A process and system for populating a database of repair codes used by respective diagnostic tools to identify repairs of respective machines is provided. The process allows for collecting a list of available repair codes. The process further allows for executing expert analysis upon the collected list so as to determine compatibility of the respective repair codes with the diagnostic tools. A customizing step allows for customizing the list of repair codes based upon the executed expert analysis, and

a storing step allows for storing the customized list of repair codes in the database of repair codes.

Patent
   6543007
Priority
Oct 28 1999
Filed
Nov 19 1999
Issued
Apr 01 2003
Expiry
Nov 19 2019
Assg.orig
Entity
Large
67
45
all paid
1. A process for developing, populating and maintaining a database of repair codes each configured for use with a plurality of diagnostic tools used to identify repairs needed on respective machines, the process comprising:
a) identifying and collecting a plurality of available repair codes;
b) executing expert analysis upon the available repair codes so as to determine the compatibility of each repair code therein with the diagnostic tools;
c) customizing the repair codes based upon the executed expert analysis so as to make them compatible with the diagnostic tools; and
d) storing the customized repair codes in the database of repair codes for later use in diagnosing machines to be repaired with the diagnostic tools.
11. A system for developing, populating and maintaining a database of repair codes each configured for use with a plurality of diagnostic tools used to identify repairs needed on respective machines, the system comprising:
means for identifying and collecting a plurality of available repair codes;
means for executing expert analysis upon the available repair codes so as to determine compatibility of each repair code therein with the diagnostic tools;
means for customizing the repair codes based upon the executed expert analysis to make them compatible with the diagnostic tools; and
means for storing the customized repair codes in the database of repair codes for later use in diagnosing machines to be repaired with the diagnostic tools.
21. A system for developing, populating and maintaining a database of repair codes each configured for use with a plurality of diagnostic tools used to identify repairs needed on respective machines, the system comprising:
a database configured to identify and collect a plurality of available repair codes;
a processor configured to perform expert analysis upon the available repair codes so as to determine compatibility of each repair code therein with the diagnostic tools; and
a processor configured to customize the repair codes based upon the executed expert analysis to make them compatible with the diagnostic tools, wherein the database is further configured to store the customized repair codes for later use in diagnosing machines to be repaired with the diagnostic tools.
2. The process of claim 1 wherein the customizing step comprises adding any missing repair codes to the database of repair codes.
3. The process of claim 1 wherein the customizing step comprises resolving any diagnostics ambiguities, if any, in respective ones of the repair codes.
4. The process of claim 1 wherein the customizing step comprises deleting or modifying any repairs codes unsuitable for the diagnostic tools.
5. The process of claim 1 wherein the customizing step comprises deleting any inapplicable repair codes.
6. The process of claim 1 further comprising a step of executing new iterations of steps a) through d) at predetermined intervals so as to maintain the database of repair codes substantially up to date.
7. The process of claim 1 further comprising a step of executing new iterations of steps a) through d) upon deployment of configuration changes and/or new models of the machine.
8. The process of claim 1 wherein the respective machines comprise a fleet of locomotives.
9. The process of claim 1 wherein the database of repair codes comprises respective repair codes for respective subsystems of the locomotive.
10. The process of claim 1 wherein the customizing step comprises:
adding any missing repair codes to the list of repair codes;
resolving any diagnostic ambiguities in respective ones of the repair codes; and
deleting any repair codes indicative of repairs unsuitable and/or inapplicable for the diagnostics tools.
12. The system of claim 11 further comprising means for adding any missing repair codes to the database of repair codes.
13. The system of claim 11 further comprising mean for resolving any diagnostics ambiguities, if any, in respective ones of the repair codes.
14. The system of claim 11 further comprising means for deleting or modifying any repairs codes unsuitable for the diagnostic tools.
15. The system of claim 11 further comprising means for deleting any inapplicable repair codes.
16. The system of claim 11 further means for executing new iterations at predetermined intervals so as to maintain the database of repair codes substantially up to date.
17. The system of claim 11 further comprising means for executing new iterations upon deployment of configuration changes and/or new models of the machine.
18. The system of claim 11 wherein the respective machines comprise a fleet of locomotives.
19. The system of claim 11 wherein the database of repair codes comprises respective repair codes for respective subsystems of the locomotive.
20. The system of claim 11 further comprising:
means for adding any missing repair codes to the database of repair codes;
means for resolving any diagnostic ambiguities in respective ones of the repair codes; and
means for deleting any repair codes indicative of repairs unsuitable and/or inapplicable for the diagnostic tools.

This application claims the benefit of U.S. Provisional Application No. 60/162,298 filed Oct. 28, 1999.

The present invention relates generally to machine diagnostics, and more specifically, to a system and method for configuring repair codes for diagnostics of machine malfunctions.

A machine, such as a locomotive or other complex systems used in industrial processes, medical imaging, telecommunications, aerospace applications, power generation, etc., includes elaborate controls and sensors that generate faults when anomalous operating conditions of the machine are encountered. Typically, a field engineer will look at a fault log and determine whether a repair is necessary.

Approaches like neural networks, decision trees, etc., have been employed to learn over input data to provide prediction, classification, and function approximation capabilities in the context of diagnostics. Often, such approaches have required structured and relatively static and complete input data sets for learning, and have produced models that resist real-world interpretation.

Another approach, Case Based Reasoning (CBR), is based on the observation that experiential knowledge (memory of past experiences--or cases) is applicable to problem solving as learning rules or behaviors. CBR relies on relatively little pre-processing of raw knowledge, focusing instead on indexing, retrieval, reuse, and archival of cases. In the diagnostic context, a case refers to a problem/solution description pair that represents a diagnosis of a problem and an appropriate repair.

CBR assumes cases described by a fixed, known number of descriptive attributes. Conventional CBR systems assume a corpus of fully valid or "gold standard" cases that new incoming cases can be matched against.

U.S. Pat. No. 5,463,768 discloses an approach which uses error log data and assumes predefined cases with each case associating an input error log to a verified, unique diagnosis of a problem. In particular, a plurality of historical error logs are grouped into case sets of common malfunctions. From the group of case sets, common patterns, i.e., consecutive rows or strings of data, are labeled as a block. Blocks are used to characterize fault contribution for new error logs that are received in a diagnostic unit. Unfortunately, for a continuous fault code stream where any or all possible fault codes may occur from zero to any finite number of times and where the fault codes may occur in any order, predefining the structure of a case is nearly impossible.

U.S. Pat. No. 6,343,236, assigned to the same assignee of the present invention and herein incorporated by reference, discloses a system and method for processing historical repair data and fault log data, which is not restricted to sequential occurrences of fault log entries and which provides weighted repair and distinct fault cluster combinations, to facilitate analysis of new fault log data from a malfunctioning machine. Further, U.S. Pat. No. 6,415,395, assigned to the same assignee of the present invention and herein incorporated by reference, discloses a system and method for analyzing new fault log data from a malfunctioning machine in which the system and method are not restricted to sequential occurrences of fault log entries, and wherein the system and method predict one or more repair actions using predetermined weighted repair and distinct fault cluster combinations.

Further, U.S. Pat. No. 6,336,065, titled, "A Method and System for Analyzing Fault and Snapshot Operational Parameter Data For Diagnostics of Machine Malfunctions", and assigned to the same assignee of the present invention and herein incorporated by reference, discloses a system and method that uses snapshot observations of operational parameters from the machine in combination with the fault log data in order to further enhance the predictive accuracy of the diagnostic algorithms used therein. In each of the foregoing approaches, it would be desirable to have accurate and reliable output and/or feedback to the diagnostic tools for machine repairs and/or handling of replaceable components by using repair codes configured to accurately and unambiguously address each respective predicted repair. Thus, it would be desirable to have repair codes configured to precisely and accurately pinpoint to respective components and/or repairs notwithstanding that the machine may have hundreds or even thousands of components, some of them substantially interrelated to one another. It would be further desirable to systematically maintain a database wherein the repair codes are kept substantially up to date notwithstanding deployment of new models and/or configurations either in the diagnostic tools and/or the machine.

Generally speaking, the present invention fulfills the foregoing needs by providing a process for populating a database of repair codes used by respective diagnostic tools to identify repairs of respective machines, the process allows for collecting a list of available repair codes. The process further allows for executing expert analysis upon the collected list so as to determine compatibility of the respective repair codes therein with the diagnostic tools. A customizing step allows for customizing the list of repair codes based upon the executed expert analysis, and a storing step allows for storing the customized list of repair codes in the database of repair codes.

The present invention further fulfills the foregoing needs by providing a system for populating a database of repair codes used by respective diagnostic tools to identify repairs of respective machines. The system includes means for collecting a list of available repair codes. The system further includes means for executing expert analysis upon the collected list so as to determine compatibility of the respective repair codes therein with the diagnostic tools. Customizing means is provided to customize the list of repair codes based upon the executed expert analysis, and storing means allow to store the customized list of repair codes in the database of repair codes.

The features and advantages of the present invention will become apparent from the following detailed description of the invention when read with the accompanying drawings in which:

FIG. 1 is a block diagram of an exemplary system that may readily benefit from the teachings of the present invention and uses a processor for processing operational parameter data and fault log data from one or more machines and for diagnosing a malfunctioning machine;

FIG. 2 is an illustration of exemplary repair log data that may be categorized using the repairs codes configured with the process of the present invention;

FIG. 3 is an illustration of exemplary fault log data;

FIG. 4 is a flow chart of an exemplary embodiment of the process of the present invention for configuring repair codes that may be used for populating a database of repair data;

FIGS. 5 A and 5B collectively make up a flow chart that illustrate further details in connection with the process of FIG. 4;

FIG. 6 is a listing containing exemplary repair codes generated using the flow charts of FIGS. 4 and 5; and

FIG. 7 is a flow chart describing steps for generating a plurality of cases, including predetermined repairs that may be accurately and precisely identified with the repair codes of the present invention, and further including fault cluster combinations and operational parameter observations for each case.

FIG. 1 diagrammatically illustrates one example of a diagnostic system 10 that may readily benefit from the teachings of the present invention. System 10 provides a process for automatically harvesting or mining repair data comprising a plurality of related and unrelated repairs and fault log data comprising a plurality of faults, from one or more machines such as locomotives, and generating weighted repair and distinct fault cluster combinations which are diagnostically significant predictors to facilitate analysis of new fault log data from a malfunctioning locomotive. It will be appreciated that system 10 may allow for hybridly analyzing the fault log data jointly with operational parameters from the machine.

Although the present invention is described with reference to a locomotive, system 10 can be used in conjunction with any machine in which operation of the machine is monitored, such as a chemical, an electronic, a mechanical, or a microprocessor machine.

Exemplary system 10 includes a processor 12 such as a computer (e.g., UNIX workstation) having a hard drive, input devices such as a keyboard, a mouse, magnetic storage media (e.g., tape cartridges or disks), optical storage media (e.g., CD-ROMs), and output devices such as a display and a printer. Processor 12 is operably connected to and processes data contained in a repair data storage unit 20 and a fault log data storage unit 22. Processor 12 is further respectively connected to and processes noise-reduction filters stored in a storage unit 27, and candidate snapshot anomalies stored in a storage unit 28.

Repair data storage unit 20 includes repair data or records regarding a plurality of related and unrelated repairs for one or more locomotives. FIG. 2 shows an exemplary portion 30 of the repair data contained in repair data storage unit 20. The repair data may include a customer identification number 32, a locomotive identification or unit number 33, the date 34 of the repair, the repair code 35, a repair code description 36, a description of the actual repair 37 performed, etc.

Fault log data storage unit 22 includes fault log data or records regarding a plurality of faults occurring prior to the repairs for the one or more locomotives. FIG. 3 shows an exemplary portion 40 of the fault log data contained in fault log data storage unit 22. The fault log data may include a customer identification number 42, a locomotive identification number or unit 44, the date 45 when the fault occurred, a fault code 46, a fault code description 48, etc.

As suggested above, additional data used in the analysis of the present invention include operational parameter data indicative of a plurality of operational parameters or operational conditions of the machine. The operational parameter data may be obtained from various sensor readings or observations, e.g., temperature sensor readings, pressure sensor readings, electrical sensor readings, engine power readings, etc. Examples of operational conditions of the machine may include whether the locomotive is operating in a motoring or in a dynamic braking mode of operation, whether any given subsystem in the locomotive is undergoing a self-test, whether the locomotive is stationary, whether the engine is operating under maximum load conditions, etc. It will be appreciated by those skilled in the art that the repair data storage unit, the fault log data storage unit, and the operational parameter data storage unit may respectively contain repair data, fault log data and operational parameter data for a plurality of different locomotives. It will be further appreciated that the operational parameter data may be made up of snapshot observations, i.e., substantially instantaneous readings or discrete samples of the respective values of the operational parameters from the locomotive. Preferably, the snapshot observations are temporally aligned relative to the time when respective faults are generated or logged in the locomotive. For example, the temporal alignment allows for determining the respective values of the operational parameters from the locomotive prior, during or after the logging of respective faults in the locomotive. The operational parameter data need not be limited to snapshot observations since substantially continuous observations over a predetermined period of time before or after a fault is logged can be similarly obtained. This feature may be particularly desirable if the system is configured for detection of trends that may be indicative of incipient failures in the locomotive.

As suggested above the present invention allows for developing, populating, and maintaining a database or table, for example a look-up table, for each repair code used by the diagnostic system. The repair codes are configured to be used regardless of the specific diagnostic technique used by the diagnostic system, e.g., CBR, Bayesian Belief Network (BBN), etc. Similarly, the output of the diagnostic tool is configured to provide respective repair predictions based on the repair codes found on the database. Generally, any feedback to the diagnostic tools, such as may be used for adaptive learning, is also based on the repair codes stored in the database.

As suggested above, FIG. 4 illustrates a flow chart of an exemplary embodiment of a process 50 of the present invention for configuring repair codes that may be used for populating a database of repair data. As shown in the flowchart of FIG. 4, upon start of operations at step 51, step 52 allows for collecting a list of available repair codes. By way of example and not of limitation, the initial repair codes may be collected from a bucket or database 54 of externally derived codes generally configured for tracking reliability of components of the machine, or any other externally derived codes not necessarily configured for diagnostics. Step 53 allows for executing expert analysis upon the collected list so as to determine compatibility of the respective repair codes with a selected diagnostic tool. By way of example and not of limitation, the expert analysis may be performed by teams of experts who preferably have a reasonably thorough understanding of respective subsystems of the locomotive and their interaction with other subsystems of the locomotive. For example, one team may address repair codes for the traction subsystem of the locomotive. Another team may address repair codes for the engine cooling subsystem, etc. As suggested above, each of such teams may also interact with the diagnostics experts in order to insure that the newly configured repair codes are fully compatible with any of the diagnostics techniques used for running diagnostics on any given locomotive. As further discussed in the context of FIG. 5 below, step 55 allows for customizing the list of repair codes based upon the expert analysis conducted in step 53. Prior to return step 59, step 57 allows for storing the customized list of repair codes in the database of repair data.

As shown in the flowchart of FIG. 5, made up of FIGS. 5A and 5B, upon start of operations at step 51, and as discussed above, step 52 allows for collecting the list of available repair codes. It will be appreciated that the expert analysis performed on the collected repair codes allows for conducting the process steps which are now discussed below. For example, a step 56 allows for determining if there are any missing repair codes. Step 58 allows for adding any such missing codes. Otherwise, step 60 allows for determining if there are ambiguous or imprecise repair codes. Step 62 allows for resolving any such ambiguity or lack of precision. Otherwise, step 64 allows for determining if there are any repair codes unsuitable for the respective diagnostic tools. Step 66 allows for deleting or modifying any such unsuitable repair codes. Otherwise, step 68 allows for determining if there are any inapplicable repair codes. Step 70 allows for deleting any such inapplicable repair codes. Otherwise, any remaining repair codes may be conveniently stored in the database 20 of repair data.

It will be appreciated that if desired, step 72 allows for repeating any new iterations of the process 50. For example, such new iterations may be performed at predetermined time intervals, e.g., annually, monthly, etc., and/or upon the occurrence of predetermined events, such as deployment of new locomotive configurations, updates, etc.

FIG. 6 shows an exemplary list or file of repair codes 35, including respective descriptions 36 and wherein respective repair codes are categorized at least based on a respective subsystem codes 38, assembly codes 39 and subassembly codes 40. It will be appreciated by those skilled in the art that the above categories are merely illustrative being that further categorizations would be readily achievable depending on the level of refinement desired for any given application.

Row 41 is an example of a repair code (e.g., repair code 1404) that may have been previously missing from the externally-derived bucket of codes but since a malfuinction condition described as alternator blower overload is now predictable by the diagnostic system, then that repair code was added to match the foregoing malfunction condition.

Rows 42 collectively represent an example that corrects a previously ambiguous or imprecise repair code, (not shown). For example, the previous code may have simply indicated that there was a control line failure, for example, in the dynamic braking subsystem of the locomotive. However, such repair code may not have been particularly helpful if, for example, there were four control lines in that subsystem. In that case, respective repair codes 1619 through 1622 collectively pinpoint the precise control line being affected due to a respective contactor failure.

Row 43 is an example of a repair code (e.g., repair code 2410) that may be unsuitable for any of the diagnostics tools. In this exemplary case, let us presume that there are a plurality of pipes that carry water to the engine. Let us further assume that the diagnostic tool is not conditioned to pinpoint whether any specific pipe has failed. Thus, in this case having a respective repair code for any of such pipes would be of little value and any such repair code should be deleted. Similarly, row 44 illustrates an example of an inapplicable repair code. For example, presuming that degradation of journal bearings in a truck of a locomotive is not conducive to be readily predicted by any of the diagnostic tools, then having a repair code for such a condition would also be of little value and any such repair code should be deleted.

FIG. 7 is a flowchart of an exemplary process 150 of the present invention for selecting or extracting repair data from repair data storage unit 20, fault log data from fault log data storage unit 22, and operational parameter data from operational parameter data storage unit 29 and generating a plurality of diagnostic cases, which are stored in a case storage unit 24. As used herein, the term "case" comprises a repair and one or more distinct faults or fault codes in combination with respective observations of one or more operational parameters.

With reference still to FIG. 7, process 150 comprises, at 152, selecting or extracting a repair from repair data storage unit 20 (FIG. 1). Given the identification of a repair, the present invention searches fault log data storage unit 22 (FIG. 1) to select or extract, at 154, distinct faults occurring over a predetermined period of time prior to the repair. Similarly, operational parameter data storage unit 29 (FIG. 1) may be searched to select or extract, at 155, respective observations of the operational parameter data occurring over a predetermined period of time prior to the repair. Once again, the observations may include snapshot observations, or may include substantially continuous observations that would allow for detecting trends that may develop over time in the operational parameter data and that may be indicative of malfunctions in the machine. The predetermined period of time may extend from a predetermined date prior to the repair to the date of the repair. Desirably, the period of time extends from prior to the repair, e.g., 14 days, to the date of the repair. It will be appreciated that other suitable time periods may be chosen. The same period of time may be chosen for generating all of the cases.

At 156, the number of times each distinct fault occurred during the predetermined period of time is determined. At 157, the respective values of the observations of the operational parameters is determined. A plurality of repairs, one or more distinct fault cluster and respective observations of the operational parameters are generated and stored as a case, at 160. For each case, a plurality of repair, respective fault cluster combinations, and respective combinations of clusters of observations of the operational parameters is generated at 162.

In addition, when initially setting up case data storage unit 24, a field engineer may review each of the plurality of cases to determine whether the collected data, either fault log data and/or operational parameter data, provide a good indication of the repair. If not, one or more cases can be excluded or removed from case data storage unit 24. This review by a field engineer would increase the initial accuracy of the system in assigning weights to the repair, candidate snapshot malfunctions and fault cluster combinations.

While the preferred embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those of skill in the art without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.

Gibson, David Richard, Bliley, Richard Gerald

Patent Priority Assignee Title
11100732, May 21 2019 GM Global Technology Operations LLC Enhanced system failure diagnosis
6636771, Apr 02 1999 General Electric Company Method and system for analyzing continuous parameter data for diagnostics and repairs
6801841, Feb 15 2001 Standard transportation excellent maintenance solutions
6865512, Nov 12 2002 Koninklijke Philips Electronics N.V.; Koninklijke Philips Electronics N V Automated medical imaging system maintenance diagnostics
6988011, Apr 02 1999 General Electric Company Method and system for analyzing operational parameter data for diagnostics and repairs
7146531, Dec 28 2000 IVANTI, INC Repairing applications
7206965, May 23 2003 General Electric Company System and method for processing a new diagnostics case relative to historical case data and determining a ranking for possible repairs
7392430, Mar 28 2003 International Business Machines Corporation System and program product for checking a health of a computer system
7677452, Jun 30 2006 Caterpillar Inc.; Caterpillar Inc Method and system for providing signatures for machines
7690565, Jun 30 2006 Caterpillar Inc.; Caterpillar Inc Method and system for inspecting machines
7819312, Jun 30 2006 Caterpillar Inc Method and system for operating machines
7869908, Jan 20 2006 GE GLOBAL SOURCING LLC Method and system for data collection and analysis
8024608, Mar 28 2003 International Business Machines Corporation Solution for checking a health of a computer system
8239066, Oct 27 2008 Lennox Industries Inc.; LENNOX INDUSTRIES, INC System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
8255086, Oct 27 2008 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
8260444, Feb 17 2010 Lennox Industries Inc.; Lennox Industries Inc Auxiliary controller of a HVAC system
8295981, Oct 27 2008 Lennox Industries Inc. Device commissioning in a heating, ventilation and air conditioning network
8352080, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
8352081, Oct 27 2008 Lennox Industries Inc.; LENNOX INDUSTRIES, INC Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
8433446, Oct 27 2008 Lennox Industries, Inc.; Lennox Industries Inc Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
8437877, Oct 27 2008 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
8437878, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
8442693, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
8452456, Oct 27 2008 Lennox Industries Inc.; LENNOX INDUSTRIES, INC System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
8452906, Oct 27 2008 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
8463442, Oct 27 2008 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
8463443, Oct 27 2008 Lennox Industries, Inc. Memory recovery scheme and data structure in a heating, ventilation and air conditioning network
8463485, Nov 10 2010 GM Global Technology Operations LLC Process for service diagnostic and service procedures enhancement
8543243, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
8548630, Oct 27 2008 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
8560125, Oct 27 2008 Lennox Industries Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
8564400, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
8600558, Oct 27 2008 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
8600559, Oct 27 2008 Lennox Industries Inc Method of controlling equipment in a heating, ventilation and air conditioning network
8615326, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
8655490, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
8655491, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
8661165, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system
8694164, Oct 27 2008 Lennox Industries, Inc. Interactive user guidance interface for a heating, ventilation and air conditioning system
8725298, Oct 27 2008 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network
8744629, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
8761945, Oct 27 2008 Lennox Industries Inc. Device commissioning in a heating, ventilation and air conditioning network
8762666, Oct 27 2008 Lennox Industries, Inc.; Lennox Industries Inc Backup and restoration of operation control data in a heating, ventilation and air conditioning network
8774210, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
8788100, Oct 27 2008 Lennox Industries Inc.; LENNOX INDUSTRIES, INC System and method for zoning a distributed-architecture heating, ventilation and air conditioning network
8788104, Feb 17 2010 Lennox Industries Inc. Heating, ventilating and air conditioning (HVAC) system with an auxiliary controller
8798796, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc General control techniques in a heating, ventilation and air conditioning network
8802981, Oct 27 2008 Lennox Industries Inc. Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system
8855825, Oct 27 2008 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
8874815, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network
8892797, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
8977794, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
8994539, Oct 27 2008 Lennox Industries, Inc.; LENNOX INDUSTRIES, INC Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
9152155, Oct 27 2008 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
9239991, Sep 05 2013 General Electric Company Services support system and method
9261888, Oct 27 2008 Lennox Industries Inc.; LENNOX INDUSTRIES, INC System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
9268345, Oct 27 2008 Lennox Industries Inc.; LENNOX INDUSTRIES, INC System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
9325517, Oct 27 2008 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
9377768, Oct 27 2008 Lennox Industries Inc. Memory recovery scheme and data structure in a heating, ventilation and air conditioning network
9432208, Oct 27 2008 Lennox Industries Inc. Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system
9574784, Feb 17 2001 Lennox Industries Inc. Method of starting a HVAC system having an auxiliary controller
9599359, Feb 17 2010 Lennox Industries Inc. Integrated controller an HVAC system
9632490, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc System and method for zoning a distributed architecture heating, ventilation and air conditioning network
9651925, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc System and method for zoning a distributed-architecture heating, ventilation and air conditioning network
9678486, Oct 27 2008 Lennox Industries Inc.; Lennox Industries Inc Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
D648641, Oct 21 2009 Lennox Industries Inc. Thin cover plate for an electronic system controller
D648642, Oct 21 2009 Lennox Industries Inc. Thin cover plate for an electronic system controller
Patent Priority Assignee Title
4270174, Feb 05 1979 Snap-On Tools Company Remote site engine test techniques
4463418, Jun 30 1981 International Business Machines Corporation Error correction from remote data processor by communication and reconstruction of processor status storage disk
4517468, Apr 30 1984 Siemens Westinghouse Power Corporation Diagnostic system and method
4695946, Oct 25 1984 Unisys Corporation Maintenance subsystem for computer network including power control and remote diagnostic center
4823914, Jun 24 1987 Elevator Performance Technologies, Inc.; ELEVATOR PERFORMANCE TECHNOLOGIES, INC Status line monitoring system and method of using same
4970725, Mar 14 1989 Micron Technology, Inc Automated system testability assessment method
4977390, Oct 19 1989 Niagara Mohawk Power Corporation Real time method for processing alaarms generated within a predetermined system
5113489, Jan 27 1989 INFOPRINT SOLUTIONS COMPANY, LLC, A DELAWARE CORPORATION Online performance monitoring and fault diagnosis technique for direct current motors as used in printer mechanisms
5123017, Sep 29 1989 The United States of America as represented by the Administrator of the Remote maintenance monitoring system
5157610, Feb 15 1989 Hitachi, Ltd. System and method of load sharing control for automobile
5274572, Dec 02 1987 Schlumberger Technology Corporation Method and apparatus for knowledge-based signal monitoring and analysis
5282127, Nov 20 1989 SANYO ELECTRIC CO , LTD , A CORP OF JAPAN Centralized control system for terminal device
5321837, Oct 11 1991 International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NEW YORK Event handling mechanism having a process and an action association process
5329465, Oct 30 1987 Crane Company; CRANE NUCLEAR, INC Online valve diagnostic monitoring system
5400018, Dec 22 1992 Caterpillar Inc. Method of relaying information relating to the status of a vehicle
5406502, Jun 29 1993 ELBIT LTD System and method for measuring the operation of a device
5445347, May 13 1993 AVIONICA, INC Automated wireless preventive maintenance monitoring system for magnetic levitation (MAGLEV) trains and other vehicles
5463768, Mar 17 1994 General Electric Company Method and system for analyzing error logs for diagnostics
5508941, Dec 20 1991 Alcatel N.V. Network with surveillance sensors and diagnostic system, and method of establishing diagnostics for the network
5521842, Nov 25 1992 FUJIFILM Corporation Diagnostic device and a data communication system for use with the diagnostic device
5528516, May 25 1994 VMWARE, INC Apparatus and method for event correlation and problem reporting
5566091, Jun 30 1994 Caterpillar Inc Method and apparatus for machine health inference by comparing two like loaded components
5594663, Jan 23 1995 Agilent Technologies Inc Remote diagnostic tool
5633628, Jan 03 1996 General Railway Signal Corporation Wheelset monitoring system
5638296, Apr 11 1994 ABB Inc Intelligent circuit breaker providing synchronous switching and condition monitoring
5661668, May 25 1994 VMWARE, INC Apparatus and method for analyzing and correlating events in a system using a causality matrix
5666534, Jun 29 1993 Bull HN Information Systems Inc.; BULL HN INFORMATION SYSTEMS INC Method and appartus for use by a host system for mechanizing highly configurable capabilities in carrying out remote support for such system
5678002, Jul 18 1995 Microsoft Technology Licensing, LLC System and method for providing automated customer support
5712972, Jun 07 1995 Sony Corporation; Sony Electronics, INC Identification of faults in data paths and functional units of a central processing unit by a systematic execution of test instructions
5742915, Dec 13 1995 Caterpillar Inc. Position referenced data for monitoring and controlling
5815071, Mar 03 1995 Omnitracs, LLC Method and apparatus for monitoring parameters of vehicle electronic control units
5845272, Nov 29 1996 General Electric Company System and method for isolating failures in a locomotive
5916286, Sep 15 1995 SPX Corporation Portable automobile diagnostic tool
5950147, Jun 05 1997 Caterpillar Inc Method and apparatus for predicting a fault condition
6031621, Nov 05 1996 Hewlett-Packard Company Information collection system
6067410, Feb 09 1996 NORTONLIFELOCK INC Emulation repair system
6175934, Dec 15 1997 GE GLOBAL SOURCING LLC Method and apparatus for enhanced service quality through remote diagnostics
6216066, Jul 01 1998 General Electric Company System and method for generating alerts through multi-variate data assessment
6243628, Sep 07 1999 GE GLOBAL SOURCING LLC System and method for predicting impending failures in a locomotive
6263322, Jul 07 1998 VTX ACQUISITION CORP ; Vetronix Corporation Integrated automotive service system and method
6301531, Aug 23 1999 General Electric Company Vehicle maintenance management system and method
6336065, Oct 28 1999 Westinghouse Air Brake Technologies Corporation Method and system for analyzing fault and snapshot operational parameter data for diagnostics of machine malfunctions
6343236, Apr 02 1999 General Electric Company Method and system for analyzing fault log data for diagnostics
6345257, Dec 14 1998 National Railroad Passenger Corporation Computer based interactive defect reporting system for the paperless reporting of problems in a vehicle forming part of a fleet
6415395, Apr 02 1999 Westinghouse Air Brake Technologies Corporation Method and system for processing repair data and fault log data to facilitate diagnostics
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 15 1999BLILEY, RICHARD G General Electric Company, a New York CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0104020875 pdf
Nov 15 1999GIBSON, DAVID R General Electric Company, a New York CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0104020875 pdf
Nov 19 1999General Electric Company(assignment on the face of the patent)
Nov 01 2018General Electric CompanyGE GLOBAL SOURCING LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0477360178 pdf
Date Maintenance Fee Events
Aug 10 2004ASPN: Payor Number Assigned.
Oct 19 2006REM: Maintenance Fee Reminder Mailed.
Nov 28 2006M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 28 2006M1554: Surcharge for Late Payment, Large Entity.
Oct 01 2010M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Oct 01 2014M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Apr 01 20064 years fee payment window open
Oct 01 20066 months grace period start (w surcharge)
Apr 01 2007patent expiry (for year 4)
Apr 01 20092 years to revive unintentionally abandoned end. (for year 4)
Apr 01 20108 years fee payment window open
Oct 01 20106 months grace period start (w surcharge)
Apr 01 2011patent expiry (for year 8)
Apr 01 20132 years to revive unintentionally abandoned end. (for year 8)
Apr 01 201412 years fee payment window open
Oct 01 20146 months grace period start (w surcharge)
Apr 01 2015patent expiry (for year 12)
Apr 01 20172 years to revive unintentionally abandoned end. (for year 12)