A process is described for forming a common input-output (I/O) site that is suitable for both wire-bond and solder bump flip chip connections, such as controlled-collapse chip connections (C4). The present invention is particularly suited to semiconductor chips that use copper as the interconnection material, in which the soft dielectrics used in manufacturing such chips are susceptible to damage due to bonding forces. The present invention reduces the risk of damage by providing site having a noble metal on the top surface of the pad, while providing a diffusion barrier to maintain the high conductivity of the metal interconnects. Process steps for forming an I/O site within a substrate are reduced by providing a method for selectively depositing metal layers in a feature formed in the substrate. Since the I/O sites of the present invention may be used for either wire-bond or solder bump connections, this provides increased flexibility for chip interconnection options, while also reducing process costs.
|
1. An input-output structure in a feature formed in a substrate, the substrate having a top surface, the feature having feature sidewalls and a feature bottom, the feature bottom formed over and in contact with an electrically conductive material, the structure comprising:
a barrier layer covering the feature sidewalls and feature bottom, the barrier layer having a barrier bottom and barrier sidewalls; a seed layer of metal having a seed bottom and seed sidewalls covering at least said barrier bottom, said seed layer not extending above said barrier sidewalls; a first metal layer completely covering remaining surfaces of said seed layer, so that said seed layer is completely enclosed by said barrier layer and by said first metal layer, and wherein said first metal layer has a recess formed therein, so that a top surface of said first metal layer is lower than the top surface of the substrate, wherein said first metal layer comprises an electroplatable material selected from the group consisting of copper, platinum, nickel, gold, silver and solder; and a second metal layer covering said first metal layer, said second metal layer consisting essentially of a noble metal.
2. The input-output structure of
6. The input-output structure of
7. The input-output structure of
8. The input-output structure of
9. The input-output structure of
10. The input-output structure of
11. The input-output structure of
12. The input-output structure of
13. The input-output structure of
14. The input-output structure of
15. The input-output structure of
16. The input-output structure of
17. The input-output structure of
|
The present invention relates to semiconductor processing, and more particularly to a process for fabricating a common ball-limiting metallurgy for input/output (I/O) sites used in packaging integrated circuit (IC) chips.
In the fabrication of semiconductor devices, metal lines are often embedded in dielectric layers in a multilevel structure, particularly in the latter stage ("back end of the line" or "BEOL") of the fabrication process. The final layer containing metal lines (sometimes referred to in the art as the terminal via or TV layer) will have metal pads fabricated in contact with the metal lines, in a process sometimes referred to as "far back end of the line", or "far BEOL". The pads and lines together provide interconnects from the chip to other system components. The majority of IC chips use aluminum (Al) to form the interconnects, but more recently copper (Cu) is used.
Some advantages of using Cu rather than Al to form interconnects include higher conductivity (with lower resistance), lower capacitive load, lower power consumption, less crosstalk, fewer metal layers and fewer potential manufacturing steps. However, the disadvantages of using Cu include increased difficulty of depositing thin layers of Cu, potential for contamination of the Cu by underlying silicon thereby lowering performance, migration of Cu between lines, thereby increasing the risk of electrical shorts, and a mismatch in thermal expansion between the substrate and the Cu pads and lines. In order to take full advantage of Cu interconnects, methods of forming Cu interconnects must attempt to overcome these disadvantages of using copper.
Depending on the application, a variety of techniques are used to provide connections between a chip and other components, such as another level of interconnect. Common connections include wire bond and solder bumps.
Wire bonding is well-known in the art and used in the majority of IC chips, but disadvantages include a limited density of interconnect sites and, particularly during chip functional testing, there is the possibility of mechanical damage to the chip at the site of the bond. A typical example of a wire bond is illustrated in FIG. 1B. In this prior art example, a substrate 120 has a metal line 115 embedded. The metal line could be aluminum or copper. A metal pad 114, often composed of aluminum (Al) is formed over the metal line 115, supported by a dielectric 110. Typically, the aluminum pad will have an oxide layer 112 which forms readily over the surface because of the reactivity of aluminum. A wire 118, often gold (Au), will be bonded to the pad using techniques known in the art, such as thermosonic bonding. One problem in forming wire bonds between gold and aluminum is that gold forms intermetallics with aluminum that can reduce the reliability of the bond.
Another problem with current integrated circuits, particularly those using Cu metallization, is that the low-k dielectrics employed are soft and sensitive to damage by pressure. Circuit testing is performed by pushing a set of test probes against critical conductive points on the top layer. The surface oxide must be broken through (often by a technique known as "scrubbing") in order to form a good contact between the test probe and the pad metal. Therefore, particularly in the case of soft low-k dielectrics, the chip is subjected to potential mechanical damage. It would therefore be desirable to form an I/O pad that does not require scrubbing to provide low contact resistance with test probes.
Solder bump technology (known as flip chip technology in the art) potentially provides higher density and higher performance, but suffers from greater difficulty compared to wire bonding for rework and testing. An example of solder bump technology is controlled-collapse chip connection (C4) in which solder bumps are provided on both the chip and the interconnection substrate, and the connection is made by aligning the solder bumps of the chip and substrate and reflowing the solder to make the connections. The solder bumps are formed by depositing solder on a ball-limiting metallurgy (BLM) as illustrated in
In view of the foregoing discussion, there is a need to provide an I/O site that can take advantage of copper metallization without degrading performance, reduce process steps and increase flexibility in preparing I/O sites.
The present invention addresses the above-described need by providing a process for fabricating a ball-limiting metallurgy (BLM) that can be used as a common site for both wire bond and controlled-collapse chip connection (C4) wafers.
This invention solves the problem of contamination of the metal lines by providing a diffusion barrier layer between the line and the I/O pad, and by providing a first recessed layer of metal within a feature formed in within a substrate upon which the I/O site of the present invention is formed.
This invention also solves the problem of damage to the chip caused by the forces of probing and/or wire bonding by providing a top layer of noble metal on the I/O site, which eliminates the presence of an oxide layer and requires less bonding force, and, in the case of gold wire bonding, no intermetallics are formed.
This invention has the advantage of reducing the number of process steps used to form an I/O site, and provides a flexible site that can be a common site for either a wire bond or a BLM, thereby reducing overall processing costs.
In accordance with one aspect of the invention, an input-output structure in a feature formed in a substrate, the substrate having a top surface, the feature having feature sidewalls and a feature bottom, the feature bottom formed over an electrically conductive material, the structure comprising:
a barrier layer covering the feature sidewalls and feature bottom, the barrier layer having a barrier bottom and barrier sidewalls;
a seed layer of metal having a seed bottom and seed sidewalls covering at least said barrier bottom; and
a first metal layer covering at least said seed bottom and having a recess formed therein, so that a top surface of said first metal layer is lower than the top surface of the substrate; and
a second metal layer covering said first metal layer.
In accordance with another aspect of the present invention, an input-output site is formed in a feature in a substrate, the substrate having a top surface, the feature having feature sidewalls and a feature bottom, the feature bottom formed over an electrically conductive material, the method comprising the steps of:
depositing a barrier layer covering the top surface of the substrate, the feature sidewalls and the feature bottom, so that the barrier layer has a barrier bottom and barrier sidewalls;
depositing a seed layer of metal covering the surface of said barrier layer;
selectively removing said seed layer from at least the top surface so that the seed layer is reduced to a portion of the seed layer on at least said barrier bottom;
electroplating a first metal layer using said portion of said seed layer, so that said first metal layer has a recess formed therein and so that a top surface of said first metal layer is lower than the top surface of the substrate; and
electroplating a second metal layer, so that said second metal layer covers said first metal layer.
The novel features believed to be characteristic of this invention are set forth in the appended claims. The invention itself, however, as well as other objects and advantages thereof, may be best understood by reference to the following detailed description of an illustrated preferred embodiment to be read in conjunction with the accompanying drawings.
In the following descriptions of the preferred embodiments of the invention, steps in the formation of the last level build to form a common ball-limiting metallurgy (BLM) structure prior to packaging will be detailed. It will be appreciated that this is intended as an example only, and that the invention may be practiced with a variety of substrates and metals.
As shown in
The seed layer 23 is then selectively removed from at least the top surface of the liner 22, preferably using chemical-mechanical polishing (CMP), leaving a portion of the seed layer 23 on at least the bottom of the feature 21 and typically also remaining on the sidewalls of feature 21, resulting in the structure shown in FIG. 2B. Although the resulting seed layer 23 shown in
A first electroplated layer 24 is formed using the seed layer 23 and applying a current to the barrier layer 22, resulting in the structure illustrated in FIG. 2C. Before layer 24 is formed, the surface of the seed layer 23 must be clean. This can be accomplished by cleaning methods such as brush cleaning, wet cleaning, or wet cleaning with ultrasonics as known in the art. Suitable materials for the first electroplated layer 24 include platinum (Pt), gold (Au), copper (Cu), silver (Ag), solder, or nickel (Ni). In the case where the conductive feature 27 is Cu, the material selected to electroplate layer 24 is preferably selected to act as an additional diffusion barrier, for example Ni. During plating, layer 24 will nucleate only on the seed layer 23 and will not plate on the barrier layer 22.
A second electroplated layer 26 is formed over the first electroplated layer 24, which will serve as the pad for the common I/O site. Layer 26 is preferably a noble metal, such as Au, platinum, or palladium. Once again, current is applied to the conductive barrier layer 22 during the electroplating process, which is preferably performed while the Ni layer 24 is still wet after the Ni bath has been rinsed. The thickness of layer 26 can be varied according to the desired application, and may extend above the top surface 22a as shown in
First Embodiment: Wirebond Pad
An embodiment of the present invention for use as a wirebond I/O site may be formed starting with the structure in FIG. 2D. The barrier layer 22 is selectively removed from portions of the top surface not covered by plated layer 26, which is preferably Au. This can be performed by a selective polishing method as known in the art, or by a wet etch, such as HF/Nitric acid.
Following the selective removal of the barrier layer 22, an optional scratch protection layer (not shown) may be deposited over the entire surface. A typical scratch protection layer known in the art is polyimide.
A wire 35, preferably Au, may now be bonded to the pad layer 26 as shown in FIG. 3B. The wire 35, which is also preferably Au, is bonded to the pad 26 using standard techniques known in the art, such as thermosonic bonding, ultrasonic bonding, or thermocompression bonding. The pad layer 26 formed in accordance with the present invention has the advantage over prior art in that lower force is required to provide a bond, since both the wire 35 and the pad 26 may be Au. During the testing of integrated circuits, prior art aluminum pads require a sufficiently large surface so that a test probe can scrub the surface of the pad in order to break through the aluminum oxide layer that normally forms on the surface of the aluminum. Unlike prior art aluminum pads, the pad 26 formed from Au in accordance with the present invention will have a surface that is free of oxide because gold is a noble metal. Because scrubbing during testing is not required, the wirebond pad 26 formed in accordance with the present invention can be smaller than prior art pads, which can result in an increased density of I/O sites.
Second Embodiment: C4 Site with Plated Solder
The structure of
In this embodiment, a third layer 45 is electroplated onto layer 26 by applying current to the conductive barrier layer 22 as shown in FIG. 4A. Again, the barrier layer 22 is preferably a combination of Ta and TaN. The material used to form layer 45 is a solder, preferably 97% lead (Pb) and 3% tin (Sn), but many other suitable varieties of solder may be used as known in the art.
Next, the conductive barrier layer 22 is selectively removed, preferably by a wet etch technique as known in the art, leaving the solder layer 45 as shown in FIG. 4B.
Finally, the solder is re-flowed to form the C4 solder bump 45 as shown in
Third Embodiment: C4 Site with Evaporated Solder
As an alternative embodiment of the present invention, a C4 solder bump may be formed starting with the structure of
After evaporation, the mask 52 is removed, leaving evaporated layers 55 of Pb and Sn on the pad layer 26 as shown in FIG. 5B.
Next, the solder is reflowed to form the C4 solder bump 55 shown in FIG. 5C.
In summary, the common BLM structures formed in accordance with the present invention allows the use of noble metals to form I/O pads that reduce costs by simplifying process-steps and also allow an increase in I/O site density due to smaller pad sizes.
While the invention has been described in terms of specific embodiments, it is evident in view of the foregoing description that numerous alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the invention is intended to encompass all such alternatives, modifications and variations which fall within the scope and spirit of the invention and the following claims.
Walker, George F., Cheng, Tien-Jen, Volant, Richard P., Petrarca, Kevin S., Gruber, Peter A., Goldblatt, Ronald D., Horton, Raymond R.
Patent | Priority | Assignee | Title |
10010977, | May 05 2004 | Micron Technology, Inc. | Systems and methods for forming apertures in microfeature workpieces |
10818620, | Dec 03 2008 | Renesas Electronics Corporation | Semiconductor integrated circuit device |
11177175, | Dec 10 2003 | Micron Technology, Inc. | Microelectronic devices and methods for filling vias in microelectronic devices |
11476160, | Sep 01 2005 | Micron Technology, Inc. | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
12159846, | Jul 01 2019 | Texas Instruments Incorporated | Process flow for fabrication of cap metal over top metal with sinter before protective dielectric etch |
6715663, | Jan 16 2002 | Intel Corporation | Wire-bond process flow for copper metal-six, structures achieved thereby, and testing method |
6724087, | Jul 31 2002 | GLOBALFOUNDRIES U S INC | Laminated conductive lines and methods of forming the same |
6732908, | Jan 18 2002 | Veeco Instruments INC | High density raised stud microjoining system and methods of fabricating the same |
6995475, | Sep 18 2003 | Invensas Corporation | I/C chip suitable for wire bonding |
7115997, | Nov 19 2003 | GLOBALFOUNDRIES Inc | Seedless wirebond pad plating |
7144490, | Nov 18 2003 | International Business Machines Corporation | Method for selective electroplating of semiconductor device I/O pads using a titanium-tungsten seed layer |
7232747, | Aug 22 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of wafer bumping for enabling a stitch wire bond in the absence of discrete bump formation |
7282433, | Jan 10 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interconnect structures with bond-pads and methods of forming bump sites on bond-pads |
7294897, | Jun 29 2004 | Round Rock Research, LLC | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
7329943, | Jun 29 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for forming interconnects in microelectronic devices |
7413979, | Nov 13 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming vias in microelectronic devices, and methods for packaging microelectronic devices |
7425499, | Aug 24 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming interconnects in vias and microelectronic workpieces including such interconnects |
7435913, | Aug 27 2004 | Micron Technology, Inc. | Slanted vias for electrical circuits on circuit boards and other substrates |
7521287, | Nov 20 2006 | GLOBALFOUNDRIES Inc | Wire and solder bond forming methods |
7528064, | Jan 10 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interconnect structures with bond-pads and methods of forming bump sites on bond-pads |
7531453, | Jun 29 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for forming interconnects in microelectronic devices |
7534651, | Nov 19 2003 | GLOBALFOUNDRIES Inc | Seedless wirebond pad plating |
7601628, | Nov 20 2006 | GLOBALFOUNDRIES Inc | Wire and solder bond forming methods |
7622377, | Sep 01 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature workpiece substrates having through-substrate vias, and associated methods of formation |
7629249, | Aug 28 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
7683458, | Sep 02 2004 | Round Rock Research, LLC | Through-wafer interconnects for photoimager and memory wafers |
7749899, | Jun 01 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic workpieces and methods and systems for forming interconnects in microelectronic workpieces |
7759800, | Nov 13 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronics devices, having vias, and packaged microelectronic devices having vias |
7829976, | Jun 29 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for forming interconnects in microelectronic devices |
7830018, | Aug 31 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Partitioned through-layer via and associated systems and methods |
7858429, | Jun 29 2004 | Round Rock Research, LLC | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
7863183, | Jan 18 2006 | GLOBALFOUNDRIES Inc | Method for fabricating last level copper-to-C4 connection with interfacial cap structure |
7863187, | Sep 01 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature workpieces and methods for forming interconnects in microfeature workpieces |
7884015, | Dec 06 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
7902643, | Aug 31 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
7939948, | Jan 10 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interconnect structures with bond-pads and methods of forming bump sites on bond-pads |
7956443, | Sep 02 2004 | Round Rock Research, LLC | Through-wafer interconnects for photoimager and memory wafers |
7973411, | Aug 28 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
7993944, | Aug 24 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers |
8008192, | Jun 28 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Conductive interconnect structures and formation methods using supercritical fluids |
8053857, | Jun 29 2004 | Round Rock Research, LLC | Packaged microelectronic imagers and methods of packaging microelectronic imagers |
8063489, | Dec 03 2008 | Renesas Electronics Corporation; NEC Electronics Corporation | Semiconductor integrated circuit device |
8084866, | Dec 10 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for filling vias in microelectronic devices |
8148257, | Sep 30 2010 | Infineon Technologies AG | Semiconductor structure and method for making same |
8247907, | Dec 06 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
8322031, | Aug 27 2004 | Micron Technology, Inc. | Method of manufacturing an interposer |
8330274, | Sep 29 2010 | Infineon Technologies AG | Semiconductor structure and method for making same |
8367538, | Aug 31 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Partitioned through-layer via and associated systems and methods |
8482125, | Jul 16 2010 | Qualcomm Incorporated | Conductive sidewall for microbumps |
8502353, | Sep 02 2004 | Round Rock Research, LLC | Through-wafer interconnects for photoimager and memory wafers |
8536046, | Aug 31 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Partitioned through-layer via and associated systems and methods |
8536485, | May 05 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Systems and methods for forming apertures in microfeature workpieces |
8610279, | Aug 28 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods |
8664562, | May 05 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Systems and methods for forming apertures in microfeature workpieces |
8669179, | Sep 02 2004 | Round Rock Research, LLC | Through-wafer interconnects for photoimager and memory wafers |
8686313, | May 05 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | System and methods for forming apertures in microfeature workpieces |
8748311, | Dec 10 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for filing vias in microelectronic devices |
8772952, | Sep 25 2009 | Renesas Electronics Corporation | Semiconductor device with copper wire having different width portions |
9024454, | Sep 25 2009 | Renesas Electronics Corporation | Method of manufacturing semiconductor device |
9099539, | Aug 31 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
9214391, | Dec 30 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
9231046, | Mar 15 2013 | GLOBALFOUNDRIES U S INC | Capacitor using barrier layer metallurgy |
9281241, | Dec 06 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods |
9293367, | Jun 28 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Conductive interconnect structures and formation methods using supercritical fluids |
9452492, | May 05 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Systems and methods for forming apertures in microfeature workpieces |
9466559, | Dec 03 2008 | Renesas Electronics Corporation | Semiconductor integrated circuit device |
9570350, | Aug 31 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microfeature workpieces having interconnects and conductive backplanes, and associated systems and methods |
9653420, | Dec 10 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Microelectronic devices and methods for filling vias in microelectronic devices |
ER7964, |
Patent | Priority | Assignee | Title |
4985310, | Apr 08 1988 | International Business Machines Corp. | Multilayered metallurgical structure for an electronic component |
5071359, | Apr 27 1990 | Circuit Components, Incorporated | Array connector |
5244833, | Jul 26 1989 | International Business Machines Corporation | Method for manufacturing an integrated circuit chip bump electrode using a polymer layer and a photoresist layer |
5294486, | Oct 22 1990 | International Business Machines Corporation | Barrier improvement in thin films |
5356526, | Oct 30 1992 | AT&T Bell Laboratories | Copper-based metallizations for hybrid integrated circuits |
5361971, | Jan 19 1993 | Hughes Aircraft Company | Intermediate-temperature diffusion welding |
5434452, | Nov 01 1993 | Motorola, Inc. | Z-axis compliant mechanical IC wiring substrate and method for making the same |
5442239, | Apr 10 1991 | International Business Machines Corporation | Structure and method for corrosion and stress-resistant interconnecting metallurgy |
5457345, | May 11 1992 | International Business Machines Corporation | Metallization composite having nickle intermediate/interface |
5872400, | Jun 25 1997 | ULTRATECH, INC | High melting point solder ball coated with a low melting point solder |
5907790, | Jul 15 1993 | Astarix Inc. | Aluminum-palladium alloy for initiation of electroless plating |
5915977, | Jun 02 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | System and interconnect for making temporary electrical connections with bumped semiconductor components |
5960251, | Apr 18 1996 | International Business Machines Corporation | Organic-metallic composite coating for copper surface protection |
6165888, | Oct 02 1997 | Freescale Semiconductor, Inc | Two step wire bond process |
6218302, | Jul 21 1998 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for forming a semiconductor device |
JP10163590, | |||
JP9321050, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 17 2001 | CHENG, TIEN-JEN | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011574 | /0574 | |
Jan 19 2001 | VOLANT, RICHARD P | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011574 | /0574 | |
Jan 19 2001 | PETRARCA, KEVIN S | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011574 | /0574 | |
Jan 21 2001 | GOLDBLATT, RONALD D | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011574 | /0574 | |
Jan 26 2001 | WALKER, GEORGE F | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011574 | /0574 | |
Jan 30 2001 | HORTON, RAYMOND R | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011574 | /0574 | |
Feb 08 2001 | GRUBER, PETER A | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011574 | /0574 | |
Feb 09 2001 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Jun 29 2015 | International Business Machines Corporation | GLOBALFOUNDRIES U S 2 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036550 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S 2 LLC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S INC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Nov 27 2018 | GLOBALFOUNDRIES Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY AGREEMENT | 049490 | /0001 | |
Oct 22 2020 | GLOBALFOUNDRIES Inc | GLOBALFOUNDRIES U S INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054633 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054636 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES U S INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056987 | /0001 |
Date | Maintenance Fee Events |
Jun 30 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 16 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 26 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Sep 26 2014 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
Mar 18 2006 | 4 years fee payment window open |
Sep 18 2006 | 6 months grace period start (w surcharge) |
Mar 18 2007 | patent expiry (for year 4) |
Mar 18 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 18 2010 | 8 years fee payment window open |
Sep 18 2010 | 6 months grace period start (w surcharge) |
Mar 18 2011 | patent expiry (for year 8) |
Mar 18 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 18 2014 | 12 years fee payment window open |
Sep 18 2014 | 6 months grace period start (w surcharge) |
Mar 18 2015 | patent expiry (for year 12) |
Mar 18 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |