A switch device and method is disclosed that is capable of switching wavelength division multiplexed optical signals. The device comprises a switch element, which may include a detector, an emitter array, and a switch controller. The detector is adapted to detect optical signals and is positioned to receive light from a source. The emitter array is positioned to transmit light to a plurality of targets. The emitter comprises a plurality of emitters, each emitter being adapted to generate light signals. The light signals generated by each emitter are transmitted to at least one predetermined target. The switch controller is in communication with the detector and the emitter array. The switch controller is adapted to cause the emitter array to generate the detected signal. The switch elements are grouped in an array and dichroic beam splitters may be used to reflect predetermined ranges of wavelengths to the individual switch elements.

Patent
   6580845
Priority
Aug 11 2000
Filed
Sep 20 2000
Issued
Jun 17 2003
Expiry
Feb 22 2021
Extension
155 days
Assg.orig
Entity
Small
3
91
EXPIRED
6. An array of optical switch elements, the array comprising:
(A) at least a first and second switch element, each switch element comprising the following:
(a) a detector, the detector being adapted to detect optical signals;
(b) an emitter array positioned to transmit light to a plurality of targets, the emitter array comprising a plurality of emitters, each emitter being adapted to generate light signals, wherein light signals generated by each emitter are transmitted to at least one target;
(c) a switch controller in communication with the detector and the emitter array, the switch controller being adapted to cause the emitter array to generate the detected signal;
(B) a beam splitter, the beam splitter being adapted to reflect light of a predetermined wavelength and allow light outside of the predetermined wavelength to pass through the beam splitter, the beam splitter being positioned to reflect light transmitted by a source to the detector of the first switch element, the detector of the second switch element being positioned to receive light that passes through the beam splitter.
8. A method of switching optical signals, the method comprising the following steps:
(A) providing at least a first and second switch element, each switch element comprising:
(a) a detector positioned to receive light from a source, the detector being adapted to detect optical signals; and
(b) an emitter array positioned to transmit light to a plurality of targets, the emitter array comprising a plurality of emitters, each emitter being adapted to generate light signals, wherein light signals generated by each emitter are transmitted to at least one predetermined target;
(B) causing light of a predetermined range of wavelengths to be received by the detector of a first switch element;
(C) causing light outside of the predetermined range of wavelengths to be received by the detector of the second switch element;
(D) detecting an optical signal;
(E) determining a target to which to transmit the optical signal; and
(F) causing the emitter in at least one of the emitter arrays to generate the optical signal, the emitter in the emitter array corresponding to the target, wherein the optical signal is transmitted to the target.
1. An optical switch device, comprising:
(A) at least one source, the source being adapted to transmit an optical signal;
(B) a plurality of targets, the targets being adapted to receive the optical signal; and
(C) at least a first and second switch element, each switch element comprising:
(a) a detector positioned to receive light from the source, the detector being adapted to detect optical signals;
(b) an emitter array positioned to transmit light to the targets, the emitter array comprising a plurality of emitters, each emitter being adapted to generate light signals, wherein light signals generated by each emitter are transmitted to at least one of the plurality of targets; and
(c) a switch controller in communication with the detector and the emitter array, the switch controller being adapted to cause the emitter array to generate the detected signal;
(D) a beam splitter positioned to reflect optical signals to the detector of the first switch element, the beam splitter being adapted to reflect light within a predetermined range of wavelengths and allow light outside of the predetermined range of wavelengths to pass through the beam splitter, the second switch element being positioned to receive optical signals that pass through the beam splitter and transmit optical signals to the plurality of targets.
2. The optical switching device of claim 1 wherein the source comprises an optical transmission medium.
3. The optical switching device of claim 1 wherein at least one of the targets is an optical transmission device.
4. The optical switching device of claim 1 further comprising a central processor, the central processor being in communication with the switch controller, the central processor providing information to the switch controller.
5. The optical switching device of claim 1 wherein the detector of the switch element is adapted to simultaneously receive a plurality of signals in the same wavelength.
7. The array of optical switch elements of claim 6 wherein the detector is adapted to simultaneously detect optical signals in the same wavelength.

This application claims the benefit of provisional application No. 60/224,692 filed Aug. 11, 2000.

1. Field of Invention

The present invention relates to a device and method for switching wavelength division multiplexed light signals among optical fibers or other transmission media. 2. Description of Related Art

Optical communication systems are a substantial and rapidly growing party of communication networks. The expression "optical communication system," as used herein, relates to any system that uses optical signals to convey information across an optical transmission device, such as an optical fiber. Such optical systems may include, but are not limited to telecommunication systems, cable television systems, and local area networks (LANs).

While the need to carry greater amounts of data on optical communication systems has increased, the capacity of existing transmission devices is limited. Although capacity may be expanded, e.g., by laying more fiber optic cables, the cost of such expansion is prohibitive. Consequently, there exists a need for a cost-effective way to increase the capacity of existing optical transmission devices.

Wavelength division multiplexing (WDM) has been adopted as a means to increase the capacity of existing optical communication systems. In a WDM system, plural optical signals are carried over a single transmission device, each channel being assigned a particular wavelength.

An essential part of optical communication systems is the ability to switch or route signals from one transmission device to another. Micro-electromechanical mirrors have been considered for switching optical signals. However, this approach is not suitable for use with 10 systems that use wavelength division multiplexed signals because micro-electromechanical mirrors cannot switch between signals of different wavelengths. Another approach utilizes bubbles that are capable of changing their internal reflection. However, this technique is also unable to switch multiple wavelengths individually. Furthermore, both of these devices have limited switching speeds, in the range of 10 kHz for the mirror devices and in the range of 100 Hz for the bubble devices.

Other switching approaches, such as the approach disclosed in U.S. Pat. No. 4,769,820, issued to Holmes, can switch data at GHz rates, which is effectively switching at GHz transition rates. However, this approach requires substantial optical switching power, has potential cross talk, and cannot resolve wavelength over-utilization issues. What is needed is a means for switching wavelength division multiplexed signals that is capable of doing so at high speeds with no cross talk and requires low switching power.

1. Advantages of the Invention

One advantage of the present invention is that it is able to switch signals of different wavelengths.

Another advantage of the present invention is that it is able to switch at high speeds.

Further advantage of the present invention is that it does not require high power.

Another advantage of the present invention is that it does not suffer from crosstalk.

Another advantage of the present invention is that it is able to switch between wavelengths and fibers to avoid transmission device or wavelength over-utilization.

Another advantage of the present invention is that it is able to broadcast to multiple transmission devices or couplers simultaneously.

A further advantage of the present invention is that it is able to regenerate and restore signals.

An additional advantage of the present invention is that it can transmit through air or other intervening media to a receiver without a costly or slow electrical interface.

These and other advantages of the present invention may be realized by reference to the remaining portions of the specification, claims, and abstract.

2. Brief Description of the Invention

The present invention comprises an optical switch device. Tile optical switch device comprises at least one source, a plurality of targets, at least a first and second switch element, and at least one beam splitter. The source is adapted to transmit an optical signal and the plurality of targets is adapted to receive the optical signal. Each switch element comprises a detector, an emitter array, and a switch controller. The detector is positioned to receive light from the source, and it is adapted to detect optical signals. The emitter array is positioned to transmit light to the targets, and the emitter array comprises a plurality of emitters, each emitter being adapted to generate light signals. The switch controller is in communication with the detector and the emitter array. The switch controller is adapted to cause the emitter array to generate the detected signal. The beam splitter is positioned to reflect optical signals to the detector of the first switch element, and the beam splitter is adapted to reflect light within a predetermined range of wavelengths and allow light outside of the predetermined range of wavelengths to pass through the beam splitter. The second switch element is positioned to receive optical signals that pass through the beam splitter and t it optical signals to the plurality of targets.

The above description sets forth, rather broadly, the more important features of the present invention so that the detailed description of the preferred embodiment that follows may be better understood and contributions of the present invention to the art may be better appreciated. There are, of course, additional features of the invention that will be described below and will form the subject matter of claims. In this respect, before explaining at least one preferred embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of the construction and to the arrangement of the components set forth in the following description or as illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.

FIG. 1 is substantially a perspective schematic diagram of one switch device of the present invention.

FIG. 2 is substantially a front schematic diagram of one embodiment of the switch array of the present invention.

FIG. 3 is substantially a side schematic diagram of the linear array of switch elements of the present invention.

FIG. 4 is substantially a schematic diagram of the switch element of the present invention.

FIG. 5 is substantially a schematic diagram of the switch array and central processor of the present invention.

FIG. 6 is substantially a flow chart of operation of the switch controller of the present invention, with regard to the transmission of signals.

FIGS. 7A and 7B are substantially a flow chart of operation of the central controller of the present invention, with regard to the transmission of signals.

FIG. 8 is substantially a schematic diagram of the preferred embodiment of the switch device of the present invention.

FIG. 9 is substantially a schematic diagram of the switch element of the preferred embodiment of the present invention.

FIG. 10 is substantially a schematic diagram of another embodiment of the switch device of the present invention.

As seen in FIG. 1, the present invention comprises a switch device generally indicated by reference number 10. Switch device 10 may be used in almost any optical communication system. Switch device 10 comprises sources and targets 12 and a switch array 20. Sources and targets 12 comprise a source of incoming light signals and targets on to which switch array 20 transmits outgoing signals. The sources and targets may be the same or different device or objects. In the example shown in FIG. 1, sources and targets 12 are optical fibers 14. However, many other devices and transmission mediums may be used Sources and targets 12 may include any number of fibers 14 and may use many different types of fibers. Each optical fiber 14 comprises an end 16. Ends 16 are preferably arranged in a two dimensional array, wherein the ends are substantially planar. It is recognized that array 18 may have many different configurations, such as the square array shown in FIG. 1 or rectangular arrays.

As seen in FIGS. 1, 2, and 3, each linear array 22 is provided with a lens 24. As will be discussed below, lenses 24 focuses light passing between array 18 and linear arrays 22. The focal length of lens 24 should equal the distance from the end 16 to the front of tie switch array 20 Referring to FIG. 3, each linear array 22 comprises at least one switch element 26. Any number of switch elements may be provided.

Referring to FIG. 3, each linear array 22 comprises at least one switch element 26. Any number of switch elements may be provided.

Turning to FIG. 4, each switch element 26 is arranged to receive incoming light 28 from an optical fiber 14 (not shown in FIG. 4). As incoming light 28 enters switch element 26, it intersects beam splitter 30. Beam splitter 30 is a dichroic beam splitter that is adapted to reflect a predetermined wavelength or range of wavelengths of light 32. The beam splitter may be a beam splitter, such as model number 03 BSC 23 or 03 BDL 005 available from Melles Griot, having an office in Irvine Calif.

If incoming light 28 contains the predetermined wavelength that may be reflected by beam splitter 30, the beam splitter reflects that portion 32 of the light. Light that is not the predetermined wavelength will pass through beam splitter 30. This non-reflected light 34 may be transmitted to a second switch element (not shown in FIG. 4) where it would it is subjected to another beam splitter (not shown). However, the beam splitter in the second switch element would be adapted to reflect light in another range of wavelengths and transmit light not in that range to another switch element. In this way, linear array 22 separates wavelength division multiplexed light signals into its individual signals.

As will be discussed below, each switch element may be capable of producing light signals. Light that is produced by other switch elements, outgoing light 35, is transmitted back along the path of incoming light 28. Since the outgoing light does not contain light in the range of wavelengths that is reflected by beam splitter 30, this light passes through the beam splitter and is transmitted out to the front of the linear array.

Reflected light 32 is directed through an optional focusing lens 36. In one embodiment, light 32 then falls on beam splitter 38. Beam splitter 38 allows light 32 to pass to detector 42. Detector 42 is adapted to detect signals in reflected light 32. Detector 42 may generate electrical signals based on the light signals. Detector 42 may be many different well known devices, such as 2609C Broadband Photodiode Module for both 1310 and 1550 nm detection available from Lucent Technologies or InGaAs p-i-n photodiodes for 1000-1700 nm detection, Part C30641E, available from EG&G. The electrical signals are transmitted to switch controller 44.

Switch controller 44 comprises a microprocessor 46 and memory 48. Microprocessor 46 is adapted to determine the intended destination of the light signal and route the signal to an appropriate fiber. Microprocessor 46 may be any of a number of devices that are well known in the art. For example, microprocessor 46 may be an Intel Pentium III or other similar processor. Memory 48 is preferably random access memory that also may be any of a number of devices that are well known in the art. Switch controller 44 may also comprise non-volatile memory 50 that may contain programming instructions for microprocessor 46.

Each light signal preferably carries a header that contains information that either identifies the signal or indicates its intended destination. Switch controller 44 is adapted to read the header. Switch controller 44 may be adapted, either alone or in coordination with other devices, to determine the destination of the light signal. However, in this embodiment, in order to prevent simultaneous transmissions in the same wavelength on the same optical fiber, which would result in interference when the signals are received, it is necessary for each switch controller 44 to coordinate with other switch controllers. In this embodiment, this may be facilitated by bus 52. Bus 52 is connected to each switch element 26 and it allows each switch element to communicate with a central controller 54 (not shown in FIG. 4). As seen in FIG. 5, central controller 54 is in communication with each bus 52 of each linear array 22. This allows central controller 54 to receive signals from each switch element 26.

Central controller 54 may comprise a processor 60 that is adapted to perform computer operations. Processor 60 is in communication with memory device 62, which may be random access memory (RAM), and non-volatile memory 64, which is adapted to store data when power to controller 54 is interrupted. Non-volatile memory 64 may be many different kinds of memory devices, such as a hard disk drive, flash memory, or erasable programmable read-only memory. (EPROM). Central controller 54 may be in communication with a display device 66, such as a monitor or printer, and input device 68, such as a keyboard Display device 66 and input device 68 are adapted to allow an operator or user to communicate with switch device 10 (see FIG. 1).

Central controller 54 may also comprise a communication device 70, which may be external or internal. Communication device 70 is adapted to allow central controller 54 to communicate with other devices, such as other central processors or a computer that controls the optical system. Communication device 70 may be in a form of at least one of the many different types of devices that are well known in the art such as a modem, a network card, or a wireless communication device.

Referring now to FIG. 6, when switch element 26 receives a signal, the header of the signal is transmitted to switch controller 44, as seen in step 80. Switch controller 44 then determines the destination of the signal 82 and transmits the destination and other information to central controller 54. Other information may include the size of the signal, the wavelength of the signal, wavelengths in which the switch element capable of transmitting, etc.

Turning now to FIG. 7, central controller 54 receives the destination and other information from the requesting switch element 86. Central controller 54 then determines the preferred fiber for the particular destination 88. This may be performed by referring to a transmission registry that contains destinations and a number of different fibers that are capable of transmitting the signal to the destination.

The registry may be represented by the following table (Table 1):

TABLE 1
2. DESTINATION REGISTRY
Destination Preferred Fiber Next Preferred Fiber . . .
1 A E .
2 F B .
3 C D .
. . . .
. . . .
. . . .

After central controller 54 determines the preferred fiber, it then determines if the preferred fiber is unavailable for the specified wavelength 90. This check may be accomplished in different ways. In one method, central controller 54 keeps a registry of signals being transmitted in each wavelength on each optical fiber 14. This registry may be represented by the table shown below (Table 2):

TABLE 2
3. TRANSMISSION REGISTRY
Fiber Wavelength 1 Wavelength 2 . . .
A 0 1 .
B 1 1 .
C 0 0 .
. . . .
. . . .
. . . .

In this table "0" may represent that the designated fiber is not occupied by the designated wavelength and "1" may represent that the fiber is occupied by the designated wavelength. This registry may also be used to store other information about the fibers. When a switch element has completed sending a signal, it may send a signal to central controller 54 that it has completed transmission. Central controller 54 would then clear the registry of the transmission. Alternatively, the registry may be cleared after an appropriate amount of time has passed. The amount of time may be obtained from the original request. In another method, central controller 54 polls each switch element 26 to determine whether it is currently sending a signal.

if the preferred fiber is available for the specified wavelength, central controller 54 then authorizes transmission by the requesting switching element 26, step 98. In an alternative embodiment, switch clement 26 may be designed to transmit in a plurality of wavelengths. Emitter array 56 may be capable of transmitting in a plurality of wavelengths, or additional emitter arrays may be adapted to transit in a different wavelength than that of the first emitter array, and beam splitters may be provided. The inquiry in step 92 may be performed by referring to a switch element registry (not shown). The switch element registry may contain a listing of all switch elements and the wavelengths in which they are adapted to transmit. If the requesting switch element is capable of transmitting in the specified wavelength, central controller 54 then transmits a message to the requesting switch element to transit on the selected fiber, 98. If the requesting switch element is not capable of transmitting in the specified wavelength, central controller 54 determines an appropriate switch element to transmit the signal 94. Central controller 54 then transmits a message to the requesting switch element to transit the signal to the appropriate switch element 96 for transmission.

Returning to step 90, if the preferred fiber is not available for the specified wavelength, central controller 54 would then determine the next preferred fiber for the destination 100. Central controller 54 would then determine if the next preferred fiber is available for the specified wavelength 87. If the next preferred fiber is available for the specified wavelength, central controller 54 would go to step 92 and repeat until a fiber is found or no fiber is available at the specified wavelength 89. If no fiber is available for the specified wavelength, central controller 54 would return to step 100. If all fibers are unavailable for the specified wavelength, central controller 54 would determine that all appropriate fibers are unavailable for all appropriate wavelengths 91. If all appropriate fibers are not unavailable for all appropriate wavelengths, central controller 54 would select an alternate wavelength 93 and return to step 90. If all appropriate fibers are unavailable for all appropriate wavelengths, central controller 54 would transmit a "busy" signal to the requesting switch controller 95. Central controller 54 would then return to step 88.

Returning to FIG. 6, switch controller 44 waits for a message from central controller 54. When switch element 44 receives a message from the central controller 81, it determines whether the message is a "busy" signal 83. If the message is a busy signal, switch controller 44 may store the message 85 and wait for another message from central controller 54. If the message is not a busy signal, switch controller 44 determines whether the message requires transmission to another switch element 87. If the message requires transmission to another switch element, switch controller 44 transmits the signal to the indicated switch element 89. This may be performed by transmitting the signal over bus 52. If the message does not require transmission to another switch element, switch controller 44 transmits the signal on the indicated fiber 101.

Returning now to FIG. 4, when switch controller 44 sends a signal, it drives emitter array 56 to generate the signal. Emitter array 56 comprises a plurality of different areas or emitters arranged in a two-dimensional array, each area being adapted to independently transmit a light signal. Each individual emitter may be many different kinds of emitters that are suitable for the particular optical fiber system. For example, an individual emitter in the 1310 nm range may be a Daytona laser, model 1861A, available from Lucent Technologies. Emitter array 56 is adapted to produce light in the predetermined range of wavelengths that beam splitter 30 is intended to reflect. Array 56 is also adapted to generate signals in specific areas of the array so that the signal can be mapped on to the appropriate optical fiber or target. As the signal is generated, it is reflected by beam splitter 38 and passes through lens 36. The signal is then reflected by beam splitter 30 back along the path of the incoming light 28. When the signal reaches the front of the array, it is imaged by lens 24 on to array 18. The signal produced by a portion of emitter array 56 is then received by the corresponding optical fiber end 18 or other target. The focal length of lens 36 should be approximately equal to the optical path length from the center of emitter array 56 to the location of the imaging lens. In this way, each switch element can transmit a signal to any or all optical fibers 14 in sources and targets 12.

Turning now to FIG. 8, the preferred embodiment of the present invention is similar to the embodiment of the present invention described above. However, switch array is replaced with a single linear army 120. Linear array 120 comprises a lens 124 and a plurality of switch elements 126. Lens 124 performs a similar function to lens 24 (see FIGS. 1 and 3). However, switch elements 126 differ from switch elements 26 in that each switch element comprises a detector array 142 that is capable of detecting signals from each of the optical fibers 14.

Turning to FIG. 9, each switch element 126 is arranged to receive incoming light 128 from an optical fiber 14 (not shown in FIG. 4). As incoming light 128 enters switch element 126, it intersects beam splitter 130. Similar to beam splitter 30, beam splitter 130 is a dichroic beam splitter that is adapted to reflect a predetermined wavelength or range of wavelengths of light 32.

If incoming light 128 contains the predetermined wavelength that may be reflected by beam splitter 130, the beam splitter reflects that portion 132 of the light. Light that is not the predetermined wavelength will pass through beam splitter 130. This non-reflected light 134 may be transmitted to a second switch element (not shown in FIG. 4) where it would it is subjected to another beam splitter (not shown). Similar to the first embodiment, the beam splitter in the second switch element would be adapted to reflect light in another range of wavelengths and transmit light not in that range to another switch element. Light that is produced by other switch elements, outgoing light 135, is transmitted back along the path of incoming light 128.

Reflected light 132 is directed through an optional focusing lens 136. In this embodiment, light 32 then falls on beam splitter 138. Beam splitter 138 allows light 132 to pass to detector array 142. Detector array 142 is adapted to detect signals in reflected light 132 and, as mentioned above, detector array 142 is capable of distinguishing different signals that are being transmitted by different fibers 14 or sources. Detector 142 may generate electrical signals based on the light signals. The electrical signals are transmitted to switch controller 144.

Switch controller 144 may be similar to switch controller 44 with a microprocessor and memory (not shown). Microprocessor 46 is adapted to determine the intended destination of light signals and route the signals to an appropriate fiber.

In this embodiment, since each switch element 126 is capable of receiving light signals from each fiber 14 in a predetermined range of wavelengths, conflicts or interferences between signals can be handled within the switch element. Switch controller 144 may have its own destination registry (see Table 1) and transmission registry (see Table 2), and it can be programmed to manage signals using the methods described above.

This embodiment has several advantages over the previous embodiment. This embodiment only requires one linear array 122, and it may not be necessary to provide a bus and a central controller. Thus, the complexity and cost of the device may be less. Furthermore, since transmission need not be coordinated through a central controller, signals can be retransmitted more quickly and conflicts can be resolved more quickly.

However, it is recognized that it may be desirable to provide some form of communication device, such as bus 52, and an outside controller, such as central controller 54, to update switch controller 144. For example, if a fiber has been disconnected from the network, switch controller 144 would need to be informed that this fiber is no longer available for transmission. In addition, device 10 may also be a node from which data is downloaded. In this application, it would be necessary for each switch element 126 to transmit data to another device to make use of the information.

It is also recognized that a plurality of detector and emitter arrays may be used in one switch element to detect and emit a plurality of wavelengths. This would allow one switch element to perform the same function of a linear array of switch elements. Thus, the switch device of the present invention may comprise only a single switch element. The same result could be obtained by using single detector and emitter arrays that are adapted to detect and emit a plurality of wavelengths.

The embodiment disclosed in FIG. 10 utilizes a linear array 222 that is similar to linear array 122. However, each switch element 226 comprises a multi-focal lens that is adapted to focus light differently depending upon the target of the light. This embodiment also includes mirrors 252 that can be used to direct the light to a target 254 without an optical waveguide. This embodiment is useful for applications where light is transmitted to targets over a short distance. For example, instead of installing optical fibers throughout an existing building, this embodiment of the present invention can be used to transmit signals to specific locations on the exterior of the building where a detector can receive the signal. An emitter associated with the detector can transmit signals to the device 10.

Although the description above contains many specifications, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of presently preferred embodiments of this invention. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents rather than by the examples given.

Holmes, Richard B.

Patent Priority Assignee Title
6707594, Sep 20 2000 GENERAL NUTRONICS, INC Method and device for switching wavelength division multiplexed optical signals using two-dimensional micro-electromechanical mirrors
6816643, Oct 10 2001 Santec Corporation Wavelength tunable demultiplexing filter device, wavelength tunable multiplexing filter device, and wavelength routing device
7024070, Sep 20 2000 Electronic fiber optic switch with optical interconnect
Patent Priority Assignee Title
3558898,
3608992,
3630593,
3652858,
3838903,
3953727, Jan 18 1974 Thomson-CSF System for transmitting independent communication channels through a light-wave medium
4274103, Jul 17 1978 Kokusai Denshin Denwa Kabushiki Kaisha Avalanche photodiode with semiconductor hetero structure
4329017, Aug 14 1979 KAPANY CORPORATION, A CORP OF CA Fiber optics communications modules
4366565, Jul 29 1980 Local area network optical fiber data communication
4652080, Jun 22 1982 GEC PLESSEY TELECOMMUNICATIONS LIMITED, Optical transmission systems
4662715, Jan 25 1985 Westinghouse Electric Corp. Fiber optic network with reduced coupling losses
4701012, Apr 12 1984 Standard Elektrik Lorenz Optical multiplexer/demultiplexer
4723829, Oct 12 1982 U.S. Philips Corporation Optical wavelength demultiplexer
4812682, Mar 21 1988 Simultaneous all-optical logical operations using the third order nonlinear optical effect and a single waveguide
4824200, Feb 06 1986 Fujitsu Limited Optical branching filter
4963727, Oct 20 1988 Consiglio Nazionale delle Ricerche Active quenching circuit for avalanche photodiodes
5026131, Feb 22 1988 SANWA BANK CALIFORNIA High channel density, broad bandwidth wavelength division multiplexer with highly non-uniform Bragg-Littrow holographic grating
5037173, Nov 22 1989 Texas Instruments Incorporated Optical interconnection network
5056887, Dec 03 1988 Kabushiki Kaisha Toshiba Optical mixing device
5078499, Aug 04 1989 AT&T Bell Laboratories; BELL TELEPHONE LABORATORIES, INCORPORATED, A CORP OF NY ; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORP OF NY Optical interconnection arrangement
5082354, Aug 29 1989 Kaiser Aerospace and Electronics Corporation Optical switch and color selection assembly
5148323, Aug 09 1991 Rockwell International Corporation Local reference beam generator
5153665, Jun 14 1991 The United States of America as represented by the Administrator of the; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Vaporizing particle velocimeter
5159407, Sep 28 1990 UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF COMMERCE Single-ended dual spatial filter detector for the passive measurement of winds and turbulence aloft
5204866, Oct 15 1990 International Business Machines Corporation Bidirectional free-space optical bus for electronics systems
5218654, Apr 16 1992 Lockheed Martin Corp Grin rod lens optical backplane bus
5229878, Jul 02 1990 Canon Kabushiki Kaisha Method and apparatus for modulating light using semiconductor element having quantum well structure
5247593, Dec 18 1991 Texas Instruments Incorporated Programmable optical crossbar switch
5255332, Jul 16 1992 JDS Uniphase Corporation NxN Optical crossbar switch matrix
5311344, Sep 02 1992 AT&T Bell Laboratories; AMERICAN TELEPHONE AND TELEGRAPH COMPANY A CORPORATION OF NEW YORK Bidirectional lightwave transmission system
5350913, Apr 24 1992 Hamamatsu Photonics K.K. Light pulse intensity regenerator, light tranforming repeater, pre-amplifier for light signal, light intensity change measuring apparatus, and stabilized light source
5392377, Sep 30 1992 II-VI DELAWARE, INC Optical transmission system for transmission of signals with a continuous application of the signals during transmission
5469250, May 17 1993 CALIFORNIA, UNIVERSITY OF THE REGENTS OF THE; UNIVERSITY OF CALIFORNIA, SAN DIEGO Passive optical wind profilometer
5469277, Feb 07 1992 University of Ottawa Optical interconnection device
5485538, Jun 30 1994 WHITAKER CORPORATION, THE Bidirectional wavelength division multiplex transceiver module
5521733, Apr 09 1993 Fujikura Ltd; Minoru, Akiyama; Jun-ichi, Mizusawa Optical switching device for wavelength-multiplexing optical communication
5521743, Dec 16 1993 Rockwell International Corporation Photon-counting spatial light modulator with APD structure
5530577, Sep 21 1992 Canon Kabushiki Kaisha Two-way optical communication apparatus
5557693, Oct 21 1994 Unisys Corporation Apparatus and method for transmitting optical data
5583683, Jun 15 1995 Optical Corporation of America Optical multiplexing device
5629992, Sep 14 1995 Rembrandt Communications, LP Passband flattening of integrated optical filters
5663822, Jun 14 1995 Verizon Patent and Licensing Inc Optical comb generator using optical white noise source
5737104, Dec 18 1995 Dicon Fiberoptics Wavelength division multiplexer and demultiplexer
5745614, Sep 26 1995 OCLARO NORTH AMERICA , INC Optical mode filter
5754320, Aug 18 1995 Nippon Telegraph and Telephone Corporation Optical cross-connect system
5781671, Oct 04 1995 NEC Corporation Free-space angle-multiplexed optical interconnect network
5784184, Mar 29 1996 Ciena Corporation WDM Optical communication systems with remodulators and remodulating channel selectors
5857042, Apr 29 1997 McGill University Optical interconnection arrangements
5859717, Feb 14 1997 II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC Multiplexing device with precision optical block
5864413, Feb 23 1996 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Passive optical network for dense WDM downstream data transmission and upstream data transmission
5864415, May 30 1996 Verizon Patent and Licensing Inc Fiber optic network with wavelength-division-multiplexed transmission to customer premises
5896212, Jul 12 1995 Alcatel N.V. Wavelength division multiplexing optical communication network
5903687, May 02 1997 OPTICAL SWITCHES AND SENSORS, INC M input port by N output port optical switching system
5910851, Feb 04 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Multiple wavelength transceiver
5937117, Dec 27 1996 Nippon Telegraph and Telephone Corporation Optical cross-connect system
5940511, Dec 14 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Method and apparatus for secure PIN entry
5943150, Sep 30 1996 Lawrence Livermore National Security LLC Massively parallel processor networks with optical express channels
5960133, Jan 27 1998 Tellium, INC Wavelength-selective optical add/drop using tilting micro-mirrors
5970190, Dec 02 1996 Photonics Research Ontario Grating-in-etalon polarization insensitive wavelength division multiplexing devices
5978118, Feb 04 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Guided optical communication
5986788, Jun 26 1995 OKI SEMICONDUCTOR CO , LTD Microoptical system for free-space optical interconnection and its setting method
5995253, Feb 04 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Variable wavelength transceiver
5999672, Dec 13 1997 AUXORA, INC Integrated bi-directional dual axial gradient refractive index/diffraction grating wavelength division multiplexer
6008920, Mar 11 1998 Lumentum Operations LLC Multiple channel multiplexer/demultiplexer devices
6014237, Jun 01 1998 Sarnoff Corporation Multiwavelength mode-locked dense wavelength division multiplexed optical communication systems
6014479, Oct 10 1996 AT&T SUBMARINE SYSTEMS, INC High channel density wavelength division multiplex (WDM) optical transmission system and method with negligible four-wave mixing (FWM) penalty
6016212, Apr 30 1997 AT&T Corp Optical receiver and demultiplexer for free-space wavelength division multiplexing communications systems
6031946, Apr 16 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Moving mirror switch
6038355, Jul 17 1997 Dialogic Corporation Optical bus
6049404, Apr 02 1997 CHORUM TECHNOLOGIES INC N+M digitally programmable optical routing switch
6055099, Feb 23 1996 British Telecommunications public limited company Optical interconnect
6064506, Mar 05 1996 Deutsche Telekom AG Optical multi-channel separating filter with electrically adjustable photon crystals
6067389, Jul 27 1998 WSOU Investments, LLC Wavelength-selective optical cross-connect
6088496, May 19 1998 Bookham Technology PLC Optical device for splitting up a multi-wavelength light beam
6097859, Feb 13 1997 Regents of the University of California, The Multi-wavelength cross-connect optical switch
6111674, Feb 23 1996 II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC Multiple reflection multiplexer and demultiplexer
6125221, Mar 19 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Three port optical filter
6137933, Dec 13 1997 AUXORA, INC Integrated bi-directional dual axial gradient refractive index/diffraction grating wavelength division multiplexer
6163643, Aug 12 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Micro-mechanical variable optical attenuator
6175678, May 12 1999 The United States of Americas as represented by the Secretary of the Navy; NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY Infrared fiber imager
6181853, Dec 13 1997 AUXORA, INC Wavelength division multiplexing/demultiplexing device using dual polymer lenses
DE4101044,
GB2263371,
GB2270224,
JP202102,
JP221925,
JP223816,
JP282824,
JP404030127,
JP404030129,
JP405188405,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 20 2000General Nutronics, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Jun 22 2006M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 24 2011REM: Maintenance Fee Reminder Mailed.
Jun 17 2011EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jun 17 20064 years fee payment window open
Dec 17 20066 months grace period start (w surcharge)
Jun 17 2007patent expiry (for year 4)
Jun 17 20092 years to revive unintentionally abandoned end. (for year 4)
Jun 17 20108 years fee payment window open
Dec 17 20106 months grace period start (w surcharge)
Jun 17 2011patent expiry (for year 8)
Jun 17 20132 years to revive unintentionally abandoned end. (for year 8)
Jun 17 201412 years fee payment window open
Dec 17 20146 months grace period start (w surcharge)
Jun 17 2015patent expiry (for year 12)
Jun 17 20172 years to revive unintentionally abandoned end. (for year 12)