
44. An article according to
46. An article as according to
54. An article according to
55. An article according to
56. An article according to
57. An article according to
58. An article according to
59. An article according to
|
This is a continuation of application Ser. No. 09/447,894, filed Nov. 23, 1999, U.S. Pat. No. 6,261,360, which is in turn a continuation of Ser. No. 08/918,630, filed Aug. 22, 1997, now U.S. Pat. No. 5,989,334, which is in turn a continuation of application Ser. No. 08,537,228, filed Sep. 29, 1995, now U.S. Pat. No. 5,660,624, which is in turn a continuation of application Ser. No. 08/189,665, filed Feb. 1, 1994, abandoned, which is in turn a continuation-in-part of U.S. Ser. No. 08/174,751, filed Dec. 29, 1993, now U.S. Pat. No. 5,575,841, which is in turn a continuation of U.S. Ser. No. 07/540,191, filed Jun. 19, 1990 abandoned.
The present invention generally relates to matrix materials for use in a wide variety of end use fields and applications. More particularly, the invention relates to new and improved self-repairing, settable or curable matrix material systems containing so-called smart-release fiber reinforcements, alone or in combination with other reinforcement. My prior parent application, Ser. No. 540,191, filed Jun. 19, 1990, describes the new and improved inorganic and organic matrix composites employing concrete matrix systems and asphalt matrix systems as illustrative embodiments. That prior application describes smart-release hollow fiber a additives in settable construction materials and thermoplastic matrices, such as asphalt. This application is being filed to describe other embodiments of the smart-release matrix composite materials generally described in my earlier application and to provide additional examples of end use applications to which these new and improved compositions, articles and methods may be specially adapted and used.
Cement is a fine, gray powder consisting of alumina, lime, silica and iron oxide which sets to a hard material after mixture with water. Cement, along with sand and stone aggregate, make up concrete, the most widely used building material in the world. Steel reinforcing bars (rebars) are commonly added to the interior of concrete for additional strength.
There are many reasons for the popularity of concrete. It is relatively inexpensive, capable of taking on the shape of a mold, has exceptionally high compression strength and is very durable when not exposed to repeated freeze-thaw cycles. However, as a building or construction material, concrete, whether it is reinforced or not, is not without some shortcomings. One major drawback of concrete is that it is relatively low in tensile strength. In other words, it has little ability to bend. Concrete also has little impact resistance and is frequently brittle. A third major drawback is that its durability is significantly reduced when it is used in applications which require it to be exposed to repeated freeze-thaw cycles in the presence of water. Concrete is relatively porous and water is able to permeate the material. Freezing and thawing with the accompanying expansion and contraction of the water, forms cracks in the concrete. Furthermore, if salt is also present in the environment, it dissolves in the water and permeates into the concrete where it is capable of inducing corrosion in any of the rebars or other metallic reinforcements present.
Various techniques have been suggested in the past for overcoming these drawbacks. The addition of fibers to concrete has improved its tensile strength but has decreased its compression strength. Providing exterior coatings on the outer surfaces of the concrete has reduced water permeation, but it is a time-consuming additional step and has little, if any, effect on the lasting strength of the concrete. The addition of modifying agents as freely-mixed additives into a concrete mixture before setting has also been tried. These efforts have met with generally unsatisfactory results. Attempts to add modifying agents in the form of micronodules or prills have also been tried. Frequently, the prills are designed to be heat melted to cause release of the modifying agent into the matrix after setting of the materials. These designs require the application of heat to release the beneficial additive into the matrix after cure. Moreover, the melted, permeated agents leave behind voids in the concrete which weakens the overall structure under load. Accordingly, a demand still exists for an improved concrete matrix material having greater tensile strength, greater durability and comparable or improved compression strength.
In addition to cementitious building materials, the use of polymer composites as structural materials has grown tremendously in recent years. Polymer composite materials have advantages over steel or concrete including good durability, vibration damping, energy absorption, electromagnetic transparency, toughness, control of stiffness, high stiffness to weight ratios, lower overall weight and lower transportation cost. These polymer matrix materials comprise a continuous polymer phase with a fiber reinforcement therein. Some polymer composite materials are three times stronger than steel and five times lighter. They have heretofore been generally more expensive but their use may, in the long term, be economical because of their greatly reduced life cycle costs. Europeans have made bridges completely of specialty polymer matrix composite materials. The polymer composite materials may be used as rebars, tensioning cables, in bonded sheets, wraps, decks, supports, beams or as the primary structures for bridges, decks or buildings. Structures made from polymer matrix materials are specially effective in aggressive environments or are well adapted for building structures where electromagnetic transparency may be needed for highways, radar installations and hospitals.
As used herein, matrix composite materials may refer to generally any continuous matrix phase whether it comprises a settable construction material such as cementitious materials or a thermoplastic material such as asphalt materials, as well as, other synthetic or natural high polymer materials ceramics, metals and other alloy materials. The matrix composite materials include various fiber reinforcements therein distributed throughout the matrix or placed at desired locations within the continuous phase. The matrix composite materials may be fabricated as large building structures and load bearing shaped articles, or they may be molded or machined as small parts for specialty uses. For example, the matrix material may comprise a thin sheet or web of material in the form of a foil, wrap, tape, patch or in strip form. As presently used in this specification, the term matrix composite material does not necessarily refer to large civil engineering structures such as highways and bridges.
In connection with the polymer and/or metal or ceramic matrix composite materials, as well as, in the settable building materials such as concrete materials, special problems cause structures made from these materials to become aged or damaged in use. More particularly, special structural defects arise in use including microcracking, fiber debonding, matrix delamination, fiber breakage, and fiber corrosion, to name but a few. Any one of these microscopic and macroscopic phenomena may lead to failures which alter the strength, stiffness, dimensional stability and life span of the materials. Microcracks, for example, may lead to major structural damage and environmental degradation. The microcracks may grow into larger cracks with time and cause overall material fatigue so that the material deteriorates in long-term use.
Advanced matrix composites used in structural applications are susceptible to damage on both the macro- and microscopic levels. Typical macroscopic damage to composite laminates involves delaminations and destruction of the material due to impact. On the micrographic scale, damage usually involves matrix microcracking and/or debonding at the fiber/matrix interface. Internal damage such as matrix microcracking alters the mechanical properties of shaped articles made therefrom such as strength, stiffness and dimensional stability depending on the material type and the laminate structure. Thermal, electrical and acoustical properties such as conductance, resistance and attenuation have also been shown to change as matrix cracks initiate. Microcracks act as sites for environmental degradation as well as for nucleation of microcracks. Thus, microcracks can ultimately lead to overall material degradation and reduced performance.
Moreover, prior studies have shown that microcracks cause both fiber and matrix dominated properties of the overall composite to be effected. Fiber dominated properties such as tensile strength and fatigue life may be reduced due to redistribution of loads caused by matrix damages. Matrix dominated properties on the other hand such as compressive residual strength may also be influenced by the amount of matrix damage. The impact responses of toughened polymer matrix composites have been studied and it has been shown that matrix cracking precedes delamination which, in turn, precedes fiber fracture. Tough matrices which can reduce or prevent matrix cracking tend to delay the onset of delamination which results in an improved strength composite and longer lasting composite material.
Repair of damages is a major problem when these matrix composite materials are employed in large-scale construction or advanced structures. Macroscale damage due to delamination, microcracking or impacts may be visually detected and can be repaired in the field by hand. Microscale damage occurring within the matrix is likely to go undetected and the damage which results from this type of breakdown may be difficult to detect and very difficult to repair.
In order to overcome the shortcomings of the prior art construction and polymer, ceramic or metal matrix composite materials, it is an object of the present invention to provide new and improved smart structural composite materials having a self-healing capability whenever and wherever cracks are generated.
It is another object of the present invention to provide new and improved composite materials including self-repairing reinforcing fibers capable of releasing chemical agents into the local microscopic domains of the matrix to repair matrix microcracks and rebond damaged interfaces between fibers and matrices.
It is a further object of the present invention to provide a new and improved structural material.
It is another object of the present invention to provide a new and improved cementitious material.
It is still a further object of the present invention to provide a new and improved cementitious or other construction composite material having greater durability and greater tensile strength.
It is still another object of the present invention to provide a new and improved matrix composite materials containing smart self-repairing fiber reinforcement containing repair chemicals therein which may be released by the smart fibers as needed in response to an external stimulus, and optionally which may be refilled with additional repair chemicals as needed in the field.
In accordance with these and other objects, the present invention provides new and improved shaped articles comprising:
a cured matrix material having a plurality of hollow fibers dispersed therein, the hollow fibers having a selectively releasable modifying agent contained therein, means for maintaining the modifying agent within the fibers until selectively released and means for permitting selective release of the modifying agent from the hollow fibers into the matrix material in response to at least one predetermined external stimulus. In accordance with this invention the shaped articles are matrix composite materials of varying size and end use applications. The cured matrix materials have within them smart fibers capable of delivering repair chemicals into the matrix wherever and whenever they are needed.
The present invention also provides a new and improved method for providing shaped articles having long-term durability and environmental degradation resistance comprising the steps of providing a curable matrix composition, distributing a plurality of hollow fibers therein in desired manner so that the hollow fibers are disposed within the matrix material in a desired predetermined distribution. The hollow fibers are filled with a selectively releasable modifying agent therein which is not released during the mixing or distributing step. The fibers are structured so that the modifying agents stay within the interior spaces or cavities of the fibers within the matrix until the matrix is cured or set. After curing, the modifying agents are selectively released from the fibers by application or action of at least one predetermined external stimulus.
In a preferred embodiment, the method of providing a improved durability shaped article comprises providing a cured matrix material containing smart self repair fibers reinforcement therein.
The principles of the present invention are applicable to space age polymer, metal and/or ceramic structural matrix composite materials as well as more conventional cementitious settable or curable building or construction materials.
Other objects and advantages will become apparent from the following Detailed Description of the Preferred Embodiments, taken in conjunction with the Drawings in which:
In accordance with the present invention, new and improved shaped articles comprise curable, settable, cross-linkable and/or hardenable matrix materials. The matrix material comprises a continuous phase and is a material that may be shaped to form a three-dimensional shaped article adapted for a particular use. Matrix materials can include any curable, settable or hardenable materials used in construction, building, roofing, roadway, aircraft, automotive, marine, appliances, transportation and/or biomedical fields for making shaped articles. Typically these materials will be moldable or castable to form shaped objects or may be laminated or assembled into finished products. The matrix materials may be inorganic or organic in nature and may include by way of illustration: cement, concrete, sintered fly ash or bottom ash/phosphoric acid mixtures, ceramic including, for example, silicon oxide, titanium oxide, silicon nitride, and metals such as aluminum, steel or other metal alloys, carbon, graphite, asphalt, thermoplastic polymers, thermosetting polymers, thermoplastic elastomers, crosslinkable polymers, curable polymer resin systems and hydroxyapatite. Illustrative thermoplastic polymers include polyolefins, polyesters, polycarbonates, polyacrylates, polyarylates, polyamides, polyimides, polyaramides, polyurethanes, foaming polyurethane compositions and any other thermoplastic polymers used as engineering thermoplastics for making shaped articles. Thermosetting and crosslinkable polymers and curable resin systems may include, for example, one and two part epoxies, phenolformaldehyde resins and other thermosetting and crosslinkable polymers. Thermoplastic elastomers can include rubbery polymers and copolymers including, for example without limitation, styrenebutadiene, rubber, neoprene, SEBS, NBR, and EPDM rubbers and the like. Viscoelastic materials and various latex materials may also be used. The matrix materials may also comprise sinterable ceramic materials including hydroxyapatites, as well as, other ceramic materials such as silicas, titanium, carbides, oxides and alumina. The matrix materials may also comprise metal matrices including aluminum, iron, lead, copper, steel, bronze, phosphor bronze, brass and other alloys, as well as biomimetic systems like bone matrices formed of various calcium salts, as well as other organic and inorganic materials.
The matrix materials in accordance with this invention are processable to form shaped articles by molding, casting, sintering, laminating, machining, extruding, or other material fabrication method useful with the matrix material selected. The size and configuration of the finished shaped article produced is essentially unlimited including various small machined parts to very large engineering construction panels for use in building roadway and transportation applications. The matrix materials may be cured by means of catalysts, crosslinkers, radiation, heat, moisture, cooling or by any means used in this art for setting up, hardening, rigidifying, curing, setting or shaping these matrix materials to form shaped articles or objects.
The new and improved shaped articles of this invention additionally comprise. hollow fibers having interior spaces therein for containing selectively releasable modifying agents. The hollow fiber materials may include inorganic fibers or organic fibers. Illustrative inorganic fibers include, without limitation: fiberglass fibers, cement fibers, asphalt fibers, hydroxyapatite fibers, glass fibers, ceramic fibers, metal fibers, and the like. Illustrative organic fibers that may be used as the hollow fiber component may include, without limitation: polyolefin fibers, polyester fibers, polyamide fibers, polyaramide fibers, polyimide fibers, carbon fibers, graphite fibers, cellulose fibers, nitrocellulose fibers, hydrocarbon fibers Goretex® fibers, Kevlar® fibers, and the like, to name but a few.
The fibers may be bundled, woven or loose. They may be held or engaged together with flexible web materials. They may comprise twisted pairs and additionally may include concentric structures of one or more fibers. The sidewalls of the fibers are typically rupturable or porous to permit the discharge or exiting of the modifying agent into the surrounding cured composite matrix material. The fibers may come in different shapes, volumes, and wall thicknesses. They may be generally notched, have periodic enlargements or bulges, V-shaped, double or multiple lumens, U-shaped, or they may comprise combinations of one or more different types of fibers. For example, double walled fibers are particularly useful for two-part modifying compositions such as epoxies. Doubled fibers including a metallic inside fiber and a glass outer sheath fiber are useful where bending of the metal fiber assists in breaking the glass carrier fiber. Additionally, assembled structures of polypropylene hollow porous fibers disposed inside a glass outer fiber might be used to permit a first break and release of modifying material to occur with the glass fiber and thereafter a secondary break and release of the polypropylene fiber at a later date to provide a specially long-term profile modification to the shaped matrix composites. The smart-release fibers may also be paired or include other specialty fibers such as piezoelectric fibers or optical sensor fibers for providing special monitoring, metering and diagnostic capabilities. Some of these specialty composites will be more particularly described hereinafter. The fibers may also be woven together into a web so that they may be wrapped as an organized bundle around rebars or the like. Although fiber materials are preferred, other container-like smart release structures or vessels may be provided for special end uses. For example, in relatively large structural parts it may be useful to add the repair chemicals in large flat balloons or bags layered or laid up within the matrix or layers of matrix. It should be apparent to those skilled in this art that for certain end uses, small release vessels having a shape somewhat different from hollow fibers for performing the same smart release functions may be employed. In addition, the fibers may be relatively small, chopped or comminuted fibers having lengths of less than about one inch and diameters of less than about 100 microns. The fibers and matrices may be readily used in usual shaping processes such as in an injection molding operations or the like.
In accordance with this invention, the hollow fibers include certain internal modifying agents which are-selectively releasable from the fibers in response to the application of certain predetermined external stimuli. The modifying agents include agents which will modify the performance characteristics of the cured shaped article matrix materials in use. By way of illustration, the modifying agent may include polymerizable monomers such as methyl methacrylates, styrene or other polymerizable starting materials. They may additionally include two part epoxies wherein an epoxy precursor material is disposed in one fiber or in one lumen of a double lumen fiber and the amine or other cross-linking agent is disposed in an adjacent fiber or in the other lumen of the double lumen fiber. Other curable polymerizable monomers may also be employed.
Another modifying agent which may be used herein includes a sealant used to prevent water permeability and ingress or egress of water or other liquid materials to and from the cured matrix composite. Illustrative examples for cement may include oily sealants to prevent ingress of water such as linseed oil or other known sealant materials.
Another important modifying agent for both cementitious and polymer matrices include adhesives which cure in situ to repair microcracks within the matrix in use. Illustrative adhesives include one- and two-part adhesives, one- and two-part epoxy adhesives, cyanoacrylate adhesives, Elmer's glue and others known to those skilled in the art. The adhesives may bond matrix to matrix, fiber to fiber, as well as fiber to matrix.
Certain water barriers are particularly useful modifying agents for cementitious matrices. These may include special Zypex® brand sodium silicate additives as well as siloxane and silica additives known as Salt Guard® and the like.
Another modifying agent useful in the shaped articles of this invention includes anticorrosion agents such as calcium nitrite. These are particularly useful in cementitious matrices employing rebar reinforcements or steel mesh reinforcements.
Another example of a modifying agent which may be disposed in the interior of the hollow fibers for use herein includes antifreeze material such as polypropylene glycol.
Fiber protectors may also be used as the modifying agents which can be materials which protect the fibers themselves within the matrix material. An example of this includes pH modifiers for protecting fiberglass in highly alkaline environments.
Still another class of modifying agents particularly useful in polymer matrices are solvents which permits solvent action to actually repair microcracking damage locally at a cracking site or possibly to dissolve the matrix or fibers or both to permit them to re-form at a later time.
In addition to solvents, other curable monomers and co-monomers may also serve this repair function. pH modification agents may also be used as the modifying agents, either alkali or acidic agents, which may be placed in the interior of the fibers only to be released by an appropriate pH changes in the matrix. Other additives may include flame retardant agents. Visco-elastic polymers may also be used as modifiers.
In accordance with this invention, means are provided for maintaining the modifying agent within the hollow fibers. The modifying agents may be physically trapped by, for example, drawing liquid additives into the interior of the fibers and retaining them therein by capillary action or by closing off the ends of the fibers. For brittle fibers, sealing of the ends by heat or pressure may be one method for maintaining the modifying agents therein. Moreover, specialty coatings may be used, which will selectively degrade upon the occurrence of a particular external stimulus. Illustrative examples might include heat sensitive coatings, pH sensitive coatings, ion sensitive coatings, and the like. These coatings are effective to close off the pores of the hollow fiber walls or the ends of the fibers to prevent premature leakage of the modifying agent until the intended time. Illustrative coatings may include waxes, low molecular weight hydrocarbon oils and coating polymers to name but a few.
In accordance with the present invention, means for permitting selective release of the modifying agent in response to the external stimulus may be provided. Illustrative examples include the selectively removable or dissolvable coatings which give way to permit leakage of the modifying agent in response to, for example, stimuli such as heating, cooling, loading, impacting, cracking, water infusion, chloride infusion, alkalinity changes, acidity changes, acoustic excitation, low frequency wave excitations, hydrostatic pressure, rolling pressure, light sensitivity or laser excitation, or the like. Electrical currents, voltages, electrorheological excitation, radiation, or other energetic stimuli may also be employed or effective to permit or cause selective release of the modifying agent or agents from the fibers.
In accordance with this invention, the selective release of the modifier occurs in the matrix when and where it is required and may lead to improved toughness, strength, ductility, brittleness, permeability, fire retardancy, stiffness, dimensional stability, modulus of elasticity, fatigue, impact resistance, and other improved properties. Specially important in accordance with this invention is the ability to repair small microcracks forming in the reinforced matrix composites. The selective release of the modifying agent may be chosen to be effective to rebond the fibers to the matrix, to repair the fibers themselves, to improve or restore the matrix to fiber interface, to repair delaminations, and to repair microcracks in the matrix itself which may repair or overcome cracking or corrosion induced dimensional weaknesses and ultimately reduced durability for the shaped articles.
As has been mentioned above, the shaped articles in accordance with this invention may be used for a number of applications, both large and small. Large construction applications are particularly preferred, particularly those used in harsh environments or for outdoor use. Illustrative end use applications for the new and improved shaped articles in accordance with this invention include, for example without limitation, structural sandwich panels, exterior applied insulation panels, fire panels, construction building blocks, cements, concretes, fireproof doors, panels, walls, hazardous waste containment vessels, engines, concrete building blocks, roadways, bridges, dams, engines, road surfaces, roofing blocks, roofing shingles, decks for parking garages, and other building structures and columns. Other construction applications might include the use of these shaped, cured, smart-release composites in bridges, post-tensioning cables, road decks, road deck overlays, aircraft body components, including fuselages, wings and tip design, machined parts, helicopter blades as well as the aforementioned roofing structures.
The shaped articles of this invention might also be useful in biomedical applications as bone replacements as prosthetic devices and as biomedical adhesives. More particularly, shaped articles of this invention may be used to form self-growing structures. In accordance with this aspect of the invention, the goal is to create a ceramic resembling bone which is an organic-inorganic composite created at low temperature due to the presence of organisms. Bone is made up of an oriented matrix which is secreted by bone forming cells referred to as osteoblasts. In natural bone, organic matrices are made up of structural molecules which serve as a scaffolding and which are laid down in very precise, oriented pattern of fibrils into and onto which inorganic crystalline phases form. The formation of the first crystals of inorganic salts of calcium phosphate are often referred to as initiation or nucleation which occurs along nucleation sites which appear at regular intervals along the organic scaffolding, usually collagen laid down by osteoblasts. Once nucleation has occurred, the next major process involves the continuation of crystalline growth from these nucleation sites outward along the fabric of the organic matrix and eventually between the molecules which serve as scaffolding. As crystal growth continues and forms against inorganic matrix, there is a loss of organic components which are designed to reserve space in the matrix forever expanding the inorganic phase.
In accordance with this biological models, the present invention may be employed to provided a self-growing structure something like bone, wherein the hollow pores polymer fibers may release chemicals and act as an organic template on which to form a strong structural bone-like composite. This self-growing structure might be used for structural materials as well as for computer chips or for prosthetic devices. More particularly, just as ligaments or tendons have been used as natural matrices to form bone materials, these polymer tubes or fibers are used in accordance with the present invention to concentrate bone-like substances. The fibers are hollow and have porous walls. In accordance with this invention chemicals are released from the hollow fibers, particularly polymeric materials which are designed to cause targeted release of water in an inorganic matrix to form a structural network of calcium phosphate materials. Instead of using collagen gels to form a backbone network, in accordance with this invention, a matrix material including inorganic cementitious salts and a first polymer reactant may be provided which includes hollow fiber materials including a condensable or cross-linkable moiety reactive with polymer. Under appropriate conditions, release of the co-reactant from the fibers causes a condensation reaction of the matrix polymer in which water is produced. The water byproduct of the condensation reaction is used to hydrate cement to build up a structural backbone along the fiber regions.
In accordance with another aspect of the invention, a hollow porous polymer fiber material may be placed in a calcium phosphate material matrix in which a polymer powder monomer is present. A cross-linking monomer is then released from the fibers into the matrix. The ensuing condensation polymerization reaction releases water, which then hydrates the calcium phosphate materials. Xypex or other cement crystallizing initiator materials may carry the hydration reaction away from the polymer fiber scaffolding within the inorganic matrix. The structural make-up of these materials may be designed to resist stresses by including piezoelectric fibers within the matrix. Lines of force may be generated by prestressing or stressing the piezoelectric polymer fibers along which charged cementitious ions will migrate. This will cause the polymer matrix to rearrange and the composite prestressing forces therefore will generate an appropriate microstructure within the material.
Also in accordance with this aspect of the invention, self-healing may be accomplished by leaving some of the original fibers void or by adding additional fibers designed with specialty repair chemicals for repairing the system. Hollow porous fibers may be used to deliver repair chemicals at a later time if damage such as cracking occurs. Repair chemicals, either present as an adjuvant fiber additive or added to hollow fibers from the outside, may be used to improve the visco-elasticity of the entire component as desired.
In accordance with this invention, materials may be developed for application in self-repairing materials for use in facings, coatings and membranes. In accordance with this aspect of the invention, the new and improved fiber-containing matrix materials may be provided in the form of paints, membranes, roofing materials, or the like, including self-repairing liquids within the fibers. The materials may be provided in the form of wraps for buildings, bridges, roads, or the like, including webs or fabrics of smart fibers disposed within the matrix. Repair chemicals may repair cracks in the wrap itself or also seep into and repair adjacent structures to which the wrap is adhered to improve the overall structural performance over time. Specialty wraps including solar collecting fibers might also be added to the exterior of previously existing outdoor structures.
Another biological or biomedical application for the new and improved shaped articles of this invention might include smart-release bandages, artificial skin materials, poultices, bandaids and the like which include smart fibers which release healing chemicals or healing promoting chemicals by upon movement of the patient or by application of another stimulus, such as for example, a heating pad, or the like. The smart fibers used in these bandage applications might include such release chemicals as oxygen releasing chemicals, moisturizers, aloe vera, antibiotics, anti-inflammatants, analgesics, non-stick agents or the like.
Another illustrative use of the shaped articles of this invention might be polymer matrices including smart fibers therein which may be made to include dissolving chemicals which ultimately assist in de-naturing, degrading or destroying the polymeric structures by depolymerization or chemical reaction to improve recyclability of the polymer material.
The shaped articles of this invention may also be used in various small shaped article applications including aerospace applications, pipe repair, engine pistons, rubber matrices, water-borne paints and coatings, rubber gasket materials and other seals and in woven fabrics. For example, in fabrics the fibers may contain a fabric glue to repair small tears or abrasions of the fabric. Hard self-repairing shaped articles, such as silicon nitride fibers in carbon-alumina matrices for pistons might be used. Metal matrices that may be employed include metals and alloys such as alumina as well as foamed metals. The fibers for these metallic composites may include adhesive materials or corrosion resistant materials to help repair the matrices or other desirable smart release additives.
The new and improved smart fibers of the present may be disposed within large cross-sectional areas or sections of a matrix prior to cure which may thereafter be used to release curing agents from several positions disposed throughout the curable matrix simultaneously to speed up or assist in the curing of large cross-section polymer articles. Similarly, natural fibers such as wheat straws or the like may be added to concrete or adobe matrices to stabilize the composites so that they do not crumble or flow in use.
In a related application, the new and improved smart matrix materials may be used to perform road repair and pothole repair. In connection with this aspect, smart release fiber-containing uncured material may be added to a pothole. An agitation or pressure may be used to release curative agents from the interior of fibers provided in the matrix material to promote adhesion and curing of the pothole repair mass to the substrate road surface. Additional fibers may be provided, containing repair adhesives which release in response to tire pressure, to further strengthen and reinforce the pothole patch in use.
Another highway application of the present invention includes the use of smart release fibers to add phosphorescent chemicals to concrete or asphalt matrices. Phosphorescent roads may clearly demarcate the road or highway surface from non-road driving surfaces at night without the need for street lights or other markers or reflectors. The smart matrix materials would permit renewed release of phosphorescent agents into the road surface, as the layers of the road surface are worn away by highway traffic. A continually replenishing supply of chemicals that could absorb sunlight during the day and re-emit it as phosphorescent light in the evening hours would be provided.
In accordance with another aspect of this invention, the shaped articles may include hollow and continuous matrix formed into a shaped article and having hollow fibers therein which permit visual inspection of the structural part in use. The use of hollow, air-filled fibers permits persons to actually look into and see inside the matrix to see cracks near the fibers. These hollow fibers also permit exterior introduction of chemicals to be performed to add chemicals to a previously cured matrix.
Hollow or filled fibers may be provided with dyes or other sensing or sensible materials to identify the presence of structural stresses or weaknesses and also the locations of these stresses in large structural articles. For example, release of dyed materials from fibers may permit the dye to migrate to the surface to indicate a structural compromise or repair need in a highway, bridge, or the like. Specialty dyes such as X-ray sensitive dyes may be added to help diagnose a small micro-structural repair problem. More particularly, if the dye is leaked into the matrix in use due to structural damage, periodic diagnostic teams may test with high energy beams shined into the matrix. The interactive dye would signal back after excitation in a detectable manner so that the need for attention or repair would be revealed. Piezoelectric fibers may also be used to evaluate the state of the matrix. Remote sensing of eddy currents or electrical or magnetic fields generated about the fibers in response to pressures or stress may be detected in a matrix in these ways.
Still another application for the shaped articles of this invention can include non-biological but biomimetic materials wherein a polymer matrix containing crystallizable mineral elements such as alumina alkoxide may be provided. A condensation reactive element or ingredient provided inside the smart fibers may be released on application of appropriate external stimulus from the smart fibers within the matrix containing the alumina crystals. The by-product water of the condensation reaction in this case may be used to cause alumina crystals to grow at specified locations within the shaped article.
Another special useful application of the shaped articles in accordance with this invention is as a containment structures for radioactive or chemical waste materials. In accordance with this aspect, fibers provided with chemically sensitive coatings or radiation sensitive coatings may be provided which are adapted to release scavenger compounds when radiation or chemical waste is detected. The compounds will then migrate from the fibers into the matrix to scavenge and render harmless radioactive or chemical materials leaking into the containment vessels to prevent them from being discharged from the containment area into the environment. Alternatively, permeability modifying agents may be released from the coated fibers to boost the impermeability of the containment vessel to water-borne contaminants.
The new and improved shaped articles of this invention may be employed to form self-repairing impact resistance layers in laminated materials and structures. For example, a clear, transparent polymer matrix containing adhesive filled glass fibers may be used as an interlayer between two safety glass or polymer sheets. Impact fracture of a base sheet will cause local release of repair adhesive from the interlayer to control fragmentation and rebond cracked or fractured sections of a laminate.
As has been mentioned above, various means may be provided to force the repair chemicals out of the fibers. Chemicals may be pumped into hollow fibers from the outside or propellant gases may be injected into previously filled fibers to which external access has been provided to force the chemicals out. Other methods to promote repair chemical release may include electrical, magnetic, and chemical means which alter the shape, permeability or coating integrity of the fibers. Shape memory alloy materials may be used as the fiber or these materials may be used in the fiber to squeeze the fiber and thereby pump the chemicals out. Fibers which change their shape in response to applied light or magnetic forces or fields may also be used to discharge the chemicals as desired.
The smart release shaped articles and materials in accordance with the present invention may be used throughout building structures to provide earthquake proof buildings which can withstand seismic activity with reduced hazard and damage. This is accomplished by preventing flying debris from being created and by supporting building structures in matrices adapted to visco-elastically respond to seismic vibration.
Because the beneficial improvements provided by the new composition, articles and methods of this invention may be useful for broad range of applications, it is difficult to specifically enumerate each of them. The present invention will be further illustrated by several specific end use applications provided to further illustrate the improvements provided by the present invention.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring to
In
In accordance with this invention, the smart fiber hollow fibers used to make the smart fiber reinforcements in accordance with this invention may have any desired configuration. As illustrated in
Referring now to
Referring now to
Referring now to
As shown in
As depicted in
In
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring to
Referring now to
In accordance with the present invention, other embodiments for using the self-repairing fiber reinforcement smart matrix composite matrix materials described herein will be readily apparent to those skilled in this art. For example, employing ceramic matrices such as a hydroxyapatite ceramic minerals and reinforcing hollow fibers containing bio-compatible crack repairing adhesives may be used in joint replacements or as shaped articles for prosthetic devices. In this manner, biomedical embodiments for the smart matrix composite materials possessing the self-repair properties may be used to provide improved or extended fuselage to prosthetic devices and bone replacements. Stress load fractures occurring within the artificial bone or joint segment will self-repair in accordance with the principles of this invention.
In still another embodiment of the present invention, the overall matrices may be used in building applications to provide some seismic resistance or earthquake-proof properties to the structures. More particularly, the response of a solid matrix material containing rigid-filled fibers or liquid-filled fibers may vary in response to seismic waves. Rheological fluids and electrorheological fluids are known which are stiff in one condition, and thereafter upon application of electrical current, may become fluid or liquid. These fillings within reinforcing fibers may be intentionally changed periods of seismic activity in response to, for example, a sensor switch to liquefy or fluidize building structures to better withstand seismic vibration activity without causing brittleness. In the liquefied electrorheological state, the overall matrix composite may be better able to withstand energy vibration than might be encountered in the solid rigid composite structure.
In still another aspect of the invention, it is known that alkali reactions are sometimes caused within cementitious matrix materials when aggregate reacts with matrix causes an expansion of the aggregate against the matrix. This causes internal stresses to develop within the matrix composite or shaped article, which usually appears as cracks within the matrix. The use of the smart fibers in accordance with the present invention containing adhesives will repair some of these cracks. In addition, instead of adhesives these smart fibers may be filled with pH modification agents such as acidic agents to neutralize the alkali reaction. In addition, fibers filled with the alkali reaction inhibiting acidic modifying agent may be used in combination with the matrix repair adhesive filled smart fibers in accordance with this invention.
In accordance with this invention, the matrix selected may vary, for example, Ribtec® mats of stainless steel fibers may be slurry infiltrated with cement, hollow fibers for repair may be included. Under loading, the mat causes the cement to form microcracks, which in accordance with this invention releases the repair adhesives into the matrix to provide a repaired high toughness composite material. Depending on the matrix selected, different fiber properties may be desired, for example, in rigid matrix materials such as cementitious set materials or Sintrex ceramic materials more flexible fibers may be desirable, whereas in polymer matrices having inherent elasticity or flexibility, more rigid fibers such as glass or metal fibers may be desired. In addition, it may be desired to use fibers which become brittle over time. Fibers may be connected to each other with flexible parts to ensure that they do not break prematurely during mixing or compounding. Furthermore, chemicals which survive the long periods of time and which survive repeated temperature variations may also be used as the modifying agents. Although several different matrix materials have been disclosed or suggested herein, others may still be used by those skilled in this art. Although a number of different kinds of fibers have also been described, still other fibers might also be used by those skilled in this art in accordance with the principles of this invention. Different modifying agents and different mechanisms for selective release of the modifying agent in response to an external stimuli or internal stresses caused by other external occurrences might also be developed and designed by those skilled in the art given the principles provided herein. Accordingly, all such obvious modifications may be made herein without departing from the scope and spirit of the present invention as defined by the appended claims.
Patent | Priority | Assignee | Title |
10011149, | Feb 29 2012 | Self-repairing inflatable articles | |
10182887, | Mar 29 2010 | Biomet 3i, LLC | Titanium nano-scale etching on an implant surface |
10392713, | Mar 15 2013 | Honda Motor Co., Ltd. | Corrosion inhibiting compositions and coatings including the same |
10457848, | Aug 17 2010 | Schlumberger Technology Corporation | Self-repairing cements |
10745540, | Aug 01 2017 | Carefusion 2200, Inc | Protection and selective release of colorant |
10765494, | Mar 29 2010 | Biomet 3i, LLC | Titanium nano-scale etching on an implant surface |
10988626, | Mar 15 2013 | Honda Motor Co., Ltd. | Corrosion inhibiting compositions and methods of making and using |
11136675, | Mar 15 2013 | Honda Motor Co., Ltd. | Corrosion inhibiting compositions and coatings including the same |
11403446, | May 19 2021 | GUANGZHOU UNIVERSITY | Method, system and apparatus for predicting residual strength of composite material after impact, and medium |
11543322, | May 01 2020 | GLOBALFOUNDRIES U S INC | Crack identification in IC chip package using encapsulated liquid penetrant contrast agent |
11577212, | Jul 16 2018 | SAS Nanotechnologies Inc. | Stimuli-responsive micro-reservoirs for release of encapsulants |
11802022, | Nov 07 2019 | Otis Elevator Company | Self healing elevator load bearing member |
7067169, | Jun 04 2003 | Chemat Technology Inc. | Coated implants and methods of coating |
7108914, | Jul 15 2002 | Google Technology Holdings LLC | Self-healing polymer compositions |
7126257, | May 23 2003 | Virginia Tech Intellectual Properties, Inc | Piezoelectric ceramic-reinforced metal matrix composites |
7244500, | Feb 15 2005 | New Jersey Institute of Technology | Smart coating system |
7279523, | Nov 06 2002 | TOAGOSEI CO , LTD | 2-cyanoacrylate-based composition, method and agent for evaluating curing thereof |
7285306, | Apr 18 2003 | United States of America as represented by the Administrator of the National Aeronautics and Space Administration | Process for self-repair of insulation material |
7336323, | Sep 27 2005 | Chemimage Technologies LLC | Liquid crystal filter with tunable rejection band |
7341756, | Jun 04 2003 | Chemat Technology, Inc. | Coated implants and methods of coating |
7417796, | Sep 29 2006 | Chemimage Technologies LLC | Wavelength discrimination filter for infrared wavelengths |
7566747, | May 07 2004 | Board of Trustees of the University of Illinois, The | Wax particles for protection of activators, and multifunctional autonomically healing composite materials |
7569625, | Jun 02 2006 | The Board of Trustees of the University of Illinois | Self-healing elastomer system |
7585764, | Aug 09 2005 | GLOBALFOUNDRIES U S INC | VIA bottom contact and method of manufacturing same |
7586233, | May 23 2003 | Virginia Tech Intellectual Properties, Inc | Ferroelastic ceramic-reinforced metal matrix composites |
7607482, | Sep 09 2005 | Halliburton Energy Services, Inc | Settable compositions comprising cement kiln dust and swellable particles |
7607484, | Sep 09 2005 | Halliburton Energy Services, Inc | Foamed cement compositions comprising oil-swellable particles and methods of use |
7612152, | May 06 2005 | The Board of Trustees of the University of Illinois | Self-healing polymers |
7617870, | May 14 2008 | Halliburton Energy Services, Inc | Extended cement compositions comprising oil-swellable particles and associated methods |
7647682, | Jun 17 2004 | Motor mount repair system and methods therefor | |
7648726, | Jun 04 2003 | Chemat Technology, Inc. | Coated implants and methods of coating |
7721500, | Oct 31 2002 | Jeld-Wen, Inc. | Multi-layered fire door and method for making the same |
7723405, | Jan 05 2006 | The Board of Trustees of the University of Illinois | Self-healing coating system |
7758313, | Feb 13 2006 | General Electric Company | Carbon-glass-hybrid spar for wind turbine rotorblades |
7771774, | Nov 14 2005 | Biomet 3i, LLC | Deposition of discrete nanoparticles on an implant surface |
7811666, | Jul 01 2005 | Multiple function, self-repairing composites with special adhesives | |
7830019, | Aug 09 2005 | GLOBALFOUNDRIES Inc | Via bottom contact and method of manufacturing same |
7916764, | Oct 25 2006 | Coherent, Inc | Output power control for harmonic-generating laser |
7927419, | Sep 09 2005 | Halliburton Energy Services Inc. | Settable compositions comprising cement kiln dust and swellable particles |
7934554, | Feb 03 2009 | Halliburton Energy Services, Inc. | Methods and compositions comprising a dual oil/water-swellable particle |
8030253, | Sep 09 2005 | Halliburton Energy Services, Inc. | Foamed cement compositions comprising oil-swellable particles |
8119238, | Apr 18 2003 | The United States of America as represented by the Administrator of the National Aeronautics and Space Administration | Self-healing wire insulation |
8236879, | Sep 20 2006 | Schlumberger Technology Corporation | Cementing composition comprising within un-reacted cement |
8309162, | Jan 28 2008 | Biomet 3i, LLC | Implant surface with increased hydrophilicity |
8431254, | Oct 11 2005 | COMMISSARIAT A L ENERGIE ATOMIQUE | Solid joint obtained by heat projection |
8469095, | May 14 2003 | Schlumberger Technology Corporation | Self adaptive cement systems |
8476203, | May 10 2007 | Halliburton Energy Services, Inc. | Cement compositions comprising sub-micron alumina and associated methods |
8486483, | Nov 14 2005 | Biomet 3i, LLC | Deposition of discrete nanoparticles on an implant surface |
8517101, | Sep 20 2006 | Schlumberger Technology Corporation | Cementing composition comprising within un-reacted cement |
8551244, | May 14 2003 | Schlumberger Technology Corporation | Self adaptive cement systems |
8586512, | May 10 2007 | Halliburton Energy Services, Inc. | Cement compositions and methods utilizing nano-clay |
8603952, | May 10 2007 | Halliburton Energy Services, Inc. | Cement compositions and methods utilizing nano-clay |
8641418, | Mar 29 2010 | Biomet 3i, LLC | Titanium nano-scale etching on an implant surface |
8683798, | Jan 15 2010 | Syracuse University | Stimuli-responsive product |
8685513, | Feb 29 2012 | Inflatable articles comprising a self-repairing laminate | |
8685903, | May 10 2007 | Halliburton Energy Services, Inc. | Lost circulation compositions and associated methods |
8721959, | Jul 01 2005 | Multiple function, self-repairing composites with special adhesives | |
8741818, | May 10 2007 | Halliburton Energy Services, Inc. | Lost circulation compositions and associated methods |
8800656, | Feb 11 2011 | Schlumberger Technology Corporation | Self-adaptive cements |
8844628, | Feb 11 2011 | Schlumberger Technology Corporation | Self-adaptive cements |
8846404, | Jun 25 2010 | Board of Trustees of the University of Illinois | System for visual indication of mechanical damage |
8852672, | Jan 28 2008 | Biomet 3i, LLC | Implant surface with increased hydrophilicity |
8877309, | Feb 29 2012 | Self-repairing inflatable articles | |
8940670, | May 10 2007 | Halliburton Energy Services, Inc. | Cement compositions comprising sub-micron alumina and associated methods |
8974594, | Mar 29 2011 | Empire Technology Development LLC | Microcapsule corrosion control in reinforced concrete |
9034201, | Mar 29 2010 | Biomet 3i, LLC | Titanium nano-scale etching on an implant surface |
9131995, | Mar 20 2012 | Biomet 3i, LLC | Surface treatment for an implant surface |
9198742, | Jan 28 2008 | Biomet 3i, LLC | Implant surface with increased hydrophilicity |
9199879, | May 10 2007 | Halliburton Energy Serives, Inc. | Well treatment compositions and methods utilizing nano-particles |
9206344, | May 10 2007 | Halliburton Energy Services, Inc. | Sealant compositions and methods utilizing nano-particles |
9283056, | Mar 29 2010 | Biomet 3i, LLC | Titanium nano-scale etching on an implant surface |
9382159, | Apr 20 2010 | Schlumberger Technology Corporation | Composition for well cementing comprising a compounded elastomer swelling additive |
9512351, | May 10 2007 | Halliburton Energy Services, Inc. | Well treatment fluids and methods utilizing nano-particles |
9512352, | May 10 2007 | Halliburton Energy Services, Inc. | Well treatment fluids and methods utilizing nano-particles |
9533469, | Dec 23 2008 | Syracuse University | Self-healing product |
9605162, | Mar 15 2013 | Honda Motor Co., Ltd.; HONDA MOTOR CO , LTD | Corrosion inhibiting compositions and methods of making and using |
9657205, | Feb 01 2013 | Carolyn, Dry | Adhesive beads |
9683161, | Aug 17 2010 | Schlumberger Technology Corporation | Self-repairing cements |
9683816, | Sep 08 2014 | Carolyn, Dry | Self-repairing armor |
9694629, | Feb 29 2012 | Carolyn, Dry | Self-repairing inflatable articles incorporating an integrated self-repair system |
9757212, | Mar 29 2010 | Biomet 3i, LLC | Titanium nano-scale etching on an implant surface |
9763751, | Nov 14 2005 | Biomet 3i, LLC | Deposition of discrete nanoparticles on an implant surface |
9765252, | May 10 2007 | Halliburton Energy Services, Inc. | Sealant compositions and methods utilizing nano-particles |
9816189, | Mar 15 2013 | HONDA MOTOR CO , LTD | Corrosion inhibiting compositions and coatings including the same |
Patent | Priority | Assignee | Title |
3179600, | |||
3475188, | |||
3505244, | |||
3704264, | |||
4109033, | Jun 06 1975 | Process for impregnating concrete with polymers | |
4587279, | Aug 31 1984 | University of Dayton; UNIVERSITY OF DAYTON, THE, A CORP OF OHIO | Cementitious building material incorporating end-capped polyethylene glycol as a phase change material |
4961790, | May 19 1989 | Fritz Chemical Company | Concrete admixture device and method of using same |
5232769, | Aug 01 1989 | Kanebo, Ltd. | Microcapsule, treating liquids containing the same, and textile structure having microcapsules adhering thereto |
5561173, | Dec 29 1993 | Carolyn M., Dry | Self-repairing, reinforced matrix materials |
5575841, | Jun 19 1990 | Carolyn M., Dry | Cementitious materials |
5660624, | Jun 19 1990 | Self-repairing, reinforced matrix materials | |
5803963, | Jun 19 1990 | Smart-fiber-reinforced matrix composites | |
5989334, | Jun 19 1990 | Self-repairing, reinforced matrix materials | |
6261360, | Jun 19 1990 | Self-repairing, reinforced matrix materials | |
EP107086, | |||
JP1108262, | |||
JP1113436, | |||
JP2145383, | |||
JP8005529, | |||
JP8013227, | |||
JP8013229, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Aug 24 2006 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Oct 11 2010 | REM: Maintenance Fee Reminder Mailed. |
Mar 04 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 04 2006 | 4 years fee payment window open |
Sep 04 2006 | 6 months grace period start (w surcharge) |
Mar 04 2007 | patent expiry (for year 4) |
Mar 04 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 04 2010 | 8 years fee payment window open |
Sep 04 2010 | 6 months grace period start (w surcharge) |
Mar 04 2011 | patent expiry (for year 8) |
Mar 04 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 04 2014 | 12 years fee payment window open |
Sep 04 2014 | 6 months grace period start (w surcharge) |
Mar 04 2015 | patent expiry (for year 12) |
Mar 04 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |