A method and apparatus for removing a portion of fat from meat cuts involves placing a meat cut on a longitudinal conveyor, pressing sensor probes into the meat cut to measure the relative thickness of fat and the location of lean in the meat, and then withdrawing the sensor probes from the meat. An electronic signal is transmitted from the sensor to a controller along with an encoder signal to determine the depth from the outer lower surface of the meat cut through a layer of fat in the meat to a layer of lean in the meat. Data taken from the foregoing step determine the desired position of the blade, which removes the appropriate amount of fat to be removed from the meat cut.
|
6. An apparatus for removing a portion of fat from meat cuts, comprising,
a frame, at least one sensor probe having an elongated probe spike and including fiber optics to permit scanning of the interior of a meat cut penetrated by the probe spike, a probing station on the frame, means for moving the probe spike of the sensor probe into and out of a meat cut at the probing station, an elongated skinning blade mounted on the frame, a control on the frame operationally connected to the sensor probe for receiving data from the sensor probe to determine the linear thickness of fat exterior material on the meat cut, means on the control for evaluating the data to determine the variable operating positions of the blade to effect the removal from the meat cut of a predetermined amount of fat, and for variably moving the blade through the variable operating positions while the apparatus is removing a portion of fat from the meat cut.
1. A method for removing a portion of fat from meat cuts, comprising,
placing a meat cut on a longitudinal conveyor, pressing at least one sensor probe into the meat cut to measure the thickness of fat and the location of lean in the meat cut, and then withdrawing the sensor probe from the meat, taking an electronic signal from the sensor probe and determining a depth from an outer lower surface of the meat cut through a layer of fat in the meat cut to a layer of lean in the meat cut, taking data from the preceding step and adjusting the position of a blade to a predetermined position with respect to the meat cut to remove a portion of fat from the meat cut to expose a given area of lean, cutting the portion of fat from the meat cut and varying the position of the blade while the cutting of the meat cut is taking place to optimize the amount of fat portion being removed, and the data is acquired by first optic fibers carrying light internally to the probes being pressed into the meat cut to emit light on an internal part of the meat cut into which the probe is being pressed, and second fiber optics in the probe to receive light from the first fiber optics that are reflected from the meat cut.
2. The method of
3. The method of
4. The method of
5. The method of
7. The apparatus of
8. The apparatus of
9. The apparatus of
11. The apparatus of
12. The apparatus of
13. The apparatus of
|
This application is a continuation-in-part of Ser. No. 09/552,396 filed Apr. 19, 2000.
In the production of processing meat cuts, such as pork butts, existing specifications require that sufficient fat be removed from the butt to expose six to eight square inches of lean meat, while leaving ⅛th to ¼th of an inch fat cover on the remaining curved surface of the meat cut.
Existing machines and methods for achieving the above specification involve safety hazards and inaccurate cutting which results in waste of meat product. Further, more than one trimming operation is normally required to achieve the needed specification. Existing processes are labor intensive.
Until now, the process of removing an optimal amount of fat from meat cuts such as pork butts has required a person who makes repeated cuts until the desired amount of lean meat is exposed. Often this results in waste, as it is impossible to tell without cutting into it at what depth the lean starts and the fat stops.
Previous attempts at automating this process have met with failure because of the variation in fat cover on the meat cuts. The fat cover on meat cuts typically has a layer of lean running through it, which starts about halfway between the neck and the back which is called the false lean. The fat cover is normally thinnest at the neck edge and fattest at the back edge. It is customary when preparing such meat for sale to remove a wedge-shaped piece of fat in order to expose the "false lean". Typically in the industry, enough fat should be removed to expose at least six square inches of lean meat while leaving ⅛th to ¼th of an inch of fat cover on the remaining surface.
It is therefore a principal object of this invention to provide an apparatus for removing a portion of fat from meat cuts which is safe, accurate, and efficient both from a standpoint of time and labor involved.
It is a further object of the invention to provide for the photometric determination of the layers of fat and lean within individual pieces of meat for the purpose of guiding the automated removal of optimal amounts of unwanted material by means of an optical device located within a specially constructed probe.
It is a further object of this invention to use either a stationary or movable blade for fat removal in accordance with a predetermined cutting profile.
These and other objects will be apparent to those skilled in the art.
A method for removing a portion of fat from meat cuts involves placing the meat on a longitudinal conveyor, pressing sensor probes into the meat to measure the thickness of fat and the location of lean therein, and then withdrawing the sensor probes therefrom. An electronic signal is transmitted from the sensor probes to a controller and encoder to determine the depth from the outer lower surface of the meat through a layer of fat therein to a layer of lean. Data taken from the foregoing step determine the desired position of the cutting blade. A predetermined amount of fat is thereupon cut from the meat by the blade. The method is used to determine in meat the layer thicknesses by recording at uniform intervals during the penetration into the meat properties of the reflected light. These properties are mapped against the distance traveled by the probe will show segment thickness.
In an alternate form of the invention, data from a sensor is sent to the control mechanism of the cutting blade. This blade may then be moved according to the information provided by the sensor. If a sensor is not used, then the operator determines the fat thickness of the butts he will be removing from and sets the blade at a position.
An apparatus for removing a portion of fat from meat cuts includes a frame and at least one sensor probe including fiber optics to permit scanning of the interior of a meat cut penetrated by the probe. Power for moving the probe into the meat is mounted on the frame along with a skinning blade mounted in a path of movement of a meat cut on the frame.
A controller on the frame takes data from the sensor probe and determines the linear depth of fat material on the meat cut and lean material in the meat cut. The controller then determines the operating position of the blade and positions the blade to effect the removal of the desired amount of fat. The cutting height of the blade is determined by the sensor.
More specifically, a meat piece is conveyed on a conveyor belt towards the cutting device. The frame supports the probes beneath the conveyor of the meat. As soon as the meat rides over the probe path, the meat pauses, an air cylinder activates and the probes penetrate the meat. The optic fibers for reception and transmission of the signals are threaded through the probes. The probes have a probe window at the distal end. An LED sends light through a first set of fibers in the probes. The receiving signals picked up by the receiving optical fibers send a message to the controller which analyzes the signals. The probes take measurements while they are engaged with the meat piece both on the up and the down stroke. After they are withdrawn and the meat piece travels further into engagement with the skinning mechanism. The signal analysis generates a message, which is used by the blade control device to raise or lower the blade from the pulling surface of the skinning mechanism, resulting in the removal of a piece composed primarily of fat.
The difference in reflected light properties between the fat and lean muscle is distinct enough that a simple probe containing optical fibers can easily distinguish between them. This information is relayed to a controller which controls the motion of a blade.
The controller makes a determination based on the registration of a large number of reflected light properties at intervals of depth in the piece of meat. In addition, all values are inserted into a suitable equation or equation system, which is a multi-variable algorithm for the calculation of layer thicknesses.
The multivariable algorithm may include a preset offset distance which accounts for the distance between the cutting blade and toothroll in the minimum cutting position, and a variable offset which can be modified by the operator to customize this product appearance according to this customer specifications.
In addition, the algorithm may include other variables to vary the desired cutting depth at different times during the cut. For example, the cutting depth may be decreased during the first one-third of the meat to increase the resulting fat depth on the finished product. During the second one-third of the meat the cutting depth may be at the calculated depth. During the last one-third of the meat, the cutting depth may be increased to remove more fat in that area.
The cutting device includes a toothroll, shoe and curved blade holder. The blade holder is fastened to a short section of the shoe. The blade holder provides the desired curved cut, while the shoe/toothroll provides the means to pull the meat through the blade. The blade height adjusting mechanism is actuated electromechanically. The toothroll and exit conveyor drive rotate continuously. The conveyor system must move the meat through the stations, and present it to the cutting device. It indexes, so the meat is stationary when being probed. The conveyor belt is modular to ensure positive indexing. The stations are marked by blue segments on the belt. The stations are a set distance apart. During indexing, the belt accelerates for a set distance, moves at a constant speed a set distance (the approximate length of the meat cut), then decelerates a set distance. The maximum, constant speed of the conveyor is set below the surface speed of the toothroll while the meat is moving through the cutting device. The conveyors must hold the meat securely during probing, and maintain its position through the cutting device so that the depth cut is consistent with the depth measured by the probe. A pivoting, flat top plate positioned just ahead of the blade alternately presses the front end and the back end of the meat into the shoe/toothroll/blade to ensure that the meat gets a good start and finish. An alternate pivoting, curved top plate is used to press the outside edges of the meat into the toothroll for better cuttinq performance.
In an alternate form of the invention, once the blade has been set the meat advances on the conveyor into contact with the blade. The blade mechanism then follows a predetermined arcuate path. This path is based on the measured fat thickness or operator setting and reflects the statistical average of fat covering the butt, which has been determined by the inventors.
The cutting device includes a toothroll, shoe and curved blade holder. The blade holder is curved to cut an arcuate line through the butt perpendicular to the direction of travel. The blade holder is fastened to a short section of shoe. The blade holder provides the desired curved cut, while the shoe/toothroll provides the means to pull the meat through the blade. The blade height adjusting mechanism is actuated electromechanically. This allows the thickness of the fat plate removed to vary from front to back and side to side. The gripper roll and exit conveyor drive rotate continuously.
The infeed conveyor system must move the meat through the stations and present it to the cutting device. The infeed conveyor at its maximum, constant speed is set slower than the gripper roll. This speed differential helps to manipulate the meat piece over the shoe and blade system for accurate fat removal. The speed differential preserves the profile of the meat by compensating for any resistance at the blade.
The machine 10 has a frame 12, (FIG. 1), with a loading station 14, a probing station 16, a waiting station 18, and a skinning station 20 (FIGS. 3A-3D).
With reference to
The belt 22 then departs roll 30 and extends upwardly and forwardly to roll 32 which is slightly below and forwardly of roll 34. The belt extends around roll 32 and thence rearwardly and then again forwardly as it extends around roll 34. The belt then extends to forward roll 36 and departs roll 36 back in a horizontal direction towards the point beginning at roll 26. A motor 38 (
With reference to the upper portion of
A motor 64 is mounted on frame 12, (FIG. 2), and has an output drive pulley 66. A belt 68 extends from pulley 66 and extends forwardly and upwardly to extend around pulley 70. The belt 68 then extends rearwardly and downwardly around pulley 72, and thence upwardly and forwardly around a drive pulley (not shown) on gripper roll 74 which is a part of the skinning station 20 as will be discussed hereafter.
Brackets 76 (
A pair of control arms 86 (
As shown in
With reference to
The feedplate 126 is normally in the horizontal position shown by the solid lines in FIG. 4A. The lead end 130 pivots upwardly as the meat product endeavors to pass thereunder on conveyor 24. This causes the trailing end 132 to move to a level lower than the pin 129 whereupon it exerts force on the meat product as that product moves into contact with the gripping roll 74 and the blade 94. The continued longitudinal movement of the meat towards the blade then causes the meat product to push upwardly on the depressed trailing end 132 which causes the plate 126 to move to the position shown in
In operation, a meat cut A (
The controller 116 thereupon actuates motor 38 to cause conveyor belt 22 to advance in a clockwise direction as seen in
The probe spikes move quickly upwardly and thence downwardly out of the meat product. The sensor 102 works in the manner described and permits the optical fibers 112 to receive the reflected light from optical fibers 110 through the window opening 108, with the reflected light having varying properties depending on whether the light is reflected from fat or lean meat. A signal from the reflected light through fiber optics 112 is transmitted through line 114 to controller 116 and the encoder (not shown) so that the relative thickness of the fat and lean meat is determined by the controller. Obviously, the conveyor 22 is motionless during the time when the meat cut A is penetrated by the probe spikes 104 at the probing station depicted in FIG. 3B.
The probe spikes 104 move quickly into and out of the meat cut and assume the position generally shown in
Critical to the foregoing process is that the controller 116 receives a signal generated from fiber optics 112 to cause the blade 94 to cut the meat cut A passing through the skinning station 20 at a sufficient depth that the fat will be removed at a depth to expose at least six square inches of lean meat. The blade 94 will be at the appropriate depth by virtue of the measurements of sensor 102 transmitted to controller 116 and the encoder (not shown) to cause the blade 94 to be at a depth calculated by the controller. The controller carries out a calculation and transmits a signal to cause a cam shaft (not shown) to rotate within sleeves 88 causing blade arms 86 to adjust the height of blade holder 92 and blade 94 to a depth with respect to gripper roll 74 to cause the blade to be positioned at the correct height.
The preceding principal embodiment contemplates that the cutting blade 94 is moved to its designated cutting height in response to data from the probes, and remains in a stationary or constant position during the cut being made on the meat piece so probed. The alternative embodiment of the invention contemplates that the lateral attitude and/or the height may vary as the cut is being made so that the lateral and/or side profiles of the cut may vary during the cutting action.
The controller 116 (
If more than one probe 102 is used to evaluate a single lab of meat, the controller 116 can adjust the height of the cutting blade 94 at more intervals along the cutting line 140. The ability of the blade 94 to have a varying cutting height during the cut on a given piece of meat, (as compared to the blade having a fixed height during such a cut) means that more fat can be eliminated by increasing the depth of cut in areas of thicker layers of fat, thus substantially increasing the yield of lean meat versus fat for each piece of meat.
It is therefore seen that this invention will achieve at least all of its stated objectives.
Veldkamp, Brent M., Seaberg, R. Thomas, Holms, Don D., McCloskey, Doug
Patent | Priority | Assignee | Title |
6824460, | Feb 26 2003 | Hormel Foods Corporation | Method for removing skin having variations in thickness from the torso of an animal |
6929540, | Sep 19 2003 | Tyson Fresh Meats, Inc. | Automated classifier and meat cut fat trimming method and apparatus |
7001261, | Sep 19 2003 | Tyson Fresh Meats, Inc. | Automated classifier and meat cut fat trimming method and apparatus |
7128642, | Apr 04 2005 | MAREL MEAT PROCESSING INC F K A STORK TOWNSEND INC | Method and apparatus for removing fat and skin from meat parts |
7976368, | Oct 06 2006 | NORDISCHER MASCHINENBAU RUD BAADER GMBH + CO KG | Method and device for processing fish, poultry, or other meat products transported in multitude along a processing line |
8087978, | Nov 12 2004 | MAREL MEAT PROCESSING INC F K A STORK TOWNSEND INC | Method and apparatus for removing skin and fat from meat parts |
8449358, | Nov 12 2004 | STORK TOWNSEND INC. | Method and apparatus for removing skin and fat from meat parts |
8753177, | Feb 02 2011 | WEBER MASCHINENBAU GMBH BREIDENBACH | Apparatus and method for removing a surface layer from a food product |
9039498, | Nov 14 2011 | NORDISCHER MASCHINENBAU RUD BAADER GMBH + CO KG | Conveying apparatus comprising a conveying path and designed to supply a plurality of products for consumption having soft parts to a processing device, and processing machine comprising a conveying apparatus and a processing device |
9687004, | Jun 20 2013 | MAREL, INC | Device for removing skin of meat cuts of irregular thickness |
Patent | Priority | Assignee | Title |
3237664, | |||
3613154, | |||
3789456, | |||
4189806, | Feb 15 1977 | KNUD SIMONSEN INDUSTRIES LIMITED, A CORP OF THE PROVINCE OF ONTARIO | Removing back fat from loin |
4201302, | Oct 10 1978 | Method and apparatus for dividing fat and lean meat | |
4209878, | Mar 20 1978 | Automatic meat inspecting and trimming machine and method | |
4246837, | Jun 20 1977 | Haverhill Meat Products Limited | Meat cutting apparatus |
4628806, | Sep 10 1985 | Deskinning tooth roll apparatus | |
4970755, | Aug 30 1989 | G.E. Leblanc Inc. | Apparatus for trimming back fat off a pork shoulder butt |
4979269, | Aug 03 1989 | CARNITECH A S | Method and apparatus for separating back fat from loins |
5090939, | Mar 16 1990 | G. E. Leblanc Inc. | Apparatus for trimming back fat off a pork loin |
5236323, | Jun 19 1992 | MAJA-MASCHINENFABRIK, HERMAN SCHILL GMBH, CORP OF GERMANY | Automatic meat trimmer apparatus and method |
5324228, | Jul 27 1992 | John Bean Technologies Corporation | Method and apparatus for detecting and trimming fat from meat products |
5334084, | Sep 04 1991 | O BRIEN, WILLIAM H | Method and apparatus for automatically trimming fatty tissue from animal carcasses |
5350334, | Sep 15 1993 | MAREL MEAT PROCESSING INC F K A STORK TOWNSEND INC | Meat skinning machine with pivotal deflector plate |
5429548, | Aug 22 1994 | MAJA-MASCHINENFABRIK, HERMAN SCHILL GMBH, CORP OF GERMANY | Multiple drive press roller and slicer apparatus and method |
5476417, | Aug 22 1994 | MAJA-MASCHINENFABRIK, HERMAN SCHILL GMBH, CORP OF GERMANY | Bent blade holder apparatus and method |
5738577, | Jul 07 1995 | MAJA - MASCHINENFABRIK HERMAN SCHILL GMBH | Automatic butt skinning machine |
6088114, | Nov 07 1996 | Ontario Cattlemen's Association | Apparatus for use in determining meat tenderness |
6118542, | Oct 15 1997 | Purdue Research Foundation | Method and apparatus for determination of a quality property of a piece of meat |
6129625, | Aug 26 1999 | MAREL, INC | Method of trimming a meat portion by ultrasonic and electronic analysis |
6193596, | Jun 06 1997 | Sasakat Pty Ltd | Positioning bivalve shellfish for processing |
EP324522, | |||
EP402877, | |||
EP484933, | |||
RE33904, | Feb 25 1991 | Frigoscandia Food Processing Systems A.B. | Method and apparatus for automatically cutting food products to predetermined weight or shape |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 10 2001 | MCCLOSKEY, DOUG | Townsend Engineering Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011926 | /0633 | |
Apr 10 2001 | VELDKAMP, BRENT M | Townsend Engineering Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011926 | /0633 | |
Apr 11 2001 | SEABERG, R THOMAS | Townsend Engineering Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011926 | /0633 | |
Apr 16 2001 | Townsend Engineering Company | (assignment on the face of the patent) | / | |||
Apr 16 2001 | HOLMS, DON D | Townsend Engineering Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011926 | /0633 | |
Mar 27 2006 | Townsend Engineering Company | STORK TOWNSEND INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017776 | /0012 | |
Apr 18 2006 | Townsend Engineering Company | STORK TOWNSEND INC | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS | 017492 | /0573 | |
May 13 2008 | STORK TOWNSEND INC | LANDSBANKI ISLANDS HF | SUPPLEMENT TO SECURITY AGREEMENT PATENTS | 021006 | /0952 | |
Apr 08 2010 | MAREL MEAT PROCESSING INC | COOPERATIVE CENTRALE RAIFFEISEN-BOERENLEENBANK B A , AS SUCCESSOR SECURITY AGENT | SECURITY AGENT RESIGNATION | 024305 | /0855 | |
Nov 29 2010 | MAREL MEAT PROCESSING INC FKA STORK TOWNSEND INC | COOPERATIEVE CENTRALE RAIFFEISEN-BOERELEENBANK B A | TERMINATION OF PATENT SECURITY AGREEMENT | 025521 | /0670 | |
Nov 29 2010 | COOPERATIVE CENTRALE RAIFFEISEN-BOERENLEEKBANK B A | MAREL MEAT PROCESSING INC F K A STORK TOWNSEND INC | CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING AND RECEIVING PARTIES PREVIOUSLY RECORDED ON REEL 025521 FRAME 0670 ASSIGNOR S HEREBY CONFIRMS THE TERMINATION OF PATENT SECURITY AGREEMENT | 027817 | /0367 | |
Dec 18 2015 | MAREL MEAT PROCESSING INC | MAREL, INC | MERGER SEE DOCUMENT FOR DETAILS | 043308 | /0436 |
Date | Maintenance Fee Events |
Jun 30 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 30 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 07 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 06 2006 | 4 years fee payment window open |
Nov 06 2006 | 6 months grace period start (w surcharge) |
May 06 2007 | patent expiry (for year 4) |
May 06 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 06 2010 | 8 years fee payment window open |
Nov 06 2010 | 6 months grace period start (w surcharge) |
May 06 2011 | patent expiry (for year 8) |
May 06 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 06 2014 | 12 years fee payment window open |
Nov 06 2014 | 6 months grace period start (w surcharge) |
May 06 2015 | patent expiry (for year 12) |
May 06 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |