A fault tolerant system by which individual components of a server are monitored and controlled through independent, programmable microcontrollers interconnected through a microcontroller network. An external agent can control and monitor the microcontrollers by extending the interconnection network beyond the physical server. The extension to the interconnection network converts protocols between media, and directs the microcontrollers and the state managed by the microcontrollers. Intervention of the server operating system software is not required and is not utilized for the access and control operations. A remote interface board provides the interface between the microcontroller network and an external modem that communicates with a remote client computer. The remote interface board also provides for connection to a local client computer.
|
13. A system for external management of a computer environment, the system comprising:
a first computer having a plurality of components; a second computer connected to the first computer; means for monitoring components of the first computer; and means for interfacing the monitoring means with the second computer to facilitate the external management of the first computer components.
1. A system for external management of a computer environment, the system comprising:
a first computer having a plurality of components; a second computer connected to the first computer; a plurality of microcontrollers that monitor components of the first computer; a bus that interconnects the microcontrollers; and a remote interface circuit that interfaces the microcontrollers with the second computer thereby facilitating the external management of the first computer components.
2. The system defined in
3. The system defined in
4. The system defined in
5. The system defined in
6. The system defined in
8. The system defined in
9. The system defined in
10. The system defined in
11. The system defined in
14. The system defined in
15. The system defined in
17. The system defined in
18. The system defined in
19. The system defined in
20. The system defined in
|
This patent application is a divisional of application Ser. No. 08/942,160, filed on Oct. 1, 1997, now U.S. Pat. No. 6,266,721, which is hereby incorporated by reference.
The benefit under 35 U.S.C. §119(e) of the following U.S. provisional
Application | ||
Title | No. | Filing Date |
"Remote Access and Control of | 60/046,397 | May 13, 1997 |
Environmental Management System" | ||
"Hardware and Software Architecture for | 60/047,016 | May 13, 1997 |
Inter-Connecting an Environmental | ||
Management System with a Remote | ||
Interface" | ||
"Self Management Protocol for a | 60/046,416 | May 13, 1997 |
Fly-By-Wire Service Processor" | ||
Appendix A, which forms a part of this disclosure, is a list of commonly owned copending U.S. patent applications. Each one of the applications listed in Appendix A is hereby incorporated herein in its entirety by reference thereto.
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
1. Field of the Invention
The invention relates to fault tolerant computer systems. More specifically, the invention is directed to a system for providing remote access and control of server environmental management.
2. Description of the Related Technology
As enterprise-class servers become more powerful and more capable, they are also becoming increasingly sophisticated and complex. For many companies, these changes lead to concerns over server reliability and manageability, particularly in light of the increasingly critical role of server-based applications. While in the past many systems administrators were comfortable with all of the various components that made up a standards-based network server, today's generation of servers can appear as an incomprehensible, unmanageable black box. Without visibility into the underlying behavior of the system, the administrator must "fly blind." Too often the only indicators the network manager has on the relative health of a particular server is whether or not it is running.
It is well-acknowledged that there is a lack of reliability and availability of most standards-based servers. Server downtime, resulting either from hardware or software faults or from regular maintenance, continues to be a significant problem. By one estimate, the cost of downtime in mission critical environments has risen to an annual total of $4.0 billion for U.S. businesses, with the average downtime event resulting in a $140 thousand loss in the retail industry and a $450 thousand loss in the securities industry. It has been reported that companies lose as much as $250 thousand in employee productivity for every 1% of computer downtime. With emerging Internet, intranet and collaborative applications taking on more essential business roles every day, the cost of network server downtime will continue to spiral upward.
While hardware fault tolerance is an important element of an overall high availability architecture, it is only one piece of the puzzle. Studies show that a significant percentage of network server downtime is caused by transient faults in the I/O subsystem. These faults may be due, for example, to the device driver, the adapter card firmware, or hardware which does not properly handle concurrent errors, and often causes servers to crash or hang. The result is hours of downtime per failure, while a system administrator discovers the failure takes some action, and manually reboots the server. In many cases, data volumes on hard disk drives become corrupt and must be repaired when the volume is mounted. A dismount-and-mount cycle may result from the lack of Ahot pluggability≡ in current standards-based servers. Diagnosing intermittent errors can be a frustrating and time-consuming process. For a system to deliver consistently high availability, it must be resilient to these types of faults. Accurate and available information about such faults is central to diagnosing the underlying problems and taking corrective action.
Modern fault tolerant systems have the functionality to provide the ambient temperature of a storage device enclosure and the operational status of other components such as the cooling fans and power supply. However, a limitation of these server systems is that they do not contain self-managing processes to correct malfunctions. Also, if a malfunction occurs in a typical server, it relies on the operating system software to report, record and manage recovery of the fault. However, many types of faults will prevent such software from carrying out these tasks. For example, a disk drive failure can prevent recording of the fault in a log file on that disk drive. If the system error caused the system to power down, then the system administrator would never know the source of the error.
Traditional systems are lacking in detail and sophistication when notifying system administrators of system malfunctions. System administrators are in need of a graphical user interface for monitoring the health of a network of servers. Administrators need a simple point-and-click interface to evaluate the health of each server in the network. In addition, existing fault tolerant servers rely upon operating system maintained logs for error recording. These systems are not capable of maintaining information when the operating system is inoperable due to a system malfunction. Existing systems do not have a system log for maintaining information when the main computational processors are inoperable.
Another limitation of the typical fault tolerant system is that the control logic for the diagnostic system is associated with a particular processor. Thus, if the environmental control processor malfunctioned, then all diagnostic activity on the computer would cease. In traditional systems, if a controller dedicated to the fan system failed, then all fan activity could cease resulting in overheating and ultimate failure of the server. What is desired is a way to obtain diagnostic information when the server OS is not operational or even when main power to the server is down.
Existing fault tolerant systems also lack the power to remotely control a particular server, such as powering up and down, resetting, retrieving or updating system status, displaying flight recorder and so forth. Such control of the server is desired even when the server power is down. For example, if the operating system on the remote machine failed, then a system administrator would have to physically go to the remote machine to re-boot the malfunctioning machine before any system information could be obtained or diagnostics could be started.
Therefore, a need exists for improvements in server management which will result in greater reliability and dependability of operation. Server users are in need of a management system by which the users can accurately gauge the health of their system. Users need a high availability system that must not only be resilient to faults, but must allow for maintenance, modification, and growth-without downtime. System users must be able to replace failed components, and add new functionality, such as new network interfaces, disk interface cards and storage, without impacting existing users. As system demands grow, organizations must frequently expand, or scale, their computing infrastructure, adding new processing power, memory, storage and I/O capacity. With demand for 24-hour access to critical, server-based information resources, planned system downtime for system service or expansion has become unacceptable.
Embodiments of the inventive remote access system provides system administrators with new levels of client/server system availability and management. It gives system administrators and network managers a comprehensive view into the underlying health of the server-in real time, whether on-site or off-site. In the event of a failure, the invention enables the administrator to learn why the system failed, why the system was unable to boot, and to control certain functions of the server from a remote station.
One embodiment of the present invention is a system for external management of a server environment, the system comprising a first computer having a plurality of components, a second computer connected to the first computer, a plurality of microcontrollers that monitor components of the first computer, a bus that interconnects the microcontrollers, and a remote interface circuit-that interfaces the microcontrollers with the second computer thereby facilitating the external management of the first computer components.
Another embodiment of the present invention is a system for external management of a computer environment, the system comprising a first computer having a plurality of components, a second computer connected to the first computer, means for monitoring components of the first computer, and means for interfacing the monitoring means with the second computer to facilitate the external management of the first computer components.
The following detailed description presents a description of certain specific embodiments of the present invention. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout.
For convenience, the discussion of the invention is organized into the following principal sections: Introduction, Server System, Microcontroller Network, Remote Interface Board, Remote Interface Serial Protocol, and RIB Microcontroller Operation.
The inventive computer server system and client computer includes a distributed hardware environment management system that is built as a small self-contained network of microcontrollers. Operating independently of the system processor and operating system software, embodiments of present invention uses separate processors for providing information and managing the hardware environment including fans, power supplies and temperature.
Initialization, modification and retrieval of system conditions are performed through utilization of a remote interface by issuing commands to the environmental processors. The system conditions may include system log size, presence of faults in the system log, serial number for each of the environmental processors, serial numbers for each power supply of the system, system identification, system log count, power settings and presence, canister presence, temperature, BUS/CORE speed ratio, fan speeds, settings for fan faults, LCD display, Non-Maskable Interrupt (NMI) request bits, CPU fault summary, FRU status, JTAG enable bit, system log information, remote access password, over-temperature fault, CPU error bits, CPU presence, CPU thermal fault bits, and remote port modem. The aforementioned list of capabilities provided by the present environmental system is not all-inclusive.
The server system and client computer provides mechanisms for the evaluation of the data that the system collects and methods for the diagnosis and repair of server problems in a manner that system errors can be effectively and efficiently managed. The time to evaluate and repair problems is minimized. The server system ensures that the system will not go down, so long as sufficient system resources are available to continue operation, but rather degrade gracefully until the faulty components can be replaced.
Referring to
Information collected and analyzed by the microcontroller network 102 can be presented to a system administrator using either SNMP-based system management software (not shown), or using microcontroller network Recovery Manager software 130 through a local connection 121 or a dial-in connection 123. The system management software, which interfaces with the operating system (OS) 108 such as Microsoft Windows NT Version 4.0 or Novell Netware Version 4.11, for example, provides the ability to manage the specific characteristics of the server system, including Hot Plug Peripheral Component Interconnect (PCI), power and cooling status, as well as the ability to handle alerts associated with these features.
The microcontroller network Recovery Manager software 130 allows the system administrator to query the status of the server system 100 through the microcontroller network 102, even when the server is down. Using the microcontroller network remote management capability, a system administrator can use the Recovery Manager 130 to re-start a failed system through a modem connection 123. First, the administrator can remotely view the microcontroller network Flight Recorder, a feature that stores all system messages, status and error reports in a circular Non-Volatile Random Access Memory buffer (NVRAM) 112. Then, after determining the cause of the system problem, the administrator can use microcontroller network "fly by wire" capability to reset the system, as well as to power the system off or on. "Fly by wire" denotes that no switch, indicator or other control is directly connected to the function it monitors or controls, but instead, all the control and monitoring connections are made by the microcontroller network 102.
The remote interface board (RIB) 104 interfaces the server system 100 to an external client computer. The RIB 104 may be internal or external to an enclosure of the server 100. Furthermore, the RIB may be incorporated onto another circuit of the server, such as a system board 150 (
The client computer 122/124 could be another server, such as, for example, a backup server. The client computer 122/124 could also be a handheld computer such as, for example, a personal digital assistant (PDA). It is not necessary that Operating System software be running on the client computer 122/124. For example, the client computer 122/124 could be hard-wired for specific tasks, or could have special purpose embedded software.
The processor and RAM requirements of the client computer 122/124 are such as necessary by the OS 132. The serial port of the client computer 122/124 may utilize a type 16550A Universal Asynchronous Receiver Transmitter (IART). The switch 120 facilitates either the local connection 121 or the modem connection 123 at any one time, but allows both types of connections to be connected to the switch. In an another embodiment, either the local connection 121 or the modem connection 123 is connected directly to the RIB 104. The local connection 121 utilizes a readily available null-modem serial cable to connect to the local client computer. The modem connection may utilize a Hayes-compatible server modem 126 and a Hayes-compatible client modem 128. In one embodiment, a model V.34X 33.6K data/fax modem available from Zoom is utilized as the client modem and the server modem. In another embodiment, a Sportster 33.6K data/fax modem available from US Robotics is utilized as the client modem.
The steps of connecting the remote client computer 124 to the server 100 will now be briefly described. The remote interface 104 has a serial port connector 204 (
In another embodiment, the server modem to client modem connection may be implemented by an Internet connection utilizing the well known TCP/IP protocol. Any of several Internet access devices, such as modems or network interface cards, may be utilized. Thus, the communications network 127 may utilize either circuit or packet switching.
At the remote client computer 124, a serial cable (25-pin D-shell) 129 is used to interconnect the client modem 128 and the client computer 124. The client modem 128 is then connected to the communications network 127 using an appropriate connector. Each modem is then plugged into an appropriate power source for the modem, such as an AC outlet. At this time, the Recovery Manager software 130 is loaded into the client computer 124, if not already present, and activated.
The steps of connecting the local client computer 122 to the server 100 are similar, but modems are not necessary. The main difference is that the serial port connector of the remote interface 104 connects to a serial port of the local client computer 122 by the null-modem serial cable 121.
In one embodiment, the invention is implemented by a network of microcontrollers 102 (FIG. 1). The microcontrollers may provide functionality for system control, diagnostic routines, self-maintenance control, and event logging processors. A further description of the microcontrollers and microcontroller network is provided in U.S. patent application Ser. No. 09,911,884, entitled "Diagnostic and Managing Distributed Processor System".
Referring to
The System Recorder 110 and Chassis controller 170, along with the NVRAM 112 that connects to the System Recorder 110, may be located on the backplane 152 of the server 100. The System Recorder 110 and Chassis controller 170 are typically the first microcontrollers to power up when server power is applied. The System Recorder 110, the Chassis controller 170 and the Remote Interface microcontroller 200 are the three microcontrollers that have a bias 5 volt power supplied to them. If main server power is off, an independent power supply source for the bias 5 volt power is provided by the RIB 104 (FIG. 1). The Canister controllers 172-178 are not considered to be part of the backplane 152 because they are located on separate cards and are removable.
Each of the microcontrollers has a unique system identifier or address. The addresses are as follows in Table 1:
TABLE 1 | ||
Microcontroller | Address | |
System Interface controller 106 | 10 | |
CPU A controller 166 | 03 | |
CPU B controller 168 | 04 | |
System Recorder 110 | 01 | |
Chassis controller 170 | 02 | |
Canister A controller 172 | 20 | |
Canister B controller 174 | 21 | |
Canister C controller 176 | 22 | |
Canister D controller 178 | 23 | |
Remote Interface controller 200 | 11 | |
The microcontrollers may be Microchip Technologies, Inc. PIC processors in one embodiment, although other microcontrollers, such as an 8051 available from Intel, an 8751 available from Atmel, and a P80CL580 microprocessor available from Philips, could be utilized. The PIC 16C74 (Chassis controller 170) and PIC 16C65 (the other controllers) are members of the PIC16CXX family of CMOS, fully-static, EPROM-based 8-bit microcontrollers. The PIC controllers have 192 bytes of RAM, in addition to program memory, three timer/counters, two capture/compare/Pulse Width Modulation modules and two serial ports. The synchronous serial port is configured as a two-wire Inter-Integrated Circuit (I2C) bus in one embodiment of the invention. The PIC controllers use a Harvard architecture in which program and data are accessed from separate memories. This improves bandwidth over traditional von Neumann architecture processors where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bit wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle.
In one embodiment of the invention, the microcontrollers communicate through an I2C serial bus, also referred to as a microcontroller bus 160. The document "The I2C Bus and How to Use It" (Philips Semiconductor, 1992) is hereby incorporated by reference. The I2C bus is a bidirectional two-wire bus that may operate at a 400 kbps. However, other bus structures and protocols could be employed in connection with this invention.
For example, Apple Computer ADB, Universal Serial Bus, IEEE-1394 (Firewire), IEEE-488 (GPIB), RS-485, or Controller Area Network (CAN) could be utilized as the microcontroller bus. Control on the microcontroller bus is distributed. Each microcontroller can be a sender (a master) or a receiver (a slave) and each is interconnected by this bus. A microcontroller directly controls its own resources, and indirectly controls resources of other microcontrollers on the bus.
Here are some of the features of the I2C-bus:
Two bus lines are utilized: a serial data line (SDA) and a serial clock line (SCL).
Each device connected to the bus is software addressable by a unique address and simple master/slave relationships exist at all times; masters can operate as master-transmitters or as master-receivers.
The bus is a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer.
Serial, 8-bit oriented, bidirectional data transfers can be made at up to 400 kbit/second in the fast mode.
Two wires, serial data (SDA) and serial clock (SCL), carry information between the devices connected to the I2C bus. Each device is recognized by a unique address and can operate as either a transmitter or receiver, depending on the function of the device. For example, a memory device connected to the I2C bus could both receive and transmit data. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers (see Table 2). A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.
TABLE 2 | |
Definition of I2C-bus terminology | |
Term | Description |
Transmitter | The device which sends the data to the bus |
Receiver | The device which receives the data from the bus |
Master | The device which initiates a transfer, generates clock |
signals and terminates a transfer | |
Slave | The device addressed by a master |
Multi-master | More than one master can attempt to control the bus |
at the same time without corrupting the message | |
Arbitration | Procedure to ensure that, if more than one master |
simultaneously tries to control the bus, only one is | |
allowed to do so and the message is not corrupted | |
Synchronization | Procedure to synchronize the clock signal of two or |
more devices | |
The I2C-bus is a multi-master bus. This means that more than one device capable of controlling the bus can be connected to it. As masters are usually microcontrollers, consider the case of a data transfer between two microcontrollers connected to the I2C-bus. This highlights the master-slave and receiver-transmitter relationships to be found on the I2C-bus. It should be noted that these relationships are not permanent, but depend on the direction of data transfer at that time. The transfer of data would proceed as follows:
1) Suppose microcontroller A wants to send information to microcontroller B:
microcontroller A (master), addresses microcontroller B (slave);
microcontroller A (master-transmitter), sends data to microcontroller B (slave-receiver);
microcontroller A terminates the transfer.
2) If microcontroller A wants to receive information from microcontroller B:
microcontroller A (master addresses microcontroller B (slave);
microcontroller A (master-receiver) receives data from microcontroller B (slave-transmitter);
microcontroller A terminates the transfer.
Even in this situation, the master (microcontroller A) generates the timing and terminates the transfer.
The possibility of connecting more than one microcontroller to the I2C-bus means that more than one master could try to initiate a data transfer at the same time. To avoid the chaos that might ensue from such an event, an arbitration procedure has been developed. This procedure relies on the wired-AND connection of all I2C interfaces to the I2C-bus.
If two or more masters try to put information onto the bus, the first to produce a `one` when the other produces a `zero` will lose the arbitration. The clock signals during arbitration are a synchronized combination of the clocks generated by the masters using the wired-AND connection to the SCL line.
Generation of clock signal on the I2C-bus is the responsibility of master devices. Each master microcontroller generates its own clock signals when transferring data on the bus.
The command, diagnostic, monitoring and history functions of the microcontroller network 102 are accessed using a global network memory model in one embodiment. That is, any function may be queried simply by generating a network "read" request targeted at the function's known global network address. In the same fashion, a function may be exercised simply by "writing" to its global network address. Any microcontroller may initiate read/write activity by sending a message on the I2C bus to the microcontroller responsible for the function (which can be determined from the known global address of the function). The network memory model includes typing information as part of the memory addressing information.
Using a network global memory model in one embodiment places relatively modest requirements for the I2C message protocol.
All messages conform to the I2C message format including addressing and read/write indication.
All I2C messages use seven bit addressing.
Any controller can originate (be a Master) or respond (be a Slave).
All message transactions consist of I2C "Combined format" messages. This is made up of two back-to-back I2C simple messages with a repeated START condition between (which does not allow for re-arbitrating the bus). The first message is a Write (Master to Slave) and the second message is a Read (Slave to Master).
Two types of transactions are used: Memory-Read and Memory-Write.
Sub-Addressing formats vary depending on data type being used.
Referring to
The two wire microcontroller bus 160 is brought in from the server 100 and passed to the microcontroller 200 using the RJ-45 cable 103 and RJ-45 connector 226. A switch 228, such as a QS3126 switch available from Quick Logic, connects to the RJ-45 connector 226 and provides isolation for the data and clock bus signals internal and external to the RIB 104. If the RIB 104 and switch 228 have power, the switch 228 feeds the bus signals through to a microcontroller bus extender 230. Otherwise, if the switch 228 does not have power, the microcontroller bus 160 is isolated from the RIB 104. The bus extender 230 connects between the switch 228 and the microcontroller 200. The bus extender 230 is a buffer providing drive capability for the clock and data signals. In one embodiment, the bus extender 230 is a 82B715 chip available from Philips Semiconductor. Microcontroller 200 Port C, bit 3 is the clocking bit and Port C, bit 4 is the data line.
Communication with the server modem 126 is based on the RS232 protocol. The microcontroller 200 generates the receive and the transmit signals, where the signal levels are transposed to the RS232 levels by the LT1133A line transceiver 202. There are three transmit signals, RTS, SOUT and DTR, which are from Port A, bits 2, 3 and 4 of the microcontroller 200, whereas the five receive signals are from two ports, DCD, DSR from Port C, bits 1 and 0 and SIN, CTS and RI from Port A, bits 5, 0 and 1.
In one embodiment, the 25 pin RS232 pin connector 204 is used instead a 9 pin connector, since this type of connector is more common. All the extra pins are not connected except the pins 1 and 7, where pin 1 is chassis ground and pin 7 is a signal ground.
A static random access memory (SRAM) 208 connects to the microcontroller 200. In one embodiment, the SRAM 208 is a 32k×8 MT5LC2568 that is available from Micron Technology. The SRAM 208 is also available from other memory manufacturers. An external address register 206, such as an ABT374, available from Texas Instruments is used for latching the higher addressing bits (A8-A14) of the address for the SRAM 208 so as to expand the address to fifteen bits. The SRAM 208 is used to store system status data, system log data from the NVRAM 112 (FIG. 1), and other message data for transfer to the external interface port 204 or to a microcontroller on the microcontroller bus 160 (FIG. 2).
Port D of the microcontroller 200 is the address port. Port B is the data bus for the bi-directional data interconnect. Port E is for the SRAM enable, output tristate and write control signals. The microcontroller 200 operates at a frequency of 12 MHz.
An Erasable Programmable Read Only Memory (EPROM) 212 is used for storing board serial number identification information for the RIB 104. The serial number memory 212 is signal powered, retaining the charge into a capacitor sourced through the data line. In one embodiment, the serial number memory 212 stores eight sixteen-byte serial/revision numbers (for maintaining the rework/revision history) and is a DS2502 chip available from Dallas Semiconductor. The programming of memory 212 is handled using a jumper applied through an external connector J1210. The serial number memory 212 connects to the microcontroller 200 at Port C, bit 6 and to the external connector J1210.
The RIB 104 may be powered through a 7.5 Volt/800 mA supply unit that plugs into a connector J2220. In one embodiment, the supply unit is 120 Volt AC to DC wall adapter. Connector J2220 feeds a LT1376 high frequency switching regulator 222, available from Linear Technology, which regulates the power source. The regulated power output is used locally by the components on the RIB 104, and 300 mA are sourced to the microcontroller network 102 through a 300 mA fuse 224 and the RJ-45 connector 226. Thus, the output of the regulator 222 provides an alternative source for a bias-powered partition of the microcontroller network 102. The bias-powered partition includes the system recorder 110 (FIG. 1), the NVRAM 112 and the Chassis controller 170 (
The microcontroller network remote interface serial protocol communicates microcontroller network messages across a point-to-point serial link. This link is between the RIB controller 200 that is in communication with the Recovery Manager 130 at the remote client 122/124. This protocol encapsulates microcontroller network messages in a transmission packet to provide error-free communication and link security.
In one embodiment, the remote interface serial protocol uses the concept of byte stuffing. This means that certain byte values in the data stream have a particular meaning. If that byte value is transmitted by the underlying application as data, it must be transmitted as a two-byte sequence.
The bytes that have a special meaning in this protocol are:
SOM 306 | Start of a message |
EOM 316 | End of a message |
SUB | The next byte in the data stream must be substituted |
before processing. | |
INT 320 | Event Interrupt |
Data 312 | An entire microcontroller network message |
As stated above, if any of these byte values occur as data in a message, a two-byte sequence must be substituted for that byte. The sequence is a byte with the value of SUB, followed by a type with the value of the original byte, which is incremented by one. For example, if a SUB byte occurs in a message, it is transmitted as a SUB followed by a byte that has a value of SUB+1.
Referring to
1. Requests 302, which are sent by remote management (client) computers 122/124 (
2. Responses 304, which are returned to the requester 122/124 by the remote interface 104.
The fields of the messages are defined as follows:
SOM 306 | A special data byte value marking the start of a message. |
EOM 316 | A special data byte value marking the end of a message. |
Seq. #308 | A one-byte sequence number, which is incremented on |
each request. It is stored in the response. | |
TYPE 310 One of the following types of requests:
IDENTIFY | Requests the remote interface to send back indentifi- |
cation information about the system to which it is | |
connected. It also resets the next expected sequence | |
number. Security authorization does not nees to be | |
established before the request is issued. | |
SECURE | Establishes secure authorization on the serial link by |
checking password security data provided in the message | |
with the microcontroller network password. | |
UNSECURE | Clears security authorization on the link and attempts to |
disconnect it. This requires security athorization to have | |
been previously established. | |
MESSAGE | Passes the data portions of the message to the |
microcontroller network for execution. The response | |
from the microcontroller network is sent back in the | |
data portion of the response. This requires security | |
authorization to have beem previously established. | |
POLL | Queries the status of the remote interface. This request |
is generally used to determine if an event is pending in | |
the remote interface. | |
STATUS 318 One of the following response status values:
OK | Everything relating to communication with the remote |
interface is successful. | |
OK_EVENT | Everything relating to communication with the remote |
interface is successful. In addition, there is one or more | |
events pending in the remote interface. | |
SEQUENCE | The sequence number of the request is neither the current |
sequence number or retransmission request, nor the next | |
expected sequence number or new request. Sequence | |
numbers may be reset by an IDENTIFY request. | |
CHECK | The check byte in the request message is received |
incorrectly. | |
FORMAT | Something about the format of the message is incorrect. |
Most likely, the type field contains an invalid value. | |
SECURE | The message requires that security authorization be in |
effect, or, if the message has a TYPE value of SECURE, | |
the security check failed. | |
Check 314 | Indicates a message integrity check byte. Currently the |
value is 256 minus the sum of previous bytes in the | |
message. For example, adding all bytes in the | |
message up to and including the check byte should | |
produce a result of zero (0). | |
INT 320 | A special one-byte message sent by the remote interface |
when it detects the transition from no events pending to | |
one or more events pending. This message can be used to | |
trigger reading events from the remote interface. Events | |
should be read until the return status changes form | |
OK_EVENT to OK. | |
The remote interface is the bridge to link the microcontroller bus to the outside world via a RS232 serial port through which a client computer can be connected. A message from the remote client side via RS232 usually starts with the "Identify" command which identifies the system name. See the message format associated with
Referring to
Beginning at an initialize PIC state 402, process 400 initializes the variables, stack pointer, and other structures of the RIB microcontroller 200 (FIG. 3). Moving to state 404, a return point called "main" is identified in process 400. Proceeding to a decision state 406, process 400 determines if the RS232 port is transmitting data. If so, process 400 moves to state 408 to send a character (one byte) if there is data in the SRAM 208 to be sent out on the RS232 port 204. A process of receiving data via the RS232 port 204 is not shown herein. Receiving data via the port 204 is initiated by the use of an interrupt.
At the completion of state 408, or if decision state 406 evaluates to a false condition, process 400 proceeds to a Check Modem Status function 410 that is implemented as a modem dialing and answering state machine. Function 410 checks the status of the modem 126 for any possible activity. Function 410 will be further described in conjunction with FIG. 6. Advancing to a decision state 412, process 400 determines if any server event is pending. Event types include, for example, CPU status change, power status change, canister status change, fan status change, temperature, and operating system timeout. If an event is pending, process 400 proceeds to state 414 and sends an event message to the client computer 122/124 via the RS232 port. If no event is pending, as determined at decision state 412, process 400 continues at a decision state 416. At decision state 416, process 400 checks to see if a RS232 remote message has been received from the client computer 122/124. If not, process 400 moves back to the "main" loop 404, as described above. One reason that a message has not been received yet is that the modem is not yet transmitting.
If a message has been received, as determined at decision state 416, process moves to the appropriate state 420-426 to handle one of four command types: Identify, Secure, Unsecure, and Message. At state 420, process 400 performs the Identify command and identifies the system by responding with the system name retrieved from the System Recorder memory 112 (FIG. 1).
At state 422, process 400 performs the Secure command and gets the password with the command and checks it against the password from the NVRAM 112 (FIG. 1). If the passwords match, the access right is granted (opens secure mode), otherwise, reject the intent.
At state 424, process 400 performs the Unsecure command and releases the remote access right, i.e., closes secure mode. At the completion of states 420, 422 or 424, process 400 proceeds through off-page connector E 430 to state 438 (
At state 426 on
At the completion of states 420, 422, 424, 434 or 436, process 400 advances to state 438 and stores the response data for the command into the SRAM 208 (
Referring to
TABLE 3 | |
Modem Term | Meaning |
CTS | clear to send |
DCD | data carrier detect |
DSR | data set ready |
DTR | data transfer ready |
RTS | request to send |
EOS | end of string |
Protocol | indicates whether RS232 serial data uses the |
messaging protocol or whether the data is a string | |
of bytes | |
Ring | modem is detecting an incoming ring signal from |
another modem | |
Local | a connection to a local client computer (no modem |
used) | |
Modem Mode | modem to modem connection |
Modem Already Set | modem initialization string has already been sent |
and completed | |
State machine 410 includes nine states, states 470-486. State 470 denotes that the modem is disconnected, DTR and RTS are clear and the protocol is clear. Protocol is clear indicates that no message protocol processing is to occur for bytes on the RS232 link (because it would affect transmitting and receiving of modem control string bytes). The state machine 410 remains at the Modem Disconnect state 470 while CTS is clear OR there have been "n" dialing retries already OR there is no Ring OR DSR is clear. If DSR is set (active), the state machine 410 proceeds to a Local Modem state 486, wherein RTS and DTR are set. The state machine 410 remains at state 486 while DSR is set. Is DSR clears or if Local AND Modem Mode are both set, the state machine 410 returns to Modem Disconnect state 470.
The state machine 410 proceeds to Modem Soft Reset state 472 if a Call Out condition OR a Setup condition is achieved. Call Out is achieved if Modem Mode is set AND Modem Already Set is set AND CTS is set AND there have not been "n" dialing retries already. Setup is achieved if Modem Mode is set AND Modem Already Set is clear AND CTS is set. At Modem Soft Reset state 472, DTR is set and RTS is set. The state machine 410 remains at state 472 while Send String Done is clear, i.e., the modem command string is still being sent to the modem.
The state machine 410 proceeds to Modem Test state 474 when Send String Done is set. The state machine 410 remains at state 474 while Send String Done is clear. The state machine 410 proceeds to Modem Result Code state 476 when Send String Done is set. The state machine 410 remains at state 476 while Modem Result Status Done is clear, i.e., the results status of the modem test at state 474 is not yet available.
The state machine 410 returns to Modem Disconnect state 470 from state 476 if Results Status OK is clear, i.e., the results status is not OK. However, if Results Status OK is set, i.e., the results status is correct, the state machine 410 proceeds to a Modem Setup state 478, wherein Modem Already Set is set. The state machine 410 returns to Modem Disconnect state 470 from state 478 if there have been "n" dialing retries already. However, if there have not been "n" dialing retries already, the state machine 410 proceeds to a Modem Dialing state 480, wherein the modem is dialed.
The state machine 410 remains at state 480 while the previous EOS has not been reached AND two seconds have not passed. The state machine 410 returns to Modem Disconnect state 470 from state 480 if Dial OK is clear, i.e., dialing the modem was not successful. However, if Dial OK is set, i.e., dialing the modem was successful, the state machine 410 proceeds to a Modem Answering state 482. Another path to the Modem Answering state 482 is from the Modem Disconnect state 470 when a Ringing mode is achieved. Ringing mode is achieved if Modem Mode is set AND Modem Already Set is set AND CTS is set AND Ring is set. The state machine 410 remains at state 482 while DSR is clear OR DCD is clear. The state machine 410 returns to Modem Disconnect State 470 from state 482 if DCD is clear and a timeout occurs, i.e., no DCD is set within a timeout period (nobody answers). The state machine 410 proceeds to Remote Modem state 484 when DSR is set AND DCD is set. The modem transfers message data while at this state. When DCD clears, the state machine 410 returns to Modem Disconnect state 470 from state 484 or otherwise remains at state 484.
While the above detailed description has shown, described, and pointed out the fundamental novel features of the invention as applied to various embodiments, it will be understood that various omissions and substitutions and changes in the form and details of the system illustrated may be made by those skilled in the art, without departing from the intent of the invention.
The following patent applications, commonly owned and filed Oct. 1, 1997, are hereby incorporated herein in their entirety by reference thereto:
Application | Attorney Docket | |
Title | No. | No. |
"Method of Remote Access and | 08/942,215 | MNFRAME.002A2 |
Control of Environmental | ||
Management" | ||
"System for Independent Powering | 08/942,410 | MNFRAME.002A3 |
of Diagnostic Processes on a | ||
Computer System" | ||
"Method of Independent Powering | 08/942,320 | MNFRAME.002A4 |
of Diagnostic Processes on a | ||
Computer System" | ||
"Diagnostic and Managing | 08/942,402 | MNFRAME.005A1 |
Distributed Processor System" | ||
"Method for Managing a | 08/942,448 | MNFRAME.005A2 |
Distributed Processor System" | ||
"System for Mapping | 08/942,222 | MNFRAME.005A3 |
Environmental Resources to | ||
Memory for Program Access" | ||
"Method for Mapping | 08/942,214 | MNFRAME.005A4 |
Environmental Resources to | ||
Memory for Program Access" | ||
"Hot Add of Devices Software | 08/942,309 | MNFRAME.006A1 |
Architecture" | ||
"Method for The Hot Add of | 08/942,306 | MNFRAME.006A2 |
Devices" | ||
"Hot Swap of Devices Software | 08/942,311 | MNFRAME.006A3 |
Architecture" | ||
"Method for The Hot Swap of | 08/942,457 | MNFRAME.006A4 |
Devices" | ||
"Method for the Hot Add of a | 08/943,072 | MNFRAME.006A5 |
Network Adapter on a System | ||
Including a Dynamically Loaded | ||
Adapter Driver" | ||
"Method for the Hot Add of a | 08/942,069 | MNFRAME.006A6 |
Mass Storage Adapter on a System | ||
Including a Statically Loaded | ||
Adapter Driver" | ||
"Method for the Hot Add of a | 08/942,465 | MNFRAME.006A7 |
Network Adapter on a System | ||
Including a Statically Loaded | ||
Adapter Driver" | ||
"Method for the Hot Add of a | 08/962,963 | MNFRAME.006A8 |
Mass Storage Adapter on a System | ||
Including a Dynamically Loaded | ||
Adapter Driver" | ||
"Method for the Hot Swap of a | 08/943,078 | MNFRAME.006A9 |
Network Adapter on a System | ||
Including a Dynamically Loaded | ||
Adapter Driver" | ||
"Method for the Hot Swap of a | 08/942,336 | MNFRAME.006A10 |
Mass Storage Adapter on a System | ||
Including a Statically Loaded | ||
Adapter Driver" | ||
"Method for the Hot Swap of a | 08/942,459 | MNFRAME.006A11 |
Network Adapter on a System | ||
Including a Statically Loaded | ||
Adapter Driver" | ||
"Method for the Hot Swap of a | 08/942,458 | MNFRAME.006A12 |
Mass Storage Adapter on a System | ||
Including a Dynamically Loaded | ||
Adapter Driver" | ||
"Method of Performing an | 08/942,463 | MNFRAME.008A |
Extensive Diagnostic Test in | ||
Conjunction with a BIOS Test | ||
Routine" | ||
"Apparatus for Performing an | 08/942,163 | MNFRAME.009A |
Extensive Diagnostic Test in | ||
Conjunction with a BIOS Test | ||
Routine" | ||
"Configuration Management | 08/941,268 | MNFRAME.010A |
Method for Hot Adding and Hot | ||
Replacing Devices" | ||
"Configuration Management | 08/942,408 | MNFRAME.011A |
System for Hot Adding and Hot | ||
Replacing Devices" | ||
"Apparatus for Interfacing Buses" | 08/942,382 | MNFRAME.012A |
"Method for Interfacing Buses" | 08/942,413 | MNFRAME.013A |
"Computer Fan Speed Control | 08/942,447 | MNFRAME.016A |
Device" | ||
"Computer Fan Speed Control | 08/942,216 | MNFRAME.017A |
Method" | ||
"System for Powering Up and | 08/943,076 | MNFRAME.018A |
Powering Down a Server" | ||
"Method of Powering Up and | 08/943,077 | MNFRAME.019A |
Powering Down a Server" | ||
"System for Resetting a Server" | 08/942,333 | MNFRAME.020A |
"Method of Resetting a Server" | 08/942,405 | MNFRAME.021A |
"System for Displaying Flight | 08/942,070 | MNFRAME.022A |
Recorder" | ||
"Method of Displaying Flight | 08/942,068 | MNFRAME.023A |
Recorder" | ||
"Synchronous Communication | 08/943,355 | MNFRAME.024A |
Interface" | ||
"Synchronous Communication | 08/942,004 | MNFRAME.025A |
Emulation" | ||
"Software System Facilitating the | 08/942,317 | MNFRAME.026A |
Replacement or Insertion of | ||
Devices in a Computer System" | ||
"Method for Facilitating the | 08/942,316 | MNFRAME.027A |
Replacement or Insertion of | ||
Devices in a Computer System" | ||
"System Management Graphical | 08/943,357 | MNFRAME.028A |
User Interface" | ||
"Display of System Information" | 08/942,195 | MNFRAME.029A |
"Data Management System | 08/942,129 | MNFRAME.030A |
Supporting Hot Plug Operations on | ||
a Computer" | ||
"Data Management Method | 08/942,124 | MNFRAME.031A |
Supporting Hot Plug Operations on | ||
a Computer" | ||
"Alert Configurator and Manager" | 08/942,005 | MNFRAME.032A |
"Managing Computer System | 08/943,356 | MNFRAME.033A |
Alerts" | ||
"Computer Fan Speed Control | 08/940,301 | MNFRAME.034A |
System" | ||
"Computer Fan Speed Control | 08/941,267 | MNFRAME.035A |
System Method" | ||
"Black Box Recorder for | 08/942,381 | MNFRAME.036A |
Information System Events" | ||
"Method of Recording Information | 08/942,164 | MNFRAME.037A |
System Events" | ||
"Method for Automatically | 08/942,168 | MNFRAME.040A |
Reporting a System Failure in a | ||
Server" | ||
"System for Automatically | 08/942,384 | MNFRAME.041A |
Reporting a System Failure in a | ||
Server" | ||
"Expansion of PCI Bus Loading | 08/942,404 | MNFRAME.042A |
Capacity" | ||
"Method for Expanding PCI Bus | 08/942,223 | MNFRAME.043A |
Loading Capacity" | ||
"System for Displaying System | 08/942,347 | MNFRAME.044A |
Status" | ||
"Method of Displaying System | 08/942,071 | MNFRAME.045A |
Status" | ||
"Fault Tolerant Computer System" | 08/942,194 | MNFRAME.046A |
"Method for Hot Swapping of | 08/943,044 | MNFRAME.047A |
Network Components" | ||
"A Method for Communicating a | 08/942,221 | MNFRAME.048A |
Software Generated Pulse | ||
Waveform Between Two Servers | ||
in a Network" | ||
"A System for Communicating a | 08/942,409 | MNFRAME.049A |
Software Generated Pulse | ||
Waveform Between Two Servers | ||
in a Network" | ||
"Method for Clustering Software | 08/942,318 | MNFRAME.050A |
Applications" | ||
"System for Clustering Software | 08/942,411 | MNFRAME.051A |
Applications" | ||
"Method for Automatically | 08/942,319 | MNFRAME.052A |
Configuring a Server after Hot | ||
Add of a Device" | ||
"System for Automatically | 08/942,331 | MNFRAME.053A |
Configuring a Server after Hot | ||
Add of a Device" | ||
"Method of Automatically | 08/942,412 | MNFRAME.054A |
Configuring and Formatting a | ||
Computer System and Installing | ||
Software" | ||
"System for Automatically | 08/941,955 | MNFRAME.055A |
Configuring and Formatting a | ||
Computer System and Installing | ||
Software" | ||
"Determining Slot Numbers in a | 08/942,462 | MNFRAME.056A |
Computer" | ||
"System for Detecting Errors in a | 08/942,169 | MNFRAME.058A |
Network" | ||
"Method of Detecting Errors in a | 08/940,302 | MNFRAME.059A |
Network" | ||
"System for Detecting Network | 08/942,407 | MNFRAME.060A |
Errors" | ||
"Method of Detecting Network | 08/942,573 | MNFRAME.061A |
Errors" | ||
Sheikh, Tahir Q., Johnson, Karl S., Nguyen, Ken
Patent | Priority | Assignee | Title |
10341186, | Apr 17 2015 | Hewlett Packard Enterprise Development LP | Adding a network unit to a management group |
10409737, | Jun 07 2017 | Intel Corporation | Apparatus, system, and method for positionally aware device management bus address assignment |
10551897, | Jun 07 2017 | Intel Corporation | Combining presence detect pin with device management bus reset and power disable |
6691117, | Jan 29 1999 | Oracle Corporation | Special purpose operating system for executing a database server |
6904458, | Apr 26 2000 | ZHIGU HOLDINGS LIMITED | System and method for remote management |
6988102, | Jan 29 1999 | Oracle International Corporation | Techniques for managing configuration for a system of devices arranged in a network |
7035840, | Jan 29 1999 | Oracle International Corporation | Techniques for managing a database system including one or more database servers |
7383287, | Jan 29 1999 | Oracle International Corporation | Database server with enhanced management and self-configuration features |
7552364, | May 13 1997 | Round Rock Research, LLC | Diagnostic and managing distributed processor system |
7577767, | Sep 09 2005 | EMC IP HOLDING COMPANY LLC | Data storage system having plural storage processors in a single chassis |
7669064, | May 13 1997 | Round Rock Research, LLC | Diagnostic and managing distributed processor system |
7752164, | Jan 29 1999 | Oracle International Corporation | Pre-defined hardware and software bundle ready for database applications |
7761545, | Apr 26 2000 | ZHIGU HOLDINGS LIMITED | System and method for remote management |
7788356, | Apr 26 2000 | ZHIGU HOLDINGS LIMITED | Remote management of a client computer via a computing component that is a single board computer |
8082464, | Oct 13 2009 | GLOBALFOUNDRIES Inc | Managing availability of a component having a closed address space |
8311764, | Dec 17 2009 | EMC IP HOLDING COMPANY LLC | System and method for approximating ambient temperature |
8364775, | Aug 12 2010 | International Business Machines Corporation | High availability management system for stateless components in a distributed master-slave component topology |
8468372, | May 13 1997 | Round Rock Research, LLC | Diagnostic and managing distributed processor system |
8838723, | Aug 12 2010 | International Business Machines Corporation | High availability management system for stateless components in a distributed master-slave component topology |
9047322, | Jan 29 1999 | Oracle International Corporation | Techniques for automatically discovering a database device on a network |
9506821, | Dec 17 2009 | EMC IP HOLDING COMPANY LLC | System and method for controlling fan speed |
Patent | Priority | Assignee | Title |
4057847, | Jun 14 1976 | Sperry Rand Corporation | Remote controlled test interface unit |
4100597, | Apr 02 1976 | International Business Machines Corporation | Computer controlled distribution apparatus for distributing transactions to and from controlled machine tools having means independent of the computer for completing or stopping a tool function initiated by a computer transaction |
4449182, | Oct 05 1981 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Interface between a pair of processors, such as host and peripheral-controlling processors in data processing systems |
4672535, | Sep 07 1976 | Tandem Computers Incorporated | Multiprocessor system |
4692918, | Dec 17 1984 | AT&T Bell Laboratories | Reliable local data network arrangement |
4695946, | Oct 25 1984 | Unisys Corporation | Maintenance subsystem for computer network including power control and remote diagnostic center |
4707803, | Jun 17 1985 | International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NY | Emulator for computer system input-output adapters |
4769764, | Aug 11 1986 | Modular computer system with portable travel unit | |
4774502, | Aug 14 1986 | Nittan Co., Ltd. | Environmental abnormality detection apparatus |
4821180, | Feb 25 1985 | ALCATEL N V | Device interface controller for intercepting communication between a microcomputer and peripheral devices to control data transfers |
4835737, | Jul 21 1986 | AGERE Systems Inc | Method and apparatus for controlled removal and insertion of circuit modules |
4894792, | Sep 30 1988 | SAMSUNG ELECTRONICS CO , LTD | Portable computer with removable and replaceable add-on modules |
4949245, | Oct 21 1988 | MODULAR COMPUTER SYSTEMS, INC A FLORIDA CORPORATION | Intermediate memory system for connecting microcomputers to a rotating disk memory |
4999787, | Jul 15 1988 | Bull HN Information Systems Inc. | Hot extraction and insertion of logic boards in an on-line communication system |
5006961, | Apr 25 1988 | Catene Systems Corporation | Segmented backplane for multiple microprocessing modules |
5007431, | May 03 1988 | CARE SYSTEMS, INC , A CORP OF DE | Apparatus and method for updated recording of irregularities in an electrocardiogram waveform |
5033048, | Apr 01 1988 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Memory selftest method and apparatus same |
5051720, | Nov 13 1989 | SECURE TELECOM, INC | Remote control system using power line of remote site |
5073932, | Aug 31 1990 | TRONTECH LICENSING INCORPORATED | Secured data transmission and error recovery mechanism in cordless telephones |
5103391, | Nov 06 1987 | M T MCBRIAN INC | Control system for controlling environmental conditions in a closed building or other conditions |
5118970, | Dec 08 1990 | Storage Technology Corporation | Controller for disabling a data bus |
5121500, | Dec 30 1988 | International Business Machines Corporation | Preliminary polling for identification and location of removable/replaceable computer components prior to power-up |
5123017, | Sep 29 1989 | The United States of America as represented by the Administrator of the | Remote maintenance monitoring system |
5136708, | Jun 09 1987 | OCE-NEDERLAND B V , ST URBANUSWEG 43 | Distributed office automation system with specific task assignment among workstations |
5136715, | May 27 1988 | Fujitsu Limited | Terminal apparatus for resetting by remote control |
5138619, | Feb 15 1990 | National Semiconductor Corporation | Built-in self test for integrated circuit memory |
5157663, | Sep 24 1990 | Novell, Inc | Fault tolerant computer system |
5210855, | Jun 09 1989 | International Business Machines Corporation | System for computer peripheral bus for allowing hot extraction on insertion without disrupting adjacent devices |
5222897, | Apr 01 1992 | EMC Corporation | Circuit board inserter/ejector system |
5245615, | Jun 06 1991 | LENOVO SINGAPORE PTE LTD | Diagnostic system and interface for a personal computer |
5247683, | Jun 28 1990 | Lenovo PC International | System and method for installing software and updating configuration files |
5253348, | Dec 28 1990 | Apple Inc | Method of arbitration for buses operating at different speeds |
5261094, | Apr 08 1991 | International Business Machines Corporation | Asynchronous replication of data changes by distributed update requests |
5265098, | Aug 03 1990 | INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY | Method and means for managing DASD array accesses when operating in degraded mode |
5266838, | Dec 05 1991 | RTPC CORPORATION; TM PATENTS, L P | Power supply system including power sharing control arrangement |
5269011, | Sep 24 1990 | EMC CORPORATION, A CORP OF MASSACHUSETTS | Dynamically reconfigurable data storage system with storage system controllers selectively operable as channel adapters on storage device adapters |
5272382, | Jun 24 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Power supply for computer system manager |
5272584, | Dec 07 1990 | International Business Machines Corporation | Hot-plugging circuit for the interconnection of cards to boards |
5276814, | Sep 19 1986 | International Business Machines Corporation | Method for transferring information between main store and input output bus units via a sequence of asynchronous bus and two synchronous buses |
5276863, | Jun 28 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer system console |
5277615, | Sep 24 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus for removably supporting a plurality of hot plug-connected hard disk drives |
5280621, | Dec 29 1989 | NEC Corporation | Personal computer having dedicated processors for peripheral devices interconnected to the CPU by way of a system control processor |
5283905, | Jun 24 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Power supply for computer system manager |
5307354, | May 31 1991 | INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY | Method and apparatus for remote maintenance and error recovery in distributed data processing networks |
5311397, | Aug 06 1992 | 3RE COM, INC | Computer with modules readily replaceable by unskilled personnel |
5311451, | Jan 06 1987 | M. T. McBrian Company, Inc. | Reconfigurable controller for monitoring and controlling environmental conditions |
5317693, | Apr 04 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer peripheral device network with peripheral address resetting capabilities |
5329625, | Apr 15 1992 | International Business Machines Corporation | System to service processor interface for a tablet computer |
5337413, | Feb 06 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Environment monitoring system for standard interface bus computer systems |
5351276, | Feb 11 1991 | Wilmington Trust FSB | Digital/audio interactive communication network |
5367670, | Jun 24 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer system manager for monitoring events and operating parameters and generating alerts |
5379184, | Aug 30 1991 | Unisys Corporation | Pry-in/pry-out disk drive receptacle |
5379409, | Mar 27 1990 | Kabushiki Kaisha Toshiba | Apparatus for remotely operating computer system |
5386567, | Jan 20 1992 | International Business Machines Corp. | Hot removable and insertion of attachments on fully initialized computer systems |
5388267, | May 29 1991 | Dell USA L P | Method and apparatus for updating and restoring system BIOS functions while maintaining BIOS integrity |
5402431, | Jun 24 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Innate bus monitoring system for computer system manager |
5404494, | Dec 27 1991 | Intel Corporation | System for copying device driver stub into allocated portion of system memory corresponding to receiving resource to enable device driver execution from resource memory |
5422826, | Sep 10 1990 | General Electric Company | Microcontroller based control system for use in a wind turbine |
5423025, | Sep 29 1992 | Amdahl Corporation | Error handling mechanism for a controller having a plurality of servers |
5430717, | Dec 23 1993 | Krone AG | Digital electronic loop crossconnect and carrier system |
5430845, | Jun 07 1990 | Unisys Corporation | Peripheral device interface for dynamically selecting boot disk device driver |
5432715, | Jun 29 1992 | Hitachi, Ltd.; Hitachi Process Computer Engineering, Inc. | Computer system and monitoring method |
5432946, | Apr 11 1991 | LENOVO SINGAPORE PTE LTD | LAN server personal computer with unattended activation capability |
5438678, | Mar 23 1994 | Self-powered computer accessory device for power extraction from attached data signals and method of operating thereof | |
5440748, | Nov 29 1989 | Kabushiki Kaisha Toshiba | Computer system capable of connecting expansion unit |
5448723, | Oct 15 1993 | QNAP SYSTEMS, INC | Method and apparatus for fault tolerant connection of a computing system to local area networks |
5455933, | Jul 14 1993 | Dell USA, L.P.; DELL U S A , L P | Circuit and method for remote diagnosis of personal computers |
5460441, | Nov 01 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Rack-mounted computer apparatus |
5463766, | Mar 22 1993 | DELL USA, L P | System and method for loading diagnostics routines from disk |
5465349, | Oct 20 1990 | Gemplus Card International | System for monitoring abnormal integrated circuit operating conditions and causing selective microprocessor interrupts |
5471617, | Jun 24 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer management system and associated management information base |
5471634, | Mar 29 1994 | The United States of America as represented by the Secretary of the Navy | Network file server with automatic sensing means |
5473499, | Jun 30 1993 | RPX Corporation | Hot pluggable motherboard bus connection method |
5483419, | Sep 24 1991 | DZU Technology Corporation | Hot-swappable multi-cartridge docking module |
5485550, | Jul 23 1993 | Apple Inc | Method and apparatus for fuzzy logic rule execution |
5485607, | Feb 05 1993 | HTC Corporation | Concurrency-control method and apparatus in a database management system utilizing key-valued locking |
5487148, | Feb 12 1993 | Honda Giken Kogyo Kabushikikaisha | Method and apparatus for detecting faults in a computer network |
5491791, | Jan 13 1995 | RARITAN COMPUTER, INC | System and method for remote workstation monitoring within a distributed computing environment |
5493574, | Sep 24 1992 | ZiLOG, Inc. | Power efficient RAM disk and a method of emulating a rotating memory disk |
5493666, | Mar 19 1990 | Apple Inc | Memory architecture using page mode writes and single level write buffering |
5506960, | Jan 22 1993 | International Computers Limited | Data processing system |
5513314, | Jan 27 1995 | Network Appliance, Inc | Fault tolerant NFS server system and mirroring protocol |
5513339, | Sep 30 1992 | AT&T IPM Corp | Concurrent fault simulation of circuits with both logic elements and functional circuits |
5515515, | Feb 18 1993 | JINGPIN TECHNOLOGIES, LLC | Live data storage array system having individually removable, and self-configuring data storage units |
5517646, | Apr 25 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Expansion device configuration system having two configuration modes which uses automatic expansion configuration sequence during first mode and configures the device individually during second mode |
5519851, | Mar 14 1994 | Sun Microsystems, Inc | Portable PCMCIA interface for a host computer |
5526289, | Jun 14 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Temperature dependent fan control circuit for personal computer |
5528409, | Oct 13 1994 | N T ADVISORS, LLC | Fiber-optic interface system |
5530810, | Feb 26 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus for live bus insertion of add-on devices |
5533193, | Jun 24 1994 | Xerox Corporation | Method of saving machine fault information including transferring said information to another memory when an occurrence of predetermined events or faults of a reproduction machine is recognized |
5533198, | Nov 30 1992 | Hewlett Packard Enterprise Development LP | Direction order priority routing of packets between nodes in a networked system |
5535326, | Jul 31 1992 | International Business Machines Corporation | System and method for logical console verification and feedback |
5539883, | Oct 31 1991 | International Business Machines Corporation | Load balancing of network by maintaining in each computer information regarding current load on the computer and load on some other computers in the network |
5542055, | May 28 1993 | International Business Machines Corp.; International Business Machines Corp | System for counting the number of peripheral buses in each hierarch connected to primary bus for creating map of peripheral buses to locate peripheral devices |
5546272, | Jan 18 1995 | Dell USA, L.P.; DELL USA, L P | Serial fan cooling subsystem for computer systems |
5548712, | Jan 19 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Data storage system and method for managing asynchronous attachment and detachment of storage disks |
5555510, | Aug 02 1994 | Intel Corporation | Automatic computer card insertion and removal algorithm |
5559764, | Aug 18 1994 | International Business Machines Corporation | HMC: A hybrid mirror-and-chained data replication method to support high data availability for disk arrays |
5559958, | Jun 24 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Graphical user interface for computer management system and an associated management information base |
5559965, | Sep 01 1994 | Intel Corporation | Input/output adapter cards having a plug and play compliant mode and an assigned resources mode |
5560022, | Jul 19 1994 | Intel Corporation | Power management coordinator system and interface |
5564024, | Aug 02 1994 | LA CIE, LTD | Apparatus for connecting and disconnecting peripheral devices to a powered bus |
5566299, | Dec 30 1993 | Lockheed Martin Corporation | Fault tolerant method and system for high availability document image and coded data processing |
5566339, | Oct 23 1992 | Avocent Huntsville Corporation | System and method for monitoring computer environment and operation |
5568610, | May 15 1995 | Dell USA, L.P. | Method and apparatus for detecting the insertion or removal of expansion cards using capacitive sensing |
5568619, | Jan 05 1995 | International Business Machines Corporation | Method and apparatus for configuring a bus-to-bus bridge |
5572403, | Jan 18 1995 | Dell USA, L.P.; DELL USA, L P | Plenum bypass serial fan cooling subsystem for computer systems |
5577205, | Mar 16 1993 | HT Research, Inc. | Chassis for a multiple computer system |
5579487, | Oct 02 1992 | Symbol Technologies, Inc | Portable work slate computer with multiple docking positions for interchangeably receiving removable modules |
5579491, | Jul 07 1994 | Dell U.S.A., L.P. | Local proactive hot swap request/acknowledge system |
5579528, | Dec 31 1991 | Dell USA, L.P. | Computer system employing docking bay with spring loaded connector pins and file coherency method |
5581712, | Nov 17 1994 | Intel Corporation | Method and apparatus for managing live insertion of CPU and I/O boards into a computer system |
5581714, | May 28 1993 | International Business Machines Corporation | Bus-to-bus read prefetch logic for improving information transfers in a multi-bus information handling system (bus-to-bus bridge for a multiple bus information handling system that optimizes data transfers between a system bus and a peripheral bus) |
5584030, | Jul 03 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for live insertion and removal of electronic sub-assemblies |
5586250, | Nov 12 1993 | Seagate Technology LLC | SCSI-coupled module for monitoring and controlling SCSI-coupled raid bank and bank environment |
5588121, | Jan 19 1993 | International Computers Limited | Parallel computer having MAC-relay layer snooped transport header to determine if a message should be routed directly to transport layer depending on its destination |
5588144, | Dec 03 1993 | Hitachi, Ltd. | Storage system having a bus common to a plurality of kinds of groups of packages |
5592610, | Dec 21 1994 | Intel Corporation | Method and apparatus for enhancing the fault-tolerance of a network |
5592611, | Mar 14 1995 | AUTONOMY, INC | Stand-in computer server |
5596711, | Oct 02 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer failure recovery and alert system |
5598407, | Oct 07 1991 | OLIVETTI TELEMEDIA S P A | Cordless local area network having a fixed central control device |
5602758, | Jan 22 1993 | HVAC MODULATION TECHNOLOGIES LLC | Installation link-up procedure |
5604873, | Dec 28 1994 | Intel Corporation | Circuitry for controlling power application to a hot docking SCSI SCA disk drive |
5606672, | Jan 27 1995 | Intel Corporation | Method and apparatus for multiplexing signals from a bus bridge to an ISA bus interface and an ATA bus interface |
5608865, | Mar 14 1995 | AUTONOMY, INC | Stand-in Computer file server providing fast recovery from computer file server failures |
5608876, | May 22 1995 | IBM Corporation | Add-in board with enable-disable expansion ROM for PCI bus computers |
5615207, | Jun 07 1995 | Advanced Micro Devices Inc | Side bus to dynamically off load main bus |
5621159, | Nov 02 1995 | Dell USA L.P. | Method and apparatus for determining fan bearing friction |
5621892, | Oct 10 1995 | Intel Corporation | Method and apparatus for managing alerts and events in a networked computer system |
5622221, | May 17 1995 | TACO, INC | Integrated zoning circulator with priority controller |
5625238, | Feb 03 1995 | Motorola, Inc. | Apparatus for non-disruptively interconnecting perpheral device modules with a host device |
5627962, | Dec 30 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Circuit for reassigning the power-on processor in a multiprocessing system |
5628028, | Mar 02 1995 | DATA TRANSLATION II, INC ; DATA TRANSLATION, INC , A DELAWARE CORPORATION | Reprogrammable PCMCIA card and method and apparatus employing same |
5630076, | May 05 1995 | Apple Inc | Dynamic device matching using driver candidate lists |
5631847, | Apr 27 1995 | PDACO LTD | System for network file server failure notification |
5632021, | Oct 25 1995 | Cisco Technology, Inc | Computer system with cascaded peripheral component interconnect (PCI) buses |
5636341, | Jul 28 1994 | Hitachi, Ltd.; Hitachi, LTD | Fault processing method and information processing system |
5638289, | Mar 18 1994 | Fujitsu Limited | Method and apparatus allowing hot replacement of circuit boards |
5644470, | Nov 02 1995 | International Business Machines Corporation | Autodocking hardware for installing and/or removing adapter cards without opening the computer system cover |
5644731, | Jul 07 1995 | Oracle America, Inc | Method and apparatus for hot plugging/unplugging a sub-system to an electrically powered system |
5651006, | Jun 14 1994 | Hewlett-Packard Company | Hierarchical network management system |
5652832, | Nov 13 1995 | Rocket Software, Inc | Method and apparatus for diagnosis and correction of peripheral device allocation faults |
5652833, | Mar 09 1995 | Hitachi, Ltd.; Hitachi Information Network, Ltd.; Hitachi System Engineering, Ltd. | Method and apparatus for performing change-over control to processor groups by using rate of failed processors in a parallel computer |
5652839, | Mar 29 1994 | The United States of America as represented by the Secretary of the Navy | Method of non-intrusively sensing status in a computer peripheral |
5652892, | Oct 20 1993 | Hitachi, Ltd. | Method and apparatus for controlling remote power source |
5652908, | Oct 02 1991 | RPX Corporation | Method and apparatus for establishing communications sessions in a remote resource control environment |
5655081, | Mar 08 1995 | BMC SOFTWARE, INC | System for monitoring and managing computer resources and applications across a distributed computing environment using an intelligent autonomous agent architecture |
5655083, | Jun 07 1995 | EMC Corporation | Programmable rset system and method for computer network |
5655148, | May 27 1994 | Microsoft Technology Licensing, LLC | Method for automatically configuring devices including a network adapter without manual intervention and without prior configuration information |
5659682, | Jun 16 1994 | International Business Machines Corporation | Scheme to determine completion of directory operations for server recovery |
5664118, | Mar 28 1994 | Kabushiki Kaisha Toshiba | Computer system having detachable expansion unit |
5664119, | Jul 07 1994 | Dell USA, L.P. | Local proactive hot swap request/acknowledge system |
5666538, | Jun 07 1995 | SAMSUNG ELECTRONICS CO , LTD | Disk power manager for network servers |
5668943, | Oct 31 1994 | International Business Machines Corporation | Virtual shared disks with application transparent recovery |
5668992, | Aug 01 1994 | LENOVO SINGAPORE PTE LTD | Self-configuring computer system |
5669009, | Jun 30 1994 | Hughes Electronics | Signal processing array |
5671371, | Feb 18 1992 | Hitachi, Ltd. | Bus control system |
5675723, | May 19 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Multi-server fault tolerance using in-band signalling |
5680288, | Jun 07 1995 | GOOGLE LLC | Hot plugging of an adapter card |
5682328, | Sep 11 1996 | Raytheon BBN Technologies Corp | Centralized computer event data logging system |
5684671, | Aug 22 1995 | International Business Machines Corporation | Packaging architecture for a data server |
5689637, | May 01 1992 | JOHNSON, R BRENT | Console simulator, multi-console management system and console management distribution system |
5696895, | May 19 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Fault tolerant multiple network servers |
5696899, | Nov 18 1992 | Canon Kabushiki Kaisha | Method and apparatus for adaptively determining the format of data packets carried on a local area network |
5696949, | Jun 15 1995 | Intel Corporation | System for PCI slots expansion using asynchronous PCI-to-PCI bridge with clock generator for providing clock signal to the expansion mother board and expansion side of bridge |
5696970, | Apr 01 1993 | Intel Corporation | Architecture for implementing PCMCIA card services under the windows operating system in enhanced mode |
5701417, | Mar 27 1991 | Microstar Laboratories | Method and apparatus for providing initial instructions through a communications interface in a multiple computer system |
5704031, | Mar 30 1995 | Fujitsu Limited | Method of performing self-diagnosing hardware, software and firmware at a client node in a client/server system |
5708775, | Apr 19 1995 | Fuji Xerox Co., Ltd. | Fault information notification system localized at each network server |
5708776, | May 09 1996 | PDACO LTD | Automatic recovery for network appliances |
5712754, | Apr 15 1996 | Hewlett Packard Enterprise Development LP | Hot plug protection system |
5715456, | Feb 13 1995 | Lenovo PC International | Method and apparatus for booting a computer system without pre-installing an operating system |
5717570, | Oct 06 1995 | PDACO LTD | Enhanced mini-tower computer architecture |
5721935, | Dec 20 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus and method for entering low power mode in a computer system |
5724529, | Nov 22 1995 | Cirrus Logic, Inc. | Computer system with multiple PC card controllers and a method of controlling I/O transfers in the system |
5726506, | Jun 05 1995 | MARCONI INTELLECTUAL PROPERTY RINGFENCE INC | Hot insertion power arrangement |
5727207, | Sep 07 1994 | RPX Corporation | Method and apparatus for automatically loading configuration data on reset into a host adapter integrated circuit |
5732266, | Sep 02 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Storage medium storing application programs and application initialization files and automatic launching of computer applications stored on the storage medium |
5737708, | Nov 15 1993 | Qualcomm Incorporated | Method for handling unrecognizable commands in a wireless environment |
5737747, | Jun 10 1996 | EMC Corporation | Prefetching to service multiple video streams from an integrated cached disk array |
5740378, | Aug 17 1995 | Cisco Technology, Inc | Hot swap bus architecture |
5742514, | Oct 20 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Integrated remote asynchronous power switch |
5742833, | Nov 30 1995 | LENOVO SINGAPORE PTE LTD | Programmable power management system and method for network computer stations |
5747889, | Jul 31 1996 | Hewlett Packard Enterprise Development LP | Redundant power supply and storage system |
5748426, | Apr 29 1996 | Paradyne Corporation | Method for interfacing to a powered bus |
5752164, | Apr 27 1992 | American PCS Communications, LLC | Autonomous remote measurement unit for a personal communications service system |
5754396, | Jul 22 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Modular desktop computer having enhanced serviceability |
5754449, | Apr 25 1995 | Instrumented Sensor Technology, Inc. | Method and apparatus for recording time history data of physical variables |
5754797, | Feb 13 1995 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for allowing smooth hot insertion and removal of a peripheral by gradually applying and removing power to the peripheral |
5758165, | Jul 07 1995 | Oracle America, Inc | Local area network and network operating system for formatting a client disk and installing a client operating system |
5758352, | Apr 01 1993 | Microsoft Technology Licensing, LLC | Common name space for long and short filenames |
5761033, | Feb 19 1993 | Sejus Corporation | Open computer system with externally interconnected peripheral modules |
5761045, | Dec 22 1995 | Apple Inc | Modular, redundant, hot swappable, blind mate power supply system |
5761085, | Nov 12 1996 | The United States of America as represented by the Secretary of the Navy | Method for monitoring environmental parameters at network sites |
5761462, | Dec 13 1996 | International Business Machines Corporation | Method and system for supporting peripheral component interconnect (PCI) peer-to-peer access across multiple PCI host bridges within a data-processing system |
5761707, | Feb 28 1996 | Oracle America, Inc | High speed flexible slave interface for parallel common bus to local cache buffer |
5764924, | Aug 24 1995 | TERADATA US, INC | Method and apparatus for extending a local PCI bus to a remote I/O backplane |
5764968, | Aug 21 1995 | Kabushiki Kaisha Toshiba | Clock supply permission/inhibition control system |
5765008, | Oct 14 1994 | LENOVO SINGAPORE PTE LTD | Personal computer with riser card PCI and Micro Channel interface |
5765198, | Feb 01 1996 | Hewlett Packard Enterprise Development LP | Transparent relocation of real memory addresses in the main memory of a data processor |
5767844, | Feb 29 1996 | Sun Microsystems Inc | Modified universal serial bus interface implementing remote power up while permitting normal remote power down |
5768541, | Jun 15 1995 | Dell U.S.A., L.P. | System for hot-plugging peripheral device to computer bus and disconnecting peripheral device upon detecting predetermined sequence of keystrokes inputted by user through keyboard |
5768542, | Jun 08 1994 | Microsoft Technology Licensing, LLC | Method and apparatus for automatically configuring circuit cards in a computer system |
5771343, | Feb 14 1996 | International Business Machines Corporation | System and method for failure detection and recovery |
5774640, | Oct 21 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for providing a fault tolerant network interface controller |
5774645, | Aug 29 1994 | Airbus Operations SAS | Process and device for identifying faults in a complex system |
5774741, | Dec 30 1995 | SAMSUNG ELECTRONICS CO , LTD , A CORP OF THE REPUBLIC OF KOREA | Portable computer having a port connector for communicating with a variety of optional extension modules |
5777897, | Nov 26 1996 | The United States of America as represented by the Secretary of the Navy | Method for optimizing the rotational speed of cooling fans |
5778197, | Apr 26 1996 | International Business Machines Corp.; International Business Machines Corp | Method for allocating system resources in a hierarchical bus structure |
5781703, | Sep 06 1996 | Cisco Technology, Inc | Intelligent remote agent for computer performance monitoring |
5781716, | May 19 1995 | QNAP SYSTEMS, INC | Fault tolerant multiple network servers |
5781744, | Aug 25 1995 | Apple Inc | Method and apparatus for ensuring safe peripheral connection |
5781746, | Jul 20 1990 | Infineon Technologies AG | Microprocessor with multiple bus configurations |
5781767, | Dec 03 1993 | Hitachi, Ltd. | Package blocking method for a storage system having a bus common to a plurality of kinds of groups of packages |
5781798, | Dec 30 1993 | International Business Machines Corporation | Method and apparatus for providing hot swapping capability in a computer system with static peripheral driver software |
5784555, | Apr 18 1996 | Microsoft Technology Licensing, LLC | Automation and dial-time checking of system configuration for internet |
5784576, | Oct 31 1996 | International Business Machines Corp. | Method and apparatus for adding and removing components of a data processing system without powering down |
5787019, | May 10 1996 | Apple Computer, Inc.; Apple Computer, Inc | System and method for handling dynamic changes in device states |
5787459, | Mar 11 1993 | EMC Corporation | Distributed disk array architecture |
5787491, | Jan 26 1996 | Dell USA LP; Dell USA, LP | Fast method and apparatus for creating a partition on a hard disk drive of a computer system and installing software into the new partition |
5790775, | Oct 23 1995 | Hewlett Packard Enterprise Development LP | Host transparent storage controller failover/failback of SCSI targets and associated units |
5790831, | Nov 01 1994 | OPTi Inc. | VL-bus/PCI-bus bridge |
5793948, | Nov 25 1994 | Research In Motion Limited | Method and apparatus for recording and analyzing an interaction log |
5793987, | Jul 22 1996 | Cisco Technology, Inc | Hot plug port adapter with separate PCI local bus and auxiliary bus |
5794035, | Dec 13 1993 | International Business Machines Corporation | Device driver and input/output hardware research manager |
5796185, | Oct 15 1996 | Rockwell Collins, Inc | Circuit card present sense and protective power supply inhibit for airborne application of ATM switch unit |
5796580, | Apr 13 1993 | Hitachi Maxell, Ltd | Air-cooled information processing apparatus having cooling air fan, sub-fan, and plural separated cooling air flow channels |
5796934, | May 31 1996 | Oracle International Corporation | Fault tolerant client server system |
5796981, | Sep 16 1994 | CIRRUS LOGIC, INC 3100 WEST WARREN AVENUE | Method and apparatus for providing register compatibility between non-identical integrated circuits |
5797023, | Oct 17 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for fault tolerant BIOS addressing |
5798828, | Mar 13 1996 | American Research Corporation of Virginbia | Laser aligned five-axis position measurement device |
5799036, | Jun 29 1995 | STONESTREET L P | Computer system which provides analog audio communication between a PC card and the computer's sound system |
5799196, | Jul 02 1996 | Gateway, Inc | Method and apparatus of providing power management using a self-powered universal serial bus (USB) device |
5801921, | Nov 19 1996 | Symex, Inc. | Integrated data, voice, and video communication network |
5802269, | Jun 28 1996 | Intel Corporation | Method and apparatus for power management of distributed direct memory access (DDMA) devices |
5802298, | Aug 28 1995 | Fujitsu Limited | Defect-free type remote procedure call system and method thereof |
5802305, | May 17 1996 | Microsoft Technology Licensing, LLC | System for remotely waking a sleeping computer in power down state by comparing incoming packet to the list of packets storing on network interface card |
5802324, | Dec 23 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer system with PCI repeater between primary bus and second bus |
5802393, | Nov 12 1993 | LENOVO SINGAPORE PTE LTD | Computer system for detecting and accessing BIOS ROM on local bus peripheral bus or expansion bus |
5802552, | Jun 30 1993 | Intel Corporation | System and method for allocating and sharingpage buffers for a flash memory device |
5802592, | May 31 1996 | TREND MICRO INCORPORATED | System and method for protecting integrity of alterable ROM using digital signatures |
5803357, | Feb 19 1997 | MAPLE CHASE COMPANY, THE; RANCO INC OF DELAWARE | Thermostat with remote temperature sensors and incorporating a measured temperature feature for averaging ambient temperatures at selected sensors |
5805804, | Nov 21 1994 | ARRIS Enterprises, Inc | Method and apparatus for scalable, high bandwidth storage retrieval and transportation of multimedia data on a network |
5805834, | Mar 30 1994 | ACACIA PATENT ACQUISITION LLC | Hot reconfigurable parallel bus bridging circuit |
5809224, | Oct 13 1995 | Hewlett Packard Enterprise Development LP | On-line disk array reconfiguration |
5809256, | Jun 11 1996 | Data General Corporation | Soft power switching for hot installation and removal of circuit boards in a computer system |
5809287, | Sep 08 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Automatic computer upgrading |
5809311, | Jul 14 1994 | DELL U S A , L P | System and method for providing centralized backup power in a computer system |
5809555, | Dec 15 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method of determining sizes of 1:1 and 2:1 memory interleaving in a computer system, configuring to the maximum size, and informing the user if memory is incorrectly installed |
5812748, | Jun 23 1993 | EMC Corporation | Method for improving recovery performance from hardware and software errors in a fault-tolerant computer system |
5812750, | Sep 17 1990 | CONCORD COMMUNICATIONS, INC ; Computer Associates Think, Inc | Method and apparatus for monitoring the status of non-pollable devices in a computer network |
5812757, | Oct 08 1993 | Mitsubishi Denki Kabushiki Kaisha | Processing board, a computer, and a fault recovery method for the computer |
5812858, | Sep 16 1994 | Cirrus Logic, Inc. | Method and apparatus for providing register and interrupt compatibility between non-identical integrated circuits |
5815117, | Jan 02 1997 | Raytheon Company | Digital direction finding receiver |
5815647, | Nov 02 1995 | International Business Machines Corporation | Error recovery by isolation of peripheral components in a data processing system |
5815651, | Oct 17 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for CPU failure recovery in symmetric multi-processing systems |
5815652, | May 31 1995 | Hitachi, Ltd. | Computer management system |
5821596, | Mar 24 1997 | Cisco Technology, Inc | Batch fabricated semiconductor micro-switch |
5822547, | May 31 1996 | Texas Instruments Incorporated | Method and apparatus for providing a portable computer with hot pluggable modular bays |
5826043, | Jun 07 1995 | SAMSUNG ELECTRONICS CO , LTD | Docking station with serially accessed memory that is powered by a portable computer for identifying the docking station |
5829046, | Jun 10 1996 | EMC Corporation | On-line tape backup using an integrated cached disk array |
5835719, | Oct 20 1994 | AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc | Apparatus and method for remote wake-up in system having interlinked networks |
5835738, | Jun 20 1994 | LENOVO SINGAPORE PTE LTD | Address space architecture for multiple bus computer systems |
5838932, | Dec 23 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Transparent PCI to PCI bridge with dynamic memory and I/O map programming |
5841964, | Jun 28 1995 | Canon Kabushiki Kaisha | Operating state management system |
5841991, | Nov 18 1992 | Canon Kabushiki Kaisha | In an Interactive network board, a method and apparatus for storing a media access control address in a remotely alterable memory |
5845061, | Oct 31 1994 | Hitachi, Ltd. | Redundant client server system |
5845095, | Jul 21 1995 | Motorola Inc. | Method and apparatus for storing and restoring controller configuration information in a data communication system |
5850546, | Dec 08 1995 | JINGPIN TECHNOLOGIES, LLC | Central processing unit reset device and a reset method for a central processing unit |
5852720, | Aug 16 1996 | Hewlett Packard Enterprise Development LP | System for storing display data during first time period prior to failure of computer and during second time period after reset of the computer |
5852724, | Jun 18 1996 | Veritas Technologies LLC | System and method for "N" primary servers to fail over to "1" secondary server |
5857074, | Aug 16 1996 | Hewlett Packard Enterprise Development LP | Server controller responsive to various communication protocols for allowing remote communication to a host computer connected thereto |
5857102, | Mar 14 1995 | Sun Microsystems, Inc | System and method for determining and manipulating configuration information of servers in a distributed object environment |
5864653, | Dec 31 1996 | Hewlett Packard Enterprise Development LP | PCI hot spare capability for failed components |
5864654, | Mar 31 1995 | RENESAS ELECTRONICS AMERICA, INC | Systems and methods for fault tolerant information processing |
5864713, | Feb 12 1996 | Hewlett-Packard Company | Method for determining if data should be written at the beginning of a buffer depending on space available after unread data in the buffer |
5867730, | Apr 15 1996 | Round Rock Research, LLC | Method for configuration of peripherals by interpreting response from peripherals to enable selection of driver file and altering configuration file to enable loading of selected driver file |
5875307, | Jun 05 1995 | National Semiconductor Corporation | Method and apparatus to enable docking/undocking of a powered-on bus to a docking station |
5875308, | Jun 18 1997 | International Business Machines Corporation | Peripheral component interconnect (PCI) architecture having hot-plugging capability for a data-processing system |
5875310, | May 24 1996 | International Business Machines Corporation | Secondary I/O bus with expanded slot capacity and hot plugging capability |
5878237, | Jul 11 1997 | Hewlett Packard Enterprise Development LP | Apparatus, method and system for a comuter CPU and memory to PCI bridge having a pluarlity of physical PCI buses |
5878238, | Jan 23 1996 | Dell USA, L.P. | Technique for supporting semi-compliant PCI devices behind a PCI-to-PCI bridge |
5881311, | Jun 05 1996 | FaStor Technologies, Inc. | Data storage subsystem with block based data management |
5884027, | Jun 15 1995 | Intel Corporation | Architecture for an I/O processor that integrates a PCI to PCI bridge |
5884049, | Dec 31 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Increased processor performance comparable to a desktop computer from a docked portable computer |
5886424, | Jul 10 1996 | SAMSUNG ELECTRONICS CO , LTD | Power supply apparatus for portable computer and DC input selection circuit adapted to the same |
5889965, | Oct 01 1997 | Round Rock Research, LLC | Method for the hot swap of a network adapter on a system including a dynamically loaded adapter driver |
5892898, | Oct 04 1996 | Honeywell INC | Error management system for supporting the identification and logging of error messages |
5892915, | Apr 25 1997 | EMC IP HOLDING COMPANY LLC | System having client sending edit commands to server during transmission of continuous media from one clip in play list for editing the play list |
5892928, | Oct 01 1997 | Round Rock Research, LLC | Method for the hot add of a network adapter on a system including a dynamically loaded adapter driver |
5893140, | Nov 13 1996 | EMC IP HOLDING COMPANY LLC | File server having a file system cache and protocol for truly safe asynchronous writes |
5898846, | Sep 19 1994 | CPU interconnect system for a computer | |
5898888, | Dec 13 1996 | International Business Machines Corporation | Method and system for translating peripheral component interconnect (PCI) peer-to-peer access across multiple PCI host bridges within a computer system |
5905867, | Nov 12 1996 | The United States of America as represented by the Secretary of the Navy | Apparatus for monitoring environmental parameters at network sites |
5907672, | Oct 04 1995 | Veritas Technologies LLC | System for backing up computer disk volumes with error remapping of flawed memory addresses |
5909568, | Sep 03 1996 | Apple Inc | Process and apparatus for transferring data between different file formats |
5911779, | Jan 04 1991 | EMC Corporation | Storage device array architecture with copyback cache |
5913034, | Aug 27 1996 | Hewlett Packard Enterprise Development LP | Administrator station for a computer system |
5922060, | Dec 31 1996 | Hewlett Packard Enterprise Development LP | Expansion card insertion and removal |
5930358, | Nov 22 1995 | MITSUBISHI KAGAKU MEDIA CO , LTD | Storage device having a nonvolatile memory for storing user changeable operating parameters |
5935262, | Jun 09 1995 | Canon Kabushiki Kaisha | Outputting a network device log file |
5936960, | Mar 07 1997 | SAMSUNG ELECTRONICS CO , LTD | Apparatus for and method of communicating among devices interconnected on a bus |
5938751, | Aug 15 1997 | Hewlett Packard Enterprise Development LP | Bus ring-back and voltage over-shoot reduction techniques coupled with hot-pluggability |
5941996, | Jul 25 1997 | Bank of America Corporation | Distributed network agents |
5964855, | Apr 07 1997 | International Business Machines Corporation | Method and system for enabling nondisruptive live insertion and removal of feature cards in a computer system |
5983349, | Jul 22 1996 | Sony Corporation | Changer apparatus, method for locking security protection thereof, method for unlocking executing commands thereon, and computer for sending commands thereto |
5987554, | Oct 01 1997 | Round Rock Research, LLC | Method of controlling the transfer of information across an interface between two buses |
5987621, | Apr 25 1997 | EMC Corporation | Hardware and software failover services for a file server |
5987627, | May 13 1992 | F POSZAT HU, L L C | Methods and apparatus for high-speed mass storage access in a computer system |
6012130, | Sep 04 1997 | UNIFY GMBH & CO KG | Method and apparatus for automated disk drive upgrades |
6038624, | Feb 24 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Real-time hardware master/slave re-initialization |
6170028, | May 13 1997 | Round Rock Research, LLC | Method for hot swapping a programmable network adapter by using a programmable processor to selectively disabling and enabling power thereto upon receiving respective control signals |
6173346, | Oct 01 1997 | Round Rock Research, LLC | Method for hot swapping a programmable storage adapter using a programmable processor for selectively enabling or disabling power to adapter slot in response to respective request signals |
6179486, | Oct 01 1997 | Round Rock Research, LLC | Method for hot add of a mass storage adapter on a system including a dynamically loaded adapter driver |
6189109, | Oct 01 1997 | Round Rock Research, LLC | Method of remote access and control of environmental conditions |
6192434, | May 13 1997 | Round Rock Research, LLC | System for hot swapping a programmable adapter by using a programmable processor to selectively disabling and enabling power thereto upon receiving respective control signals |
6199137, | Jan 05 1999 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and device for controlling data flow through an IO controller |
6219734, | Oct 01 1997 | Round Rock Research, LLC | Method for the hot add of a mass storage adapter on a system including a statically loaded adapter driver |
6247080, | Oct 01 1997 | Round Rock Research, LLC | Method for the hot add of devices |
6304929, | May 13 1997 | Round Rock Research, LLC | Method for hot swapping a programmable adapter by using a programmable processor to selectively disabling and enabling power thereto upon receiving respective control signals |
EP866403, | |||
JP4333118, | |||
JP5233110, | |||
JP7093064, | |||
JP7261874, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 22 2001 | MEI CALIFORNIA INC | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012232 | /0436 | |
Mar 23 2001 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Dec 23 2009 | Micron Technology, Inc | Round Rock Research, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023786 | /0416 |
Date | Maintenance Fee Events |
Mar 23 2005 | ASPN: Payor Number Assigned. |
Jan 12 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 05 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 14 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 05 2006 | 4 years fee payment window open |
Feb 05 2007 | 6 months grace period start (w surcharge) |
Aug 05 2007 | patent expiry (for year 4) |
Aug 05 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 05 2010 | 8 years fee payment window open |
Feb 05 2011 | 6 months grace period start (w surcharge) |
Aug 05 2011 | patent expiry (for year 8) |
Aug 05 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 05 2014 | 12 years fee payment window open |
Feb 05 2015 | 6 months grace period start (w surcharge) |
Aug 05 2015 | patent expiry (for year 12) |
Aug 05 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |