A water jet propulsion system has a flow-through housing with an impeller section, a convergent section having a discharge aperture, and a cup-shaped extension. An impeller is rotatable within the impeller section of the housing. A steering nozzle is pivotably mounted inside the cup-shaped extension for pivoting about an axis. The steering nozzle has an inlet opening with a width greater than its height, a laterally convergent section extending rearward from the inlet opening, and an outlet opening. Preferably the outlet opening of the steering nozzle is generally circular. The steering nozzle has a second section having a passage which is generally cylindrical or slightly convergent. The second section ends at the outlet opening. A support post extends radially outward from the steering nozzle, and a steering arm extends laterally and forward from the support post. A portion of the steering arm extends outside of and overhangs a portion of the cup-shaped extension. The steering nozzle, support post and steering arm are formed as one cast piece.
|
1. A water jet propulsion system comprising:
a flow-through housing comprising an impeller section, a convergent section rearward of said impeller section, and a cup-shaped extension extending from said convergent section; an impeller which is rotatable within said impeller section of said housing; and a steering nozzle comprising an inlet opening with a substantially non-circular cross-section, a first section having a passage which laterally converges from said inlet opening in said rearward direction, and an outlet opening, said first section of said steering nozzle being pivotably mounted inside said cup-shaped extension for pivoting about an axis.
33. A jet-propelled boat comprising:
a hull; an inboard motor; a duct mounted to said hull; an open-ended extension connected to a rear end of said duct, an impeller rotatable within said duct; a shaft coupling said impeller to said motor, said shaft penetrating said hull, and a steering nozzle pivotably mounted to said extension, said steering nozzle having an inlet end which resides inside said extension, said inlet end of said steering nozzle comprising an inlet opening having a width in one direction substantially greater than a height in another direction and a pair of extruded bosses centered on the axis of rotation configured to insert into respective recesses of the extension.
23. A water jet propulsion system comprising:
a duct comprising a convergent section having a discharge aperture at its rearward end; an open-ended extension extending rearward from said convergent section and containing top and bottom recesses; and a steering nozzle pivotably mounted to said extension and having a passage with forward and rearward open ends, said passage comprising a first section which is laterally convergent beginning at said forward open ends and extends for a predetermined distance in said rearward direction, said forward open end of said passage residing inside said extension and comprising top and bottom bosses that protrude into the top and bottom recesses respectively.
38. A water jet propulsion system comprising:
a flow-through housing comprising an impeller section, a convergent section rearward of said impeller section, and a cup-shaped extension extending from said convergent section; an impeller which is rotatable within said impeller section of said housing; and a steering nozzle comprising an inlet opening with a substantially non-circular cross-section, a first section having a passage which laterally converges from said inlet opening in said rearward direction, and an outlet opening, said first section of said steering nozzle being pivotably mounted inside said cup-shaped extension for pivoting about an axis, wherein said cup-shaped extension comprises top and bottom recesses and said steering nozzle comprises top and bottom bosses which protrude into said top and bottom recesses respectively.
12. A water jet propulsion system comprising:
a housing comprising a passage with forward and rearward open ends, said passage having a cross-sectional area which reaches a minimum at a point intermediate said forward and rearward open ends of said housing; an impeller which is rotatable within said passage, said impeller being placed in a first section of said passage of said housing located forward of said point of minimum cross-sectional area; and a steering nozzle having a passage with a forward and rearward open ends, said passage of said steering nozzle comprising a first section which is laterally convergent beginning at said forward open end and extending for a predetermined distance in said rearward direction, said steering nozzle being pivotably mounted inside a second section of said passage of said housing located rearward of said point of minimum cross-sectional area, and said forward open end of said passage of said steering nozzle comprising an opening with a cross-sectional shape of a truncated circle forming a substantially oval-shape.
37. A water jet propulsion system comprising:
a flow-through housing comprising an impeller section, a convergent section rearward of said impeller section, and a cup-shaped extension extending from said convergent section; an impeller which is rotatable within said impeller section of said housing; a steering nozzle comprising an inlet opening with a substantially non-circular cross-section, a first section having a passage which laterally converges from said inlet opening in said rearward direction, and an outlet opening, said first section of said steering nozzle being pivotably mounted inside said cup-shaped extension for pivoting about an axis; a support post extending radially outward from said steering nozzle and a steering arm extending laterally and forward from said support post, a port of said steering arm being outside of and overhanging a portion of said cup-shaped extension wherein said steering nozzle, said support post, and said steering arm are formed as one case piece; and a longitudinal reinforcement rib integrally formed on the exterior of said steering nozzle and integrally connected to said support post.
3. The system as recited in
4. The system as recited in
5. The system as recited in
6. The system as recited in
7. The system as recited in
8. The system as recited in
9. The system as recited in
10. The system as recited in
11. The system as recited in
13. The system as recited in
14. The system as recited in
15. The system as recited in
16. The system as recited in
17. The system as recited in
18. The system as recited in
19. The system as recited in
20. The system as recited in
21. The system as recited in
22. The system as recited in
24. The system as recited in
25. The system as recited in
26. The system as recited in
27. The system as recited in
28. The system as recited in
29. The system as recited in
30. The system as recited in
31. The system as recited in
32. The system as recited in
34. The boat as recited in
35. The boat as recited in
36. The boat as recited in
|
This invention generally relates to water jet-propelled boats or other watercraft. In particular, the invention relates to jet-propelled boats or other watercraft which have a pivotable steering nozzle arranged to receive the pump discharge and divert the discharged water in a desired direction.
It is known to propel a boat or other watercraft using a water jet apparatus mounted to the hull, with the powerhead being placed inside (inboard) the hull. An impeller is mounted on a shaft driven by a drive shaft of the motor, and is housed in a duct having an inlet and an outlet. The impeller is designed such that during motor operation, the rotating impeller impels water rearward through the duct. The water discharged from the duct outlet produces a thrust which propels the boat forward.
In addition, it is known to provide a mechanism for diverting the discharged water flow to one side or the other of a midplane, thereby enabling the boat operator to steer the boat to the left or right during forward propulsion. One such mechanism is a steering nozzle pivotably mounted to the duct and in flow communication with the duct outlet. Preferably the pivot axis of the steering nozzle lies in the midplane. As the steering nozzle is pivoted to the left of a central position, the water flow out of the duct is diverted leftward, producing a thrust which pushes the water jet apparatus and the boat stern to the right, thereby causing the bow of the boat to turn to the left. Similarly, the boat bow turns to the right when the steering nozzle is pivoted to the right of the central position. The overall length of the propulsion unit is reduced when the steering function is accomplished by the discharge nozzle. In other words, the stator discharge is drawn together by a converging cone which also pivots to the sides for steering.
It is also known to provide a mechanism for reversing the direction of the water flow exiting the steering nozzle. In accordance with some known designs, the reverse gate is not steerable, i.e., the reverse gate is pivotably mounted to the fixed stator housing or exit nozzle. In the up position, the reverse gate is clear of the water flow exiting the steering nozzle; in the down position, the reverse gate obstructs the water flow exiting the steering nozzle and reverses the rearward flow component. Some non-steerable designs also reverse the lateral flow component; others do not. The non-steerable reverse gate designs which reverse the lateral flow component cause the rearward-moving boat to turn left when the steering nozzle is turned to the left and to turn right when the steering nozzle is turned to the right.
During pivoting of the reverse gate from its stored position to its fully deployed position or vice versa, the reverse gate must clear the aft upper edge of the steering nozzle. Typically, the center of rotation of the reverse gate is located at the intersection of horizontal plane which bisects the steering nozzle and a vertical plane which intersects the pivot axis of the steering nozzle. The greater the height of the steering nozzle, the greater the radius from the reverse gate pivot axis to the forward edges (upper and lower) of the reverse gate must be in order to ensure that the forward edge of the reverse gate clears the aft upper edge of the steering nozzle. Thus there is a need to provide a steering nozzle having a reduced vertical height, which would allow a corresponding reduction in the radius from the pivot axis to the forward edges of the reverse gate.
A reduction in the latter radius reduces the overall length of reverse gate measured from its pivot axis to its aftmost point. Additionally, the amount of vertical clearance which is needed for the reverse gate in the fully up or stored position would be reduced. This is beneficial in boats designed with a swim platform extending in cantilever fashion from the stern. Even for boats which do not incorporate structure overhanging the stored reverse gate, it is desirable to reduce the vertical height of the stored reverse gate, and the length of the deployed reverse gate, to minimize the extent to which the reverse gate presents an obstacle.
The present invention is directed to a jet-propelled boat comprising a water jet propulsion unit having a low-profile steering nozzle. In particular, the steering nozzle has an inlet opening with a width greater than its height, the vertical height of the steering nozzle inlet is reduced without reducing the volumetric flow rate through the inlet. This reduction in the height of the steering nozzle allows a corresponding reduction in the radius from the reverse gate pivot axis to the forward edges (upper and lower) of the reverse gate without compromising clearance vis-à-vis the aft upper edge of the steering nozzle.
In accordance with one preferred embodiment of the invention, the water jet propulsion system comprises a flow-through housing having an impeller section, a convergent section having a discharge aperture, and a cup-shaped extension; an impeller which is rotatable within the impeller section of the housing; and a steering nozzle pivotably mounted inside the cup-shaped extension for pivoting about an axis. The steering nozzle has an inlet opening with a width greater than its height, a laterally convergent section extending rearward from the inlet opening, and an outlet opening. Preferably the outlet opening of the steering nozzle is generally circular. The steering nozzle further comprises a second section having a passage which is generally cylindrical or slightly convergent. The second section ends at the outlet opening.
In accordance with a further feature of the preferred embodiment, a support post extends radially outward from the steering nozzle, and a steering arm extends laterally and forward from the support post. A portion of the steering arm extends outside of and overhangs a portion of the cup-shaped extension. Preferably the steering nozzle, support post and steering arm are formed as one cast piece. A longitudinal reinforcement rib can be integrally formed on the exterior of the steering nozzle, integrally connected to the support post.
The steering nozzle is pivotably mounted inside the cup-shaped extension by means of a pair of coaxial pivot pins placed at the top and bottom of the extension. In cases where the impeller shaft is inclined, i.e., not horizontal, the pivot pin axis is preferably perpendicular to the impeller axis of rotation, while the centerline axis of the steering nozzle is preferably horizontal, i.e., not parallel to the impeller axis of rotation. In accordance with the preferred embodiment, this is accomplished by fabricating a steering nozzle having a centerline axis which is not perpendicular to the common axis of the pivot holes which receive the pivot pins. In cases where the impeller shaft is horizontal, then the centerline axis of the steering nozzle is preferably coaxial with the impeller axis of rotation.
The invention is further directed to a jet-propelled boat having a water jet propulsion system of the foregoing type.
The stern portion of a jet-propelled boat in accordance with a preferred embodiment of the invention is shown in
In accordance with the boat design depicted in
The water jet propulsion assembly comprises an integrally formed stator housing/exit nozzle 12 fastened to the mounting adapter 14. Alternatively, the stator housing and exit nozzle may be separate components. The exit nozzle discharges the impelled water into a steering nozzle 22. The steering nozzle is pivotably mounted to the exit nozzle. The inlet of the steering nozzle 22 is in flow communication with the inlet opening via the inlet ramp 8, the mounting adapter 14, and the stator housing/exit nozzle 12.
As seen in
Referring to
Still referring to
Although
Still referring to
The preferred embodiment of the invention is shown in more detail in
Referring to
As seen in
The steering nozzle preferably has a passage with a forward section, beginning at the nozzle inlet opening, which is slightly vertically convergent (as shown in
As seen in
As shown in
Preferably the steering nozzle 22, support post 70 and steering arm 72 are formed as one cast piece. Optionally, a longitudinal reinforcement rib 74 is integrally formed on the exterior of the steering nozzle, integrally connected to the support post 70 and to the boss previously described (boss 62 seen in FIG. 5). The end of the steering arm has a clevis 78 with holes for a clevis pin (not shown). The clevis and pin are coupled to the end of a steering control rod (not shown) in conventional fashion. The steering control rod can be remotely operated by the boat operator by means of cables, levers and shafts in known manner. The steering nozzle is preferably pivotable about the pivot pin axis through angles of ±25 to 30 degrees. Although the steering arm 72 shown in
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
As used in the claims, the term "duct" means a fluid flow passage having an inlet and an outlet.
Jones, James R., Freitag, Michael W.
Patent | Priority | Assignee | Title |
10933965, | Aug 21 2018 | TENNESSEE PROPULSION PRODUCTS, LLC | Method of installing jet pump |
6776675, | Sep 18 2001 | Honda Giken Kogyo Kabushiki Kaisha | Jet propulsion boat |
7524220, | Sep 10 2004 | HONDA MOTOR CO , LTD | Water jet propeller |
Patent | Priority | Assignee | Title |
3481303, | |||
3658026, | |||
3776173, | |||
3828717, | |||
4643685, | Jun 29 1984 | Kawasaki Jukogyo Kabushiki Kaisha | Water jet propelled craft |
4917637, | May 28 1987 | Kawasaki Jukogyo Kabushiki Kaisha | Waterjet propulsion system for watercraft |
5395272, | Dec 22 1992 | Steering device for jet boat | |
5401198, | May 24 1991 | Sanshin Kogyo Kabushiki Kaisha | Jet pump system for a water jet propelled boat |
5803775, | Aug 28 1996 | Yamaha Hatsudoki Kabushiki Kaisha | Steering arrangement for jet propulsion unit |
6102756, | Dec 03 1997 | Bombardier Recreational Products Inc | Turning-aid nozzle |
6176749, | Oct 23 1998 | Kawasaki Jukogyo Kabushiki Kaisha | Mounting structure for water jet pump of personal watercraft |
6287162, | Dec 24 1999 | BRP US INC | Bearing arrangement for drive shaft of water jet apparatus |
6299494, | Jun 09 2000 | Bombardier Recreational Products Inc | Articulating nozzle assembly for water jet apparatus |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 12 2000 | FREITAG, MICHAEL W | Outboard Marine Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012079 | /0746 | |
Dec 18 2000 | JONES, JAMES R | Outboard Marine Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012079 | /0746 | |
Dec 18 2003 | Bombardier Motor Corporation of America | Bombardier Recreational Products Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014653 | /0729 | |
Jan 30 2004 | Bombardier Recreational Products Inc | BANK OF MONTREAL | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 014556 | /0334 | |
Jan 31 2005 | Bombardier Recreational Products Inc | BRP US INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016097 | /0548 | |
Jun 28 2006 | BRP US INC | BANK OF MONTREAL, AS ADMINISTRATIVE AGENT | SECURITY AGREEMENT | 018350 | /0269 |
Date | Maintenance Fee Events |
Oct 20 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 26 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 12 2014 | REM: Maintenance Fee Reminder Mailed. |
May 06 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 06 2006 | 4 years fee payment window open |
Nov 06 2006 | 6 months grace period start (w surcharge) |
May 06 2007 | patent expiry (for year 4) |
May 06 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 06 2010 | 8 years fee payment window open |
Nov 06 2010 | 6 months grace period start (w surcharge) |
May 06 2011 | patent expiry (for year 8) |
May 06 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 06 2014 | 12 years fee payment window open |
Nov 06 2014 | 6 months grace period start (w surcharge) |
May 06 2015 | patent expiry (for year 12) |
May 06 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |