An Asynchronous Transfer Mode switch and method which facilitate priority arbitration of point-to-point and point-to-multipoint transmission are disclosed. To execute point-to-multipoint operation a bandwidth arbiter maintains a first list of connections and bit vectors indicating designated destination ports. The list maintained by the bandwidth arbiter is then compared to an unassigned output port bit vector to determine matches therebetween at which point-to-multipoint transmission may be made by utilizing instantaneously unused bandwidth within the switch. To execute point-to-point operation each input port maintains a list of connections associated with each output port, and those lists are used in conjunction with output port request information per input port in the bandwidth arbiter to match requests to the unassigned output port bit vector. The bandwidth arbiter may also assign priority to connections in the list.
|
1. A method for forwarding a data unit within a network switch, comprising:
receiving said data unit at an input port; identifying output ports for which no transmission is scheduled during a specified transmission opportunity; determining, responsive at least in part to said identified output ports for which no transmission is scheduled during said specified transmission opportunity, whether there is sufficient unused allocated bandwidth to forward said data unit within said network switch during said specified transmission opportunity; and forwarding said data unit within said network switch using said unused allocated bandwidth during said specified transmission opportunity, responsive to determining that there is sufficient unused allocated bandwidth to forward said data unit within said network switch during said specified transmission opportunity.
12. A system for forwarding a data unit within a network switch, comprising:
input port logic operable to receive said data unit at an input port; arbitration logic operable to identify output ports for which no transmission is scheduled during a specified transmission opportunity, and to determine, responsive at least in part to said identified output ports for which no transmission is scheduled during said specified transmission opportunity, whether there is sufficient unused allocated bandwidth to forward said data unit within said network switch during said specified transmission opportunity; and forwarding logic operable to forward said data unit within said network switch, using said unused allocated bandwidth during said specified transmission opportunity, responsive to a determination that there is sufficient unused allocated bandwidth to forward said data unit within said network switch during said specified transmission opportunity.
23. A method for forwarding information within a network switch, comprising:
receiving a data unit at an input port; determining whether said data unit is associated with allocated bandwidth during a specified data unit forwarding opportunity; identifying output ports for which no transmission is scheduled during said specified transmission opportunity; determining, responsive at least in part to said identified output ports for which no transmission is scheduled during said specified transmission opportunity, whether allocated bandwidth for said specified data unit forwarding opportunity has not been used; and in the event said data unit is not associated with allocated bandwidth during said data unit forwarding opportunity and allocated bandwidth for said specified data unit forwarding opportunity has not been used, forwarding, at least at some times, said data unit within said network switch using said unused allocated bandwidth during said specified data unit forwarding opportunity.
2. The method of
3. The method of
determining whether there is sufficient unallocated bandwidth to forward said data unit within said network switch; and forwarding said data unit within said network switch in the event that there is not sufficient unallocated bandwidth to forward said data unit and there is sufficient unused allocated bandwidth to forward said data unit within said network switch during said specified transmission opportunity.
4. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
said entry is associated with at least one connection; and no data unit associated with said at least one connection is scheduled for forwarding during said time slot.
13. The system of
14. The system of
arbitration logic is operable to determine whether there is sufficient unallocated bandwidth to forward said data within said network switch; and said forwarding logic is operable to forward said data unit within said network switch in the event that there is not sufficient unallocated bandwidth to forward said data unit and there is sufficient unused allocated bandwidth to forward said data unit within said network switch during said specified transmission opportunity.
15. The system of
18. The system of
19. The system of
21. The system of
22. The system of
24. The method of
25. The method of
determining whether there is sufficient unallocated bandwidth to forward said data unit to said at least one output port; and forwarding said data unit to said at least one output port in the event that there is not sufficient unallocated bandwidth to forward said data unit and there is sufficient unused allocated bandwidth to forward said data unit to said at least one output port during said specified data unit forwarding opportunity.
26. The method of
29. The method of
|
Claims of priority are made to provisional application No. 60/001,498, entitled COMMUNICATION METHOD AND APPARATUS, filed Jul. 19, 1995 and continuation of application Ser. No. 08/683,153 entitled PRIORITY ARBITRATION FOR POINT-TO-POINT AND MULTIPOINT TRANSMISSION, filed Jul. 18, 1996 now U.S. Pat. No. 5,956,342.
The present invention is generally related to telecommunications networks, and more particularly to point-to-point and point-to-multipoint arbitration, bandwidth allocation and delay management within an asynchronous transfer mode switch.
Telecommunications networks such as asynchronous transfer mode ("ATM") networks are used for transfer of audio, video and other data. ATM networks deliver data by routing data units such as ATM cells from source to destination through switches. Switches include input/output ("I/O") ports through which ATM cells are received and transmitted. The appropriate output port for transmission of the cell is determined based on the cell header.
One problem associated with ATM networks is loss of cells. Cells are buffered within each switch before being routed and transmitted from the switch. More particularly, switches typically have buffers at either the inputs or outputs of the switch for temporarily storing cells prior to transmission. As network traffic increases, there is an increasing possibility that buffer space may be inadequate and data lost. If the buffer size is insufficient, cells are lost. Cell loss causes undesirable interruptions in audio and video data transmissions, and may cause more serious damage to other types of data transmissions.
In point-to-point transmission a cell is transmitted from a single input port to a single output port across the switch fabric. In point-to-multipoint transmission a cell is transmitted from a single input to multiple outputs across the switch fabric. In order to execute such a transmission, each of the designated outputs must be available to receive the cell from the transmitting input, i.e., have adequate buffer space. However, the likelihood that each of the designated outputs will be simultaneously prepared to receive the cell when the cell is enqueued decreases as traffic within the switch increases. In some circumstances this may result in delayed transmission. In the worst case, cells will be delayed indefinitely and incoming cells for that connection are discarded. It would therefore be desirable to facilitate transmission by reducing or eliminating delays and cell loss.
An Asynchronous Transfer Mode ("ATM") switch and method which facilitate point-to-multipoint and point-to-point transmission is disclosed. The ATM switch includes a bandwidth arbiter, a plurality of input ports including one To Switch Port Processor ("TSPP") per input port and a plurality of output ports. Each input port within the switch includes a switch allocation table ("SAT") which grants bandwidth to connections. Each SAT includes a plurality of sequentially ordered cell time slots and a pointer which is directed to one of the slots. The SAT pointers at each input port are synchronized such that, at any given point in time, each of the pointers is directed to the same slot location in the respective SAT with which the pointer is associated. Each TSPP maintains a list of point-to-point connections, and more particularly maintains one such list for each output port in the switch. The bandwidth arbiter maintains a bit vector for each port indicating requested output ports for transmission of point-to-point cells.
Each connection is assigned bandwidth types based on the traffic type associated with the connection. There are two types of bandwidth to grant within the switch: allocated and dynamic. Allocated bandwidth is bandwidth which is "reserved" for use by the connection to which the bandwidth is allocated. Generally, a connection with allocated bandwidth is guaranteed access to the full amount of bandwidth allocated to that connection. As such, traffic types that need deterministic control of delay are assigned allocated bandwidth. Dynamic bandwidth is bandwidth which is "shared" by any of various competing connections. Because dynamic bandwidth is a shared resource, there is generally no guarantee that any particular connection will have access to a particular amount of bandwidth. For this reason dynamic bandwidth is typically assigned to connections with larger delay bounds. Other connections may be assigned a combination of dynamic and allocated bandwidth. Any cell time where the SAT entry is not valid or where the scheduling list does not contain a cell thus represents an unassigned bandwidth opportunity.
To execute point-to-point operation the switch employs the point-to-point request bit vectors and round robin operations to grant dynamic bandwidth to point-to-point connections. At the start of the cell time, matches are determined in parallel for each bit in each selected request bit vector and granting is then executed according to a prioritization scheme begining at a first position. Granting opportunities are then provided to the other request bit vectors until granting opportunities have been provided for each request bit vector. A second position indicates an individual bit which receives priority for the granting opportunity. If bandwdith is not granted, granting opportunities are then provided to the other bits in the request bit vector. In the next cell time the first position is then at the next sequential request bit vector relative to the previous cell time if the output port designated by a second position was granted. Otherwise the first position is unchanged. In this manner each TSPP receives equal treatment over time.
To execute point-to-multipoint operation the bandwidth arbiter maintains a list of connections and bit vectors indicating the designated destination ports for a point-to-multipoint cell. The bandwidth arbiter list is then compared to an unassigned output port bit vector generated from the SATs to determine matches therebetween at which point-to-multipoint transmission may be made by utilizing the instantaneously unused bandwidth within the switch. The bandwidth arbiter may also assign priority to connections in the list.
The bandwidth arbiter may also include a combined arbiter mechanism for allocating dynamic bandwidth for both point-to-multipoint and point-to-point connections. In the preferred embodiment each type of connection, i.e., point-to-multipoint and point-to-point, is prioritized into at least two levels of priority such as HI and LO. Dynamic bandwidth is then granted in four main steps. In a first step dynamic bandwidth is granted to HI priority point-to-multipoint connections in the manner described above. In a second step the dynamic bandwidth remaining from the first step is granted to the HI priority point-to-point connections in the manner described above. In a third step the bandwidth remaining from the second step is granted to the LO priority point-to-multipoint connections. In a fourth step the bandwidth remaining from the third step is granted to the LO priority point-to-point connections.
Switch efficiency is increased by utilizing instantaneously unused bandwidth. When switch traffic increases, available bandwidth decreases. Nevertheless, unutilized bandwidth will be present from time to time, and such bandwidth is wasted if not utilized. Therefore, point-to-point and point-to-multipoint transmissions which would otherwise be dropped are made using the otherwise unutilized bandwidth, and switch efficiency is increased. Such use is made possible by the arbitration techniques which reduce delay.
These and other features and advantages of the present invention will become apparent from the following detailed description of the drawing in which:
Referring now to
In order to traverse the switch, a cell 22 first enters the switch through an input port 24 and is buffered in a queue 26 of input buffers. The cell is then transmitted from the input buffers to a queue 28 of output buffers in an output port. From the output port 30, the cell is transmitted outside of the switch, for example, to another switch. To facilitate traversal of the switch, each input port 24 includes a TSPP 14, and each output port 30 includes an FSPP 16. The TSPPs and FSPPs each include cell buffer RAM 32 which is organized into queues 26, 28. All cells in a connection pass through a single queue at each port, one at the TSPP and one at the FSPP, for the life of the connection. The queues thus preserve cell ordering by handling only one connection per queue. This strategy also allows quality of service ("QoS") guarantees on a per connection basis.
Request and feedback messages are transmited between the TSPP and FSPP to implement flow control. Flow control prevents cell loss within the switch, and is performed after arbitration, but before transmission of the data cell. Flow control is implemented on a per connection basis.
Referring now to
Each of the counters is incremented once for each cell time, and the pointer returns to the first slot after reaching the last slot. Hence, given an SAT depth of 8 k, which defines a frame, the pointers scan the SATs approximately every 6 msec, thereby providing a maximum delay for transmission opportunity of approximately 6 msec. The delay can be decreased by duplicating a given entry at a plurality of slots within the SAT. The maximum delay that an incoming cell will experience corresponds to the number of slots between the pointer and the slot containing the entry which specifies the destination of the cell. When multiple entries are made in order to decrease the maximum possible number of separating slots, the duplicate entries are therefore preferably spaced equidistantly within the SAT. Maximum delay for transmission opportunity therefore corresponds to the frequency and spacing of duplicate entries within the SAT.
The amount of bandwidth granted to a particular connection corresponds to the frequency at which a given entry appears in the SAT. Each slot 50 provides 64 Kbps of bandwidth. Since the pointers cycle through the SATs at a constant rate, the total bandwidth granted to a particular connection is equal to the product of 64 Kbps and the number of occurrences of that entry. For example, connection identifier "g (4,6)," which occurs in five slots, is granted 320 Kbps of bandwidth.
Significantly, instantaneously unused bandwidth 60 will become available in the switch during operation. Such instantaneously unused bandwidth may occur because that bandwidth, i.e., that entry in the SAT, has not been allocated to any connection. Such bandwidth is referred to as "unallocated bandwidth." Instantaneously unused bandwidth may also occur when the SAT entry is allocated to a connection, but the connection does not have a cell enqueued for transmission across the switch. Such bandwidth is referred to as "unused-allocated" bandwidth. Both types of bandwidth are collectively referred to as "dynamic" bandwidth, and some connections, such as connections assigned an Available Bit Rate ("ABR") QoS level utilize such dynamic bandwidth. The bandwidth arbiter operates to increase efficiency within the switch by granting dynamic bandwidth to such connections.
Referring now to
The list 53 maintained by the bandwidth arbiter includes two fields for storing point-to-multipoint transmissions which utilize dynamic bandwidth. A connection identifier field 56 is employed to store the connection identifier, e.g., "a," and hence also indicates the port of origin. A bit vector field 58 is employed to indicate the designated output ports for transmission. The bit vector field is a bit mask which, in the case of an 8×8 switch, includes eight bits, each bit corresponding to a specific output port. Thus, for the exemplary SAT entry "a (2,3)" the list 53 contains "00000110" in the bit vector field (where the port numbers start from "1" rather than "0"). The logic "1" values in the bit vector field indicate destination output ports "2" and "3," and the logic "0" values indicate non-destination output ports. The connections and bit vectors in the list 53 are entered sequentially in the order in which they are received.
In an alternate implementation, point-to-multipoint connections can be divided into subsets. A cell is transferred to each one of these subsets. The point-to-multipoint bit vector lookup would have an additional identifier indicating which subset to transfer the cell to. The lists maintained at the bandwidth arbiter and TSPP would then contain both the connection identifier and the subset identifier. In the current embodiment the subset identifier is called a subqueue.
To execute point-to-multipoint operation of cells described in the list maintained by the bandwidth arbiter the bandwidth arbiter tests for matches between the list and dynamic bandwidth. More particularly, the connection identifier 56 and bit vector 58 corresponding to "a (2,3)" is entered into the list 53 so that the cell will be transmitted when a dynamic bandwidth opportunity becomes available for simultaneous transmission to each output port designated by the request.
Referring now to
A prioritization technique may be used in conjunction with the matching operation in the bandwidth arbiter in order to support switch traffic having different priority levels, such as QoS levels. To implement such prioritization each TSPP defines a priority level for each submitted request. Such priority levels could be HI and LO levels, or include greater than two levels. When prioritization is implemented the bandwidth arbiter attempts to match higher priority requests before attempting to match lower priority requests. Since the unassigned bit vector contains less unassigned bits as each subsequent match is made, the higher priority requests are then more likely to obtain a match and be transmitted than the lower priority requests. This higher likelihood for a match translates into a quicker response and greater bandwidth for such higher priority connections.
Referring now to
When HI and Lo prioritization is employed, separate HI and Lo round-robin operations are executed to grant bandwidth. Each of the round-robin operations operates in the same fashion, but matching is not attempted on the Lo priority requests until a match has been attempted with each of the HI priority requests. Hence, a separate round robin operation is executed for each priority level.
To further insure that there will be opportunities for point-to-multipoint connections to transmit, a portion of unassigned bandwidth, i.e., unassigned SAT entries, may be put aside for dedication to point-to-multipoint transmissions. This technique provides increased opportunity for point-to-multipoint connections which specify a greater number of output ports to be matched and transmitted, and hence no connection will be stuck by being starved for bandwidth.
Referring now to
The point-to-point request bit vectors are set in response to signals from the TSPPs. More particularly, when a cell is enqueued for point-to-point transmission the connection associated with that cell is loaded into the TSPP connection list and the TSPP sends a request message 86 to the bandwidth arbiter containing a request to transmit to the output port specified by the connection. For example, when connection "a" is enqueued in connection list 1, TSPP 0 transmits a request message to the bandwidth arbiter, and in response to the request message the bandwidth arbiter sets bit 1 of request bit vector 0 to a logic "1." When the cell is transmitted to the output port, the connection is dequeued from the connection list and, if the connection list thereby empties, a Drop Request 88 message is sent to the bandwidth arbiter. In response, the bandwidth arbiter sets the bit associated with the request to a logic "0." However, if the connection list is not emptied as a result of dequeueing the connection, then the Drop Request message is not sent to the bandwidth arbiter, and the request remains in effect for the next enqueued connection.
Referring now to both FIG. 7 and
Referring now to
In the second matching step 112 an attempt is made to match the first HI priority point-to-point cell indicated by the first and second pointers. If no match is made, flow continues to step 114 where a determination is made whether an attempt has been made with each bit in the point-to-point request bit vector for the TSPP indicated by the first pointer. If each bit has not been tested, the second pointer is incremented 116 and flow continues to step 112. If a match is made in step 112, the selected bit is subtracted 118 from the unassigned output port bit vector and the cell is transmitted 120. The first pointer is then incremented 122. A determination is then made in step 124 whether each TSPP has been tested for matches. If not, flow returns to step 112. If each TSPP has been tested, flow continues to step 126 where the first and second pointers are reset in accordance with the no starvation policy above.
Following step 126 the LO priority point-to-multipoint requests are tested for matches. In a third matching step 128 an attempt is made to match the first LO priority point-to-multipoint request with the unassigned output port bit vector representing unassigned output ports, i.e., dynamic bandwidth. If no match is made, flow continues to step 130 to determine if the end of the point-to-multipoint LO priority list has been reached. If a match is found in step 128, the HI priority point-to-multipoint cell bit vector is subtracted 132 from the unassigned output port bit vector and the cell is transmitted 134. Flow then continues to step 130. If the end of the list has not been reached, then flow continues to step 136 where the next request is loaded, and flow continues at step 128. If the end of the list has been reached, flow continues to a fourth matching step 138.
In the fourth matching step 138 an attempt is made to match the first LO priority point-to-point cell indicated by the first and second pointers. If no match is made, flow continues to step 140 where a determination is made whether an attempt has been made with each bit in the point-to-point request bit vector for the TSPP indicated by the first pointer. If each bit has not been tested, the second pointer is incremented 142 and flow continues to step 138. If a match is made in step 138, the selected bit is subtracted 144 from the unassigned output port bit vector and the cell is transmitted 146. The first pointer is then incremented 148. A determination is then made in step 150 whether each TSPP has been tested for matches. If not, flow returns to step 138. If each TSPP has been tested, flow continues to step 152 where the first and second pointers are reset in accordance with the no starvation policy above. Flow then ends for the cell time.
Having described the preferred embodiments of the invention, it will now become apparent to one of skill in the art that other embodiments incorporating their concepts may be used. It is felt therefore that the invention should not be limited to disclosed embodiments, but rather should be limited only by the spirit and scope of the appended claims.
Manning, Thomas A., Hauser, Stephen A., Caldara, Stephen A., Colsman, Matthias L.
Patent | Priority | Assignee | Title |
10957445, | Oct 05 2017 | Hill-Rom Services, Inc. | Caregiver and staff information system |
11257588, | Oct 05 2017 | Hill-Rom Services, Inc. | Caregiver and staff information system |
11688511, | Oct 05 2017 | Hill-Rom Services, Inc. | Caregiver and staff information system |
6813267, | Sep 11 2000 | Oracle America, Inc | Tunable broadcast/point-to-point packet arbitration |
6963577, | Aug 23 1999 | Fujitsu Limited | Packet Switch |
7088710, | Dec 22 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of transmitting information through data switching apparatus and apparatus therefor |
7317730, | Oct 13 2001 | Cisco Technology, Inc | Queueing architecture and load balancing for parallel packet processing in communication networks |
7633935, | May 29 2003 | Ericsson AB | Dynamic port updating |
7720092, | Jan 17 2002 | Juniper Networks, Inc. | Hierarchical round robin arbiter |
8254411, | Feb 10 2005 | International Business Machines Corporation | Data processing system, method and interconnect fabric having a flow governor |
8787393, | Apr 11 2005 | International Business Machines Corporation | Preventing duplicate sources from clients served by a network address port translator |
8831110, | Jul 20 2011 | GRAY TELEVISION GROUP, INC | Electronic news gathering method and system for the prioritized transmission of data |
9001841, | Dec 27 2011 | Fujitsu Limited | Communication control device, parallel computer system, and communication control method |
9253146, | Apr 11 2005 | International Business Machines Corporation | Preventing duplicate sources from clients served by a network address port translator |
Patent | Priority | Assignee | Title |
5051982, | Jul 27 1989 | Data General Corporation | Methods and apparatus for implementing switched virtual connections (SVCs) in a digital communications switching system |
5392280, | Apr 07 1994 | Mitsubishi Electric Research Laboratories, Inc | Data transmission system and scheduling protocol for connection-oriented packet or cell switching networks |
5838681, | Jan 24 1996 | RIVERSTONE NETWORKS, INC | Dynamic allocation of port bandwidth in high speed packet-switched digital switching systems |
5956342, | Jul 19 1995 | FUJITSU LIMITED, A JAPANESE CORPORATION | Priority arbitration for point-to-point and multipoint transmission |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 11 1999 | Fujitsu Network Communications, Inc. | (assignment on the face of the patent) | / | |||
Mar 11 1999 | Fujitsu Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 28 2006 | ASPN: Payor Number Assigned. |
Apr 28 2006 | RMPN: Payer Number De-assigned. |
Sep 25 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 04 2008 | ASPN: Payor Number Assigned. |
Aug 04 2008 | RMPN: Payer Number De-assigned. |
Nov 01 2010 | REM: Maintenance Fee Reminder Mailed. |
Mar 25 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 25 2006 | 4 years fee payment window open |
Sep 25 2006 | 6 months grace period start (w surcharge) |
Mar 25 2007 | patent expiry (for year 4) |
Mar 25 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 25 2010 | 8 years fee payment window open |
Sep 25 2010 | 6 months grace period start (w surcharge) |
Mar 25 2011 | patent expiry (for year 8) |
Mar 25 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 25 2014 | 12 years fee payment window open |
Sep 25 2014 | 6 months grace period start (w surcharge) |
Mar 25 2015 | patent expiry (for year 12) |
Mar 25 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |