A ferrule includes a body, a first cover, and a second cover. The body includes a first row of optical fiber receiving V-grooves, a second row of optical fiber receiving V-grooves, and a third row of optical fiber receiving apertures. Each aperture of the third row of optical fiber receiving apertures accommodates a respective optical fiber. The first cover is mounted to the body adjacent the first row of optical fiber receiving V-grooves. Each V-groove of the first row of optical fiber receiving V-grooves accommodates a respective optical fiber which is aligned therein by the first cover. The second cover is mounted to the body adjacent the second row of optical fiber receiving V-grooves. Each V-groove of the second row of optical fiber receiving V-grooves accommodates a respective optical fiber which is aligned therein by the second cover.
|
11. A ferrule comprising:
a one part body having a first row of optical fiber receiving V-grooves, a second row of optical fiber receiving V-grooves, and a third row of optical fiber receiving apertures, and wherein each aperture of the third row of optical fiber receiving apertures has a substantially circular shape; and a sleeve mounted on the one part body adjacent to the first row of optical fiber receiving V-grooves, and the second row of optical fiber receiving V-grooves, and wherein the sleeve adjacent to the first row of optical fiber receiving V-grooves is substantially flat.
12. A ferrule comprising:
a body having a first row of optical fiber receiving V-grooves, a second row of optical fiber receiving V-grooves, and a third row of optical fiber receiving apertures, and wherein the first row of optical fiber receiving V-grooves is separated from the second row of optical fiber receiving V-grooves by the third row of optical fiber receiving apertures, and wherein each V-groove of the first row of optical fiber receiving V-grooves substantially lies in a first plane, and wherein each V-groove of the second row of optical fiber receiving V-grooves substantially lies in a second plane, and wherein each aperture of the third row of optical fiber receiving apertures substantially lies in a third plane, and wherein the first plane is substantially parallel to the second plane, and wherein the first plane is substantially parallel to the third plane, and the body has a first length; a first cover mounted to the body adjacent to the first row of optical fiber receiving V-grooves, and the first cover having a second length; and a second cover mounted to the body adjacent to the second row of optical fiber receiving V-grooves, and the second cover having a third length, and wherein the second length of the first cover is substantially equal to the third length of the second cover, and wherein the first length of the body is different than the second length of the first cover. 1. A ferrule comprising:
a one part body having a first row of optical fiber receiving V-grooves, a second row of optical fiber receiving V-grooves, and a third row of optical fiber receiving apertures, and wherein each aperture of the third row of optical fiber receiving apertures has a substantially circular shape; a first cover mounted to the one part body adjacent to the first row of optical fiber receiving V-grooves, and wherein the first cover adjacent to the first row of optical fiber receiving V-grooves is substantially flat; and a second cover mounted to the one part body adjacent to the second row of optical fiber receiving V-grooves, and wherein the second cover adjacent to the second row of optical fiber receiving V-grooves is substantially flat, and wherein each aperture of the third row of optical fiber receiving apertures accommodates a respective optical fiber, and wherein each V-groove of the first row of optical fiber receiving V-grooves accommodates a respective optical fiber which is aligned therein by the first cover, and wherein each V-groove of the second row of optical fiber receiving V-grooves accommodates a respective optical fiber which is aligned therein by the second cover, and wherein the ferrule has a generally rectangular shape, and wherein the one part body includes a first alignment hole for receiving a first alignment pin and a second alignment hole for receiving a second alignment pin, and wherein the one part body is made of a polymer material, and wherein the first cover is made of a polymer material, and wherein the second cover is made of a polymer material. 10. A ferrule comprising:
a one part body having a first row of optical fiber receiving V-grooves, a second row of optical fiber receiving V-grooves, and a third row of optical fiber receiving apertures, and wherein each aperture of the third row of optical fiber receiving apertures accommodates a respective optical fiber, and wherein each aperture of the third row of optical fiber receiving apertures has a substantially circular shape; a first cover mounted to the one part body adjacent to the first row of optical fiber receiving V-grooves, and wherein each V-groove of the first row of optical fiber receiving V-grooves accommodates a respective optical fiber which is aligned therein by the first cover, and wherein the first cover adjacent to the first row of optical fiber receiving V-grooves is substantially flat; and a second cover mounted to the one part body adjacent to the second row of optical fiber receiving V-grooves, and wherein each V-groove of the second row of optical fiber receiving V-grooves accommodates a respective optical fiber which is aligned therein by the second cover, and wherein the second cover adjacent to the second row of optical fiber receiving V-grooves is substantially flat, and wherein the first row of optical fiber receiving V-grooves is separated from the second row of optical fiber receiving V-grooves by the third row of optical fiber receiving apertures, and wherein each V-groove of the first row of optical fiber receiving V-grooves substantially lies in a first plane, and wherein each V-groove of the second row of optical fiber receiving V-grooves substantially lies in a second plane, and wherein each aperture of the third row of optical fiber receiving apertures substantially lies in a third plane, and wherein the first plane is substantially parallel to the second plane, and wherein the first plane is substantially parallel to the third plane. 2. A ferrule according to
3. A ferrule according to
5. A ferrule according to
7. A ferrule according to
8. A ferrule according to
9. A ferrule according to
|
1. Field of the Invention
The present invention pertains to a ferrule which houses multiple optical fibers. The invention more particularly concerns a ferrule having multiple rows for housing the multiple optical fibers.
2. Discussion of the Background
The application of fiber optics to the telecommunication and data storage industries is expanding every day. Fiber optics enables the high-speed transmission of communications and data. Connectors for optical fibers can be found in the back of instrumentation, telecommunication, routing, and switching cabinets. These cabinets accept a large number of fiber optic connectors.
In order to increase the number of fiber optic connections, designers of cabinets have increased the density of connectors per unit area which are accepted by the cabinets. The number of connectors accepted by the cabinets are restricted by the physical size of the connectors and the space surrounding each connector that is required for its insertion and/or removal from the cabinet. However, to meet the increasing need for more bandwith, designers are challenged to find new ways of packaging the connectors into the cabinets.
Thus, there is a need to provide for an increase in the number of fiber optic connections that can be accommodated in a given unit area of a cabinet.
It is an object of the invention to provide a ferrule of an optical connector that increases the number of optical fibers which are accepted, per unit area, in a cabinet.
It is a further object of the invention to provide a ferrule of an optical connector that has multiple rows of multiple optical fibers.
It is another object of the invention to provide a ferrule of an optical connector that fits into a receptacle designed for a standard optical ferrule, where the standard optical ferrule conforms to one of the following commercialized industrial standards: SC, LC, MP, MPT, MPX, MT, and MACII.
In one form of the invention the ferrule includes a body, a first cover, and a second cover. The body includes a first row of optical fiber receiving V-grooves, a second row of optical fiber receiving V-grooves, and a third row of optical fiber receiving apertures. Each aperture of the third row of optical fiber receiving apertures accommodates a respective optical fiber. The first cover is mounted to the body adjacent the first row of optical fiber receiving V-grooves. Each V-groove of the first row of optical fiber receiving V-grooves accommodates a respective optical fiber which is aligned therein by the first cover. The second cover is mounted to the body adjacent the second row of optical fiber receiving V-grooves. Each V-groove of the second row of optical fiber receiving V-grooves accommodates a respective optical fiber which is aligned therein by the second cover. The first row of optical fiber receiving V-grooves is separated from the second row of optical fiber receiving V-grooves by the third row of optical fiber receiving apertures.
In another form of the invention, the ferrule includes a body, and a sleeve. The body includes a first row of optical fiber receiving V-grooves, a second row of optical fiber receiving V-grooves, and a third row of optical fiber receiving apertures. Each aperture of the third row of optical fiber receiving apertures accommodates a respective optical fiber. The sleeve is mounted on the body so as to retain the optical fibers in the optical fiber receiving V-grooves of the body. In one variation the sleeve slips over the body and is retained thereto by an adhesive or other bonding agent or weldment. In another variation, a circumference of the inside of the sleeve is smaller than the circumference of the body so the sleeve is pressed on the body. The first row of optical fiber receiving V-grooves is separated from the second row of optical fiber receiving V-grooves by the third row of optical fiber receiving apertures.
Thus, the invention achieves the objectives set forth above. The invention provides a ferrule which accepts more optical fibers per unit area than has previously been feasible.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, and more particularly to
An adhesive can be placed between the first cover 30 and the body 20 in the region of the tabs 31 and the slots 27 and also in the region of the first row of optical fibers 50 adjacent to the first row of optical fiber receiving V-grooves 23 so as to secure the first cover 30 and the first row of optical fibers 50 to the body 20. Use of adhesives for bonding purposes are well known in the art. Likewise, the adhesive can be placed between the second cover 40 and the body 20 in the region of the tabs 41 and the slots and also in the region of the second row of optical fibers 60 adjacent to the second row of optical fiber receiving V-grooves 24 so as to secure the second cover 40 and the second row of optical fibers 60 to the body 20. The third row of optical fibers 70 are secured to the body 20 by placing the adhesive in each aperture of the third row of optical fiber receiving apertures 25 and then introducing the optical fibers of the third row of optical fibers 70 therein. Any optical fibers protruding beyond the end of the ferrule 10 are cleaved and/or polished until they are substantially flush with the end of the ferrule 10 as shown in FIG. 1.
The fiber alignment block 80 projects from one side of the body 20 and guides the optical fibers away from the ferrule 10. The fiber alignment block 80 includes a first aperture 81 for receiving and guiding the first row of optical fibers 50, a second aperture 83 for receiving and guiding the second row of optical fibers 60, and a third aperture 82 for receiving and guiding the third row of optical fibers 70. The fiber alignment block 80 is preferably made of a polymer material and is adhesively bonded to the body 20.
In one variation of the invention, the first cover 30 and the second cover 40 can be made of a translucent material and the adhesive can be of the type which is cured by ultraviolet radiation. Once the ferrule 10 is assembled, the assembly is exposed to ultraviolet radiation which passes through the first cover 30 and the second cover 40 so as to cure the ultraviolet sensitive adhesive, thus securing the assembly. Use of adhesives, which cure upon being exposed to ultraviolet radiation, for bonding purposes are well known in the art.
In use, the ferrule 10 can connect to another ferrule or it can attach to a complementary receptacle. Such complementary receptacles are disclosed in U.S. Pat. No. 6,045,270. One of the receptacles, as shown in U.S. Pat. No. 6,045,270, discloses the use of alignment pins which engage corresponding shapes in the connector. U.S. Pat. No. 6,045,270 is hereby incorporated herein by reference. As shown in
In yet another embodiment of the invention,
The attachment of the first cover 130 and the second cover 140 to the body 120 are similar to that described in the previous embodiment. Furthermore, the attachment of the first row of optical fibers 50 (not shown), the second row of optical fibers 60 (not shown), and the third row of optical fibers 70 (not shown) are mated to the first row of optical fiber receiving V-grooves 124, the second row of optical fiber receiving V-grooves 125, and the third row of optical fiber receiving apertures 123, respectively, in a manner similar to the attachment of the optical fibers to the body and first and second covers as described in the previous embodiment.
In still yet another embodiment of the invention,
In yet still another embodiment of the invention,
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of appended claims, the invention may be practiced otherwise than as specifically described herein.
Schofield, Philip W., Shneyder, Gene
Patent | Priority | Assignee | Title |
10908363, | Jan 08 2013 | CommScope, Inc. of North Carolina | Selective UV curing of epoxy adjacent to optical fibers by transmitting UV energy through the fiber cladding |
9176283, | Sep 27 2012 | Hon Hai Precision Industry Co., Ltd. | Optical fiber connector |
9507099, | Apr 05 2012 | Senko Advanced Components, Inc | High density multi-fiber ferrule for optical fiber connector |
9664863, | Jan 08 2013 | CommScope, Inc. of North Carolina | Selective UV curing of epoxy adjacent to optical fibers by transmitting UV energy through the fiber cladding |
Patent | Priority | Assignee | Title |
4088386, | Aug 19 1974 | Corning Glass Works | Optical waveguide connector using resilient material and V-groove |
4818058, | Mar 03 1988 | American Telephone and Telegraph Company AT&T Bell Laboratories | Optical connector |
5044711, | Oct 17 1989 | Sumitomo Electric Industries, Ltd. | Optical-fiber aligning member and method of forming the member |
5257334, | Sep 24 1991 | Seikoh Giken Co., Ltd. | Ribbon type optical fiber connector |
5933564, | Nov 22 1995 | Northrop Grumman Systems Corporation | Optical interconnection apparatus |
6062740, | Aug 25 1997 | SUMITOMO ELECTRIC INDUSTRIES, LTD | Optical connector and method of making the same |
6352372, | Oct 11 1999 | FURUKAWA ELECTRIC NORTH AMERICA, INC | High-density optical connectors |
6364539, | Mar 04 1999 | COMMSCOPE, INC OF NORTH CAROLINA | Stackable multi-fiber ferrules having improved interconnection density |
JP11174274, | |||
JP2000180670, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 03 2001 | SCHOFIELD, PHILIP W | STRATOS LIGHTWAVE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011701 | /0750 | |
Apr 03 2001 | SCHNEIDER, GENE | STRATOS LIGHTWAVE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011701 | /0750 | |
Apr 05 2001 | Stratos Lightwave, Inc. | (assignment on the face of the patent) | / | |||
Nov 19 2003 | STRATOS LIGHTWAVE, INC | STRATOS INTERNATIONAL, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 018160 | /0343 | |
Jul 25 2014 | STRATOS INTERNATIONAL, LLC | KEYBANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 033429 | /0049 |
Date | Maintenance Fee Events |
Oct 03 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 18 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 22 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 22 2006 | 4 years fee payment window open |
Oct 22 2006 | 6 months grace period start (w surcharge) |
Apr 22 2007 | patent expiry (for year 4) |
Apr 22 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 22 2010 | 8 years fee payment window open |
Oct 22 2010 | 6 months grace period start (w surcharge) |
Apr 22 2011 | patent expiry (for year 8) |
Apr 22 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 22 2014 | 12 years fee payment window open |
Oct 22 2014 | 6 months grace period start (w surcharge) |
Apr 22 2015 | patent expiry (for year 12) |
Apr 22 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |