An apparatus (10) for sensing when a rail member (48) of a vehicle seat (12) is located in a reference position relative to a seat bracket (30) of the vehicle seat (12) comprises a magnetic sensor (76) for generating a magnetic field and for sensing a flux density of the magnetic field. The apparatus (10) further comprises a cover (86) for enclosing the magnetic sensor (76). The cover (86), when in a first position, forms a zone for preventing the flux density from increasing above a threshold level. The cover (86) is moved into a second position when the rail member (48) is located in the reference position relative to the seat bracket (30). In the second position, the flux density is increased above the threshold level.
|
1. An apparatus for sensing whether a rail member of a vehicle seat is located in a reference position relative to a seat bracket of the vehicle seat, the apparatus comprising:
a magnetic sensor for generating a magnetic field and for sensing a flux density of the magnetic field; and a cover for enclosing the magnetic sensor, the cover, when in a first position, forming a zone for preventing the flux density from increasing above a threshold level, the cover being moved into a second position when the rail member is located in the reference position relative to the seat bracket, in the second position the flux density increasing above the threshold level.
2. The apparatus as defined in
3. The apparatus as defined in
5. The apparatus as defined in
6. The apparatus as defined in
7. The apparatus as defined in
8. The apparatus as defined in
9. The apparatus as defined in
10. The apparatus as defined in
|
The present invention relates to an apparatus for sensing whether a vehicle seat is in a reference position. More particularly, the present invention relates to an apparatus for sensing position of a rail member of a vehicle seat relative to a bracket member of the vehicle seat.
It is often desirable to know a position of a vehicle seat. For example, in a vehicle with a vehicle occupant protection device, such as an air bag, determined or sensed position of the seat may be used to determine control of the protection device.
A known seat position sensing apparatus includes a permanent magnet for producing a magnetic field and a Hall effect device for sensing the magnetic flux of the magnetic field. When a rail member of the vehicle seat is located in a position adjacent the apparatus, the flux density of the magnetic field increases. The Hall effect device senses the increased flux density. The increased flux density is indicative of a forward position of the vehicle seat.
Foreign ferrous materials that are introduced into the magnetic field may change the flux density of the magnetic field resulting in an inaccurate reading of the vehicle seat position. Examples of foreign ferrous material that may be present near the magnetic field of the known apparatus on a vehicle seat include paper clips, foil wrappers, ink pens, coins, etc.
The present invention is an apparatus for sensing when a rail member of a vehicle seat is located in a reference position relative to a seat bracket of the vehicle seat. The apparatus comprises a magnetic sensor for generating a magnetic field and for sensing a flux density of the magnetic field. The apparatus further comprises a cover for enclosing the magnetic sensor. The cover, when in a first position, forms a zone for preventing the flux density from increasing above a threshold level. The cover is moved into a second position when the rail member is located in the reference position relative to the seat bracket. In the second position, the flux density is increased above the threshold level.
The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
Guide tracks 24 and 26 guide the adjustment of the seat 12 in a forward and rearward direction. While
Each guide track 24 and 26 includes a seat bracket 30 and 32 that is mounted to the lower body portion 22 of the vehicle 20. The seat brackets 30 and 32 are formed of a suitable rigid material such as steel. As illustrated in
The seat bracket 30 extends axially along axis A. The seat bracket 30 includes a forward end portion 40 (
Seat bracket 32 (
Referring to
As shown in
Rail member 48 has a forward and a rearward end portion 52 and 54, respectively, with an elongated body portion 56 extending between the respective end portions 52 and 54. Rail member 48 has a generally rectangular cross-section. As shown in
Rail member 50 (
Frame members 62 and 64 are used to mount the seat cushion portion 14 of the seat 12 to the rail members 48 and 50. As shown in
While a preferred embodiment of the guide tracks 24 and 26 has been described, it will be understood and appreciated by those skilled in the art that the apparatus 10 of the present invention may be used with any known type of guide track.
Referring to
The support structure 70 illustrated in
The apparatus 10 of the present invention includes a magnetic sensor 76 (FIGS. 4 and 5). The magnetic sensor 76 produces a magnetic field and senses the flux density of the magnetic field. When the flux density of the magnetic field increases above a threshold level, the magnetic sensor 76 produces an output signal indicating that rail member 48 is in the reference position relative to seat bracket 30.
As shown in
The apparatus 10 further includes a housing 82 for enclosing the magnetic sensor 76. The housing 82 includes a frame 84 and a cover 86. The frame 84 includes a rectangular back wall 88 and four side walls (two of which are shown in
The left side wall 90 includes an inner surface 96 and an outer surface 98. A lip 100 extends outwardly of the outer surface 98 of the left side wall 90 for engaging a portion of the cover 86. The lip 100 is centrally located along the width of the left side wall 90 and includes a flat lower surface 102 that extends perpendicular to the outer surface 98 of the left side wall 90. A ramped upper surface 104 of the lip 100 extends from the flat lower surface 102 away from the back wall 88 of the frame 84 and inwardly until meeting the outer surface 98 of the left side wall 90.
The right side wall 92 also includes an inner surface 106 and an outer surface 108. A lip 110 extends outwardly of the outer surface 108 of the right side wall 92 for engaging a portion of the cover 86. The lip 110 is centrally located along the width of the right side wall 92 and includes a flat lower surface 112 that extends perpendicular to the outer surface 108 of the right side wall 92. A ramped upper surface 114 of the lip 110 extends from the flat lower surface 112 away from the back wall 88 of the frame 84 and inwardly until meeting the outer surface 108 of the right side wall 92.
The upper wall 94 (
The cover 86 is designed to fit over the frame 84 to form a cavity 116 within the housing 82. The cover 86 includes a base wall 118 and four side walls (two of which are shown in
Left and right side walls 124 and 126 of the cover 86 include slots 128 and 130, respectively, that extend, in a central location along the width of the respective side wall 124 and 126, away from the base wall 118 of the cover 86 and terminate near an end of the respective side wall 124 and 126. Each slot 128 or 130 is designed to receive a lip 100 or 110 of the corresponding side wall 90 or 92 of the frame 84. The slots 128 and 130 on the left and right side walls 124 and 126 are also designed to allow the base wall 118 of the cover 86 to move toward or away from the back wall 88 of the frame 84 by allowing the respective lips 100 and 110 to slide within the slots 128 and 130. The upper side wall 132 (
The cover 86 further includes a spring guide 134 (
To assembly the housing 82 a helical spring 136 is placed over the spring guide 134 and interposed between the base wall 118 of the cover 86 and the back wall 88 of the frame 84. The cover 86 is attached to the frame 84 such that the lip 100 of the left side wall 90 of the frame 84 is inserted into the slot 128 on the left side wall 124 of the cover 86 and the lip 110 of the right side wall 92 of the frame 84 is inserted into the slot 130 on the right side wall 126 of the cover 86.
The cover 86 has a first position and a second position. In the first position, the helical spring 136 is expanded and the base wall 118 of the cover 86 is located at its farthest position away from the back wall 88 of the frame 84. The cavity 116 within the housing 82 has its greatest volume when the cover 86 is in the first position. The helical spring 136 biases the cover 86 into the first position and the cover 86 remains in the first position until a force sufficient to compress the helical spring 136 forces the cover 86 into the second position. The first position of the cover 86 is illustrated in FIG. 4. In the second position, the helical spring 136 is compressed and the base wall 118 of the cover 86 is at its nearest position to the back wall 88 of the frame 84. The second position of the cover 86 is illustrated in FIG. 5.
In an assembled apparatus 10, the magnetic sensor 76 is affixed to the back wall 88 of the frame 84. The Hall effect device 80 of the magnetic sensor 76 is positioned relative to the magnet 78 of the magnetic sensor 76 such that the Hall effect device 80 is within the magnetic field produced by the magnet 78. A signal wire, shown schematically as 140 in
To mount the apparatus 10 to the vehicle seat 12, the back wall 88 of the frame 84 of the housing 82 is affixed to the support member 74. The frame 84 may be affixed to the support member 74 in any suitable manner, such as by a suitable adhesive. When affixed to the support member 74 the left side wall 90 and right side wall 92 of the frame 84 are located axially opposite one another, relative to axis A. Thus, the first beveled end 120 of the cover 86 is on an end of the housing 82 facing forward and a second beveled end 122 of the cover 86 is on an end of the housing 82 facing rearward.
When the vehicle seat 12 is in a rearward position, illustrated in
As shown in
As the vehicle seat 12 is adjusted to the forward position of
The reference position is determined by the position of the apparatus 10 relative to the seat rail 48. As stated above, the reference position may be adjusted by adjusting the position of the apparatus 10.
Preferably, the rail member 48 is constructed of a ferromagnetic material. However, it may be desirable to incorporate a rail member 48 that is constructed of a non-ferromagnetic material. In such an instance, a ferrous member (not shown) could be affixed to the rail member 48, such that the ferrous member would move with the rail member 48. The ferrous member would conduct the magnetic field of the magnet, causing the flux density of the magnetic field to increase above the threshold level.
The information provided by the apparatus 10 of the present invention can be used to control the operation of a vehicle occupant protection device 138. Depicted schematically in
As illustrated, the controller 142 may be electrically coupled to an actuatable vehicle occupant protection device 138 for, when actuated, helping to protect a vehicle occupant in a crash event. The protection device 138 suitably is an air bag. Other actuatable vehicle occupant protection devices that can be used in accordance with the present invention include, for example, inflatable knee bolsters, and knee bolsters operated by inflatable air bags.
The controller 142 also may be coupled to other sensors 144. The other sensors 144 may include, for example, a crash sensor, a seat belt buckle switch sensor, a vehicle speed sensor, an occupant weight sensor or any other sensing device or combination of devices which provide useful information concerning actuation of the protection device 138. The other sensors 144 provide signals to the controller 142 indicative of one or more vehicle and/or occupant conditions.
The controller 142 utilizes the output signal from the magnetic sensor 76 to control the actuation of the protection device 138. For example, where the reference position is a forwardmost position of the seat 12 and output signal of the magnetic sensor 76 indicates that the rail member 48 of the seat 12 is at the reference position relative to the seat bracket 30, the controller 142 may control actuation of the occupant protection device 138 so that the protection device 138 inflates to only a first level. Under appropriate circumstances, the output signal of the magnetic sensor 76 also might be used by the controller 142, in combination with the signals from the other sensors 144, to delay or even prevent actuation of the protection device 138.
The frame 84 is affixed to the flanged portions 36 and 38 such that a beveled end 120 or 122 of the cover 86 faces rearward. When rail member 48 is moved forward, the upper side wall 66 of the forward end portion 52 of rail member 48 will contact the rearward facing beveled end 120 or 122 of the cover 86. As the forward end portion 52 of rail member 48 moves into the reference position, rail member 48 will force the cover 86 to move from the first position to the second position. In the second position, ferrous material of rail member 48 or a ferrous member attached to rail member 48 will cause the flux density of the magnetic field to increase above the threshold level.
A bumper 146 is attached to the support member 74 of the support structure 70. Preferably, the bumper 146 is made of a ferrous material. Alternately, a ferrous member may be attached to the bumper 146. The bumper 146 contacts the forward facing beveled end 120 or 122 of the cover 86 during movement of the rail member 48 into the reference position and moves the cover 86 from the first position to the second position. When in the second position, the ferrous bumper 146, or alternatively the ferrous member attached to the bumper 146, increases the flux density of the magnetic field above the threshold value.
The apparatus 10 of
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.
Patent | Priority | Assignee | Title |
10384630, | Oct 02 2015 | TS Tech Co., Ltd. | Seat sliding mechanism |
6683544, | Jun 13 2001 | Alps Electric Co., Ltd | Seat position sensor |
6774625, | Nov 28 2001 | Aisin Seiki Kabushiki Kaisha | Seat position detecting device with positioning member |
6784774, | Feb 24 2003 | ALPS Electric Co., Ltd. | Magnetic switch capable of performing normal detection for a long period of time |
6798196, | Mar 15 2002 | Honda Giken Kogyo Kabushiki Kaisha | Sliding seat position detection system |
6851655, | Mar 05 2001 | Denki Seisakusho KK | Seat rail system with position sensor |
6907795, | Nov 09 2001 | STONERIDGE CONTROL DEVICES, INC | Seat position sensor |
7009386, | Jan 02 2002 | STONERIDGE CONTROL DEVICES, INC | Non-contact position sensor utilizing multiple sensor elements |
7073764, | Dec 27 2002 | TS TECH CO , LTD | Seat track mechanism for vehicle seat |
7147261, | Jul 18 2001 | Intier Automotive Inc | Seat track assembly for a motor vehicle having an integrated position sensor |
7195261, | Nov 12 2002 | TS Tech Co., Ltd. | Position sensor system and vehicle seat provided with the position sensor system |
7262374, | Jun 21 2005 | ASAHI KASEL EMD CORPORATION; POLYMATECH CO , LTD | Pointing device and key sheet for pointing device |
7439735, | Jan 07 2003 | STONERIDGE CONTROL DEVICES, INC | Rail activated position sensor |
8806936, | Sep 29 2010 | Toyota Boshoku Kabushiki Kaisha | Protection cover structure of slide detection apparatus for vehicle seat |
8985542, | Aug 19 2009 | Lear Corporation | Sensor assembly for a movable seat |
9102245, | Mar 27 2013 | Lear Corporation | Seat track end cap and travel stop seat position sensor |
Patent | Priority | Assignee | Title |
3660795, | |||
5967549, | Feb 21 1997 | Key Safety Systems, Inc; KSS HOLDINGS, INC ; KSS ACQUISITION COMPANY; BREED AUTOMOTIVE TECHNOLOGY, INC ; Hamlin Incorporated; KEY ASIAN HOLDINGS, INC ; KEY AUTOMOTIVE ACCESSORIES, INC ; KEY AUTOMOTIVE, LP; KEY CAYMAN GP LLC; KEY ELECTRONICS OF NEVADA, INC ; KEY INTERNATIONAL MANUFACTURING DEVELOPMENT CORPORATION; KEY SAFETY RESTRAINT SYSTEMS, INC ; KEY SAFETY SYSTEMS FOREIGN HOLDCO, LLC; KEY SAFETY SYSTEMS OF TEXAS, INC | Control system for vehicle occupant restraint devices |
6053529, | Dec 22 1997 | Ford Global Technologies, Inc | Occupant restraint system with seat position sensor |
6095555, | May 12 1999 | TRW Inc. | Apparatus for sensing a forward position of a vehicle seat |
6275026, | Aug 10 1999 | TRW Inc. | Position sensing device |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 02 2001 | BECKER, DAVID L | TRW Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011686 | /0215 | |
Apr 04 2001 | TRW Inc. | (assignment on the face of the patent) | / | |||
Feb 28 2003 | TRW AUTOMOTIVE U S LLC | JPMorgan Chase Bank | THE US GUARANTEE AND COLLATERAL AGREEMENT | 014022 | /0720 |
Date | Maintenance Fee Events |
Dec 09 2003 | ASPN: Payor Number Assigned. |
Dec 09 2003 | RMPN: Payer Number De-assigned. |
Dec 18 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 18 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 20 2015 | REM: Maintenance Fee Reminder Mailed. |
Jul 15 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 15 2006 | 4 years fee payment window open |
Jan 15 2007 | 6 months grace period start (w surcharge) |
Jul 15 2007 | patent expiry (for year 4) |
Jul 15 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 15 2010 | 8 years fee payment window open |
Jan 15 2011 | 6 months grace period start (w surcharge) |
Jul 15 2011 | patent expiry (for year 8) |
Jul 15 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 15 2014 | 12 years fee payment window open |
Jan 15 2015 | 6 months grace period start (w surcharge) |
Jul 15 2015 | patent expiry (for year 12) |
Jul 15 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |