A biventricular pacing system incorporates a premature ventricular contraction (PVC) response. The biventricular pacing system also includes a programmable ventricular blanking period (VBP) that is initiated with the PVC response. During the programmed VBP, ventricular events are effectively blanked out. This prevents both ventricular leads from each independently initiating a dual PVC response, based on the same PVC event.
|
29. A method of preventing pacemaker mediated tachycardia in a biventricular cardiac pacing system, the method comprising:
detecting a premature ventricular contraction; initiating an extended post ventricular atrial refractory period of between about 350-450 ms during which atrial events are not sensed by the cardiac pacing system; and initiating a programmable ventricular blanking period, during which ventricular events are not sensed by the cardiac pacing system.
44. An implantable cardiac pacemaker, comprising:
means for sensing biventricular events; and means for controlling the implantable cardiac pacemaker based in part on signals received from the means for sensing biventricular events, and initiating an extended post ventricular atrial refractory period of between about 350-450 ms, during which sensed atrial events are ignored, and a programmable ventricular blanking period in response to a premature ventricular contraction.
52. A biventricular cardiac pacing system configured to prevent pacemaker mediated tachycardia, comprising:
means for detecting a premature ventricular contraction; means for initiating an extended post ventricular atrial refractory period of between about 350-450 ms during which atrial events are not sensed by the cardiac pacing system; and means for initiating a programmable ventricular blanking period, during which ventricular events are not sensed by the cardiac pacing system.
1. An implantable cardiac pacemaker, comprising:
a first ventricular lead; a second ventricular lead; and a controller that controls the implantable cardiac pacemaker based in part on signals received from the first and second ventricular leads, and initiates an extended post ventricular atrial refractory period of between about 350-450 ms, during which sensed atrial events are ignored, and a programmable ventricular blanking period in response to a premature ventricular contraction.
10. An implantable medical device, comprising;
biventricular pacing and sensing leads; and a programmable cardiac pacing system coupled to the biventricular pacing and sensing leads, and having a preprogrammed premature ventricular contraction response function that initiates an extended post ventricular atrial refractory period for a first predetermined period of time of between about 350-450 ms, during which sensed atrial events are ignored, and initiates a programmed ventricular blanking period for a second predetermined period of time, following the detection of a premature ventricular contraction.
62. A biventricular cardiac pacing system, comprising:
means for sensing atrial and biventricular events; means for classifying a sensed ventricular event following another ventricular event without an intervening atrial event as a premature ventricular contraction; means for initiating a first time period, during which atrial events are blanked out by the cardiac pacing system so that pacemaker mediated tachycardia is avoided; and means for initiating a second time period, during which ventricular events are blanked out by the cardiac pacing system, wherein the second time period is at least as long as an interventricular conduction delay so that an event sensed by the first ventricular lead and classified as the premature ventricular contraction is not subsequently classified as another premature ventricular contraction when sensed by the second ventricular lead, so that an extended ventricular sensing cycle is avoided.
39. A method of utilizing a biventricular cardiac pacing system, the method comprising:
providing a first ventricular lead and a second ventricular lead; sensing atrial and ventricular events; classifying a sensed ventricular event following another ventricular event without an intervening atrial event as a premature ventricular contraction; initiating a first time period, during which atrial events are blanked out by the cardiac pacing system so that pacemaker mediated tachycardia is avoided; and initiating a second time period, during which ventricular events are blanked out by the cardiac pacing system, wherein the second time period is at least as long as an interventricular conduction delay so that an event sensed by the first ventricular lead and classified as the premature ventricular contraction is not subsequently classified as another premature ventricular contraction when sensed by the second ventricular lead, so that an extended ventricular sensing cycle is avoided.
43. An implantable programmable biventricular cardiac pacing system, comprising:
an atrial lead; a first ventricular lead; a second ventricular lead; a microprocessor coupled to the atrial lead and the first and second ventricular leads, the microprocessor being configured to monitor sensed ventricular and atrial events so that a ventricular event sensed after another ventricular event without an intervening atrial sense is determined to be a premature ventricular contraction; and a programmable microcomputer circuit coupled to the microprocessor and including an algorithm for responding to a determined premature ventricular contraction by initiating an extended post ventricular atrial refractory period, during which atrial events are blanked for a period of between about 350-450 ms, and initiating a programmable ventricular blanking period having a duration equal to a measured value of an interventricular conduction delay plus a margin of error equal to about 10-30% of the interventricular conduction delay, during which ventricular events sensed by the first or the second ventricular lead are ignored so that both pacemaker mediated tachycardia and extended ventricular sensing are avoided by the cardiac pacing system.
2. The cardiac pacemaker of
3. The implantable cardiac pacemaker of
4. The implantable cardiac pacemaker of
5. The implantable cardiac pacemaker of
6. The implantable cardiac pacemaker of
7. The implantable cardiac pacemaker of
8. The implantable cardiac pacemaker of 7, wherein the margin of error is equal to approximately 10-30% of the interventricular conduction delay.
9. The implantable cardiac pacemaker of
11. The cardiac pacemaker of
12. The implantable medical device of
13. The implantable medical device of
14. The implantable medical device of
15. The implantable medical device of
16. The implantable medical device of
17. The implantable medical device of
18. The implantable medical device of
19. The implantable medical device of
20. The implantable medical device of
21. The implantable medical device of
22. The implantable medical device of
23. The implantable medical device of
24. The implantable medical device of
25. The implantable medical device of
26. The implantable medical device of
27. The implantable medical device of
28. The implantable medical device of
30. The method of
31. The method of
terminating the programmed ventricular blanking period after the expiration of a first time period; and terminating the extended post ventricular atrial refractory period after the expiration of a second time period, wherein the second time period is longer than the first time period.
32. The method of
setting the first time period to be approximately equal to an interventricular conduction delay.
33. The method of
setting the first time period to be approximately equal to an interventricular conduction delay plus a margin of error.
34. The method of
35. The method of
measuring an interventricular conduction delay; and programming the cardiac pacing system to set the first time period based on the measured interventricular conduction delay.
36. The method of
37. The method of
38. The method of
40. The method of
measuring the interventricular conduction delay; and setting the second time period based on the measured interventricular conduction delay.
42. The method of
45. The implantable cardiac pacemaker of
46. The implantable cardiac pacemaker of
47. The implantable cardiac pacemaker of
48. The implantable cardiac pacemaker of
49. The implantable cardiac pacemaker of
50. The implantable cardiac pacemaker of 49, wherein the margin of error is equal to approximately 10-30% of the interventricular conduction delay.
51. The implantable cardiac pacemaker of
53. The cardiac pacing system of
54. The cardiac pacing system of
means for terminating the programmed ventricular blanking period after the expiration of a first time period; and means for terminating the extended post ventricular atrial refractory period after the expiration of a second time period, wherein the second time period is longer than the first time period.
55. The cardiac pacing system of
56. The cardiac pacing system of
means for setting the first time period to be approximately equal to an interventricular conduction delay plus a margin of error.
57. The cardiac pacing system of
58. The cardiac pacing system of
means for measuring an interventricular conduction delay; and means for programming the cardiac pacing system to set the first time period based on the measured interventricular conduction delay.
59. The cardiac pacing system of
60. The cardiac pacing system of
61. The cardiac pacing system of
63. The cardiac pacing system of
means for measuring the interventricular conduction delay; and means for setting the second time period based on the measured interventricular conduction delay.
64. The cardiac pacing system of
65. The cardiac pacing system of
|
The present invention generally relates to implantable cardiac pacemakers. More specifically, the present invention relates to the sensing parameters of biatrial and/or biventricular pacing systems.
Modern implantable pacemakers are provided in various configurations to provide particular therapies. Certain variations of these pacemakers sense and/or pace within two, three or four chambers of the heart. Early pacemakers generally included a single atrial lead and/or a single ventricular lead, thus limiting both sensing and pacing functions. More recently, pacemakers have been utilized having biatrial and/or biventricular lead configurations. Thus, pacing and sensing can be targeted to more specific areas within the heart.
One type of cardiac event handled by implantable pacemakers is the premature ventricular contraction (PVC). A PVC can generally be identified by a pacing system as a ventricular sensed event that follows another ventricular event without an intervening atrial event.
Once a PVC has been identified, various pacing systems will react to the event. One type of PVC response is the initiation of an extended post-ventricular atrial refractory period (PVARP) of 400 ms. An extended PVARP is a predetermined time window, during which atrial events are ignored or "blanked" out. This is a preventative mechanism to avoid detecting retrograde P waves within the atrial chambers and inadvertently triggering a pacemaker mediated tachycardia (PMT).
The use of an extended PVARP within the programming of an implantable pacemaker is an effective safety mechanism to avoid PMT. However, with the advent of biventricular pacing and sensing, a new problem arises in that the dual sensing of the same ventricular event will retrigger the initiation of the extended PVARP. Thus, instead of having a window of 400 ms, the extended PVARP is effectively extended by the length of the interventricular conduction delay (IVCD), which is usually between 80-180 ms. This makes the "total" extended PVARP too long in that intrinsic conduction will occur within the heart and be misclassified as a PVC. This will become a repetitive cycle known as extended ventricular sensing.
To avoid this condition, implantable pacemakers having biventricular sensing capabilities have been programmed so as to disable the extended PVARP function. This does effectively avoid the initiation of extended ventricular sensing. It also means that a useful safety feature, namely the PVC response function, is bypassed and unused. This is undesirable in that pacemaker mediated tachycardia becomes possible.
Table 1 lists patents that disclose pacemakers that provide biatrial and biventricular pacing. Typically, these references fail to address the issues arising from the use of an extended PVARP within a multi-site pacing system.
TABLE 1 | ||
Patent | ||
Number | Inventors | Title |
3,937,226 | Funke | Arrhythmia Prevention Apparatus |
4,088,140 | Rockland et al. | Demand Anti-Arrhythmia Pacemaker |
4,354,497 | Kahn | Cardiac Depolarization Detection |
Apparatus | ||
4,928,688 | Mower | Method and Apparatus of Treating |
Hemodynamic Dysfunction | ||
5,388,586 | Lee et al. | Methods and Apparatus for Sensing |
Intracardiac Signals for an | ||
Implantable Cardiac Pacemaker | ||
5,683,429 | Mehra | Method and Apparatus for Cardiac |
Pacing to Prevent Atrial | ||
Fibrillation | ||
All patents listed in Table 1 above are hereby incorporated by reference herein in their respective entireties. As those of ordinary skill in the art will appreciate readily upon reading the Summary of the Invention, Detailed Description of the Preferred Embodiments and claims set forth below, many of the devices and methods disclosed in the patents of Table 1 may be modified advantageously by using the techniques of the present invention.
The present invention has certain objects. That is, various embodiments of the present invention provide solutions to one or more problems existing in the prior art with respect to cardiac pacing in general, and facilitate the use of the PVC response feature in biventricular sensing configurations, in particular. Such problems include, for example, having to disable the PVC response function in biventricular pacing systems. Specifically, previous biventricular pacing systems have had to be programmed so as to disable the initiation of an extended PVARP that would otherwise occur in response to a detected PVC. Other problems include the possibility of allowing pacemaker mediated tachycardia to occur in biventricular pacing systems having the PVC response function disabled in order to avoid extended ventricular sensing.
Various embodiments of the present invention have the object of solving at least one of the foregoing problems. While some biventricular pacing systems have been able to prevent extended ventricular sensing, they have required that the PVC response function be disabled. Thus, these prior biventricular pacing systems have only been able to deal with one problem or the other, and not both. Thus, one condition always remains as a possibility. It is therefore another object of the present invention to provide an improved apparatus and methodology for allowing a biventricular pacing system to appropriately respond to detected PVC's with the appropriate PVC response while also preventing extended ventricular sensing from occurring in a problematic context.
In comparison to known implementations of cardiac pacing systems and methodologies, various embodiments of the present invention may provide one or more of the following advantages: allowing the use of the PVC response feature on biventricular and biatrio pacing system and preventing extended ventricular sensing from occurring while the PVC response feature is enabled.
Some embodiments of the invention include one or more of the following features: a mechanism that works in conjunction with the extended PVARP function so that both extended ventricular sensing and pacemaker mediated tachycardia are prevented. For example, the present invention triggers a programmable ventricular blanking period in conjunction with the extended PVARP to accomplish this object.
Another feature of the present invention is a pacing system that accommodates the dual sensing of the same ventricular event by a biventricular pacing system. For example, the present invention provides a programmable ventricular blanking period to generally coincide with a measured inter-ventricular conduction delay so as to account for this dual sensing.
Yet another feature of the present invention is a pacing system having an algorithm that allows a PVC response to properly function in the context of a biatrio-biventricular pacing system. (Bi)atrio-biventricular is meant to include a biventricular system that may include a biatrial component or may only pace/sense a single atrial chamber.
In a biventricular system, a first ventricular lead is placed in the right ventricle and a second ventricular lead is placed in the left ventricle. Thus, each ventricular event will typically be sensed twice by the pacing system as the cardiac depolarization wave moves around the heart. More specifically, one of the ventricular leads will first sense the event (designated R1) and at some time interval later (generally >100 ms), the other ventricular lead will then separately sense the same event (designated R2).
In the context of a PVC response, each repetitive sense of the ventricular event will restart the extended PVARP. As such, the predetermined time period of the extended PVARP is effectively increased by an amount of time equal to the inter-ventricular conduction delay (IVCD). The IVCD is essentially the time delay between R1 and R2. Naturally occurring P waves will not be sensed during this extended time period and consequently, any intrinsic AV conduction will allow spontaneous R waves to occur which will be falsely classified as a PVC. This leads to a repetitive cycling where therapy to the patient is lost until the atrial rate slows down.
Thus, another feature of the present invention may be a programmable ventricular blanking period (VBP) that is initiated when the extended PVARP is initiated. The programmable VBP exceeds the IVCD so that repetitive sensing of the same ventricular event will not restart the extended PVARP. Because the extended PVARP is not reset, it functions as intended and the repetitive cycling described above is avoided. In this manner, therapy is consistently delivered to the patient without interruption due to extended ventricular sensing.
The above summary of the present invention is not intended to describe each embodiment or every embodiment of the present invention or each and every feature of the invention. Advantages and attainments, together with a more complete understanding of the invention, will become apparent and appreciated by referring to the following detailed description and claims taken in conjunction with the accompanying drawings.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
IMD 10 in
As shown in
Microcomputer circuit 58 preferably comprises on-board circuit 60 and off-board circuit 62. Circuit 58 may correspond to a microcomputer circuit disclosed in U.S. Pat. No. 5,312,453 to Shelton et al., hereby incorporated by reference herein in its entirety. On-board circuit 60 preferably includes microprocessor 64, system clock circuit 66 and on-board RAM 68 and ROM 70. Off-board circuit 62 preferably comprises a RAM/ROM unit. On-board circuit 60 and off-board circuit 62 are each coupled by data communication bus 72 to digital controller/timer circuit 74. Microcomputer circuit 58 may comprise a custom integrated circuit device augmented by standard RAM/ROM components.
Electrical components shown in
Continuing to refer to
Digital controller/timer circuit 74 is preferably coupled to sensing circuitry, including sense amplifier 88, peak sense and threshold measurement unit 90 and comparator/threshold detector 92. Circuit 74 is further preferably coupled to electrogram (EGM) amplifier 94 for receiving amplified and processed signals sensed by lead 18. Sense amplifier 88 amplifies sensed electrical cardiac signals and provides an amplified signal to peak sense and threshold measurement circuitry 90, which in turn provides an indication of peak sensed voltages and measured sense amplifier threshold voltages on multiple conductor signal path 67 to digital controller/timer circuit 74. An amplified sense amplifier signal is then provided to comparator/threshold detector 92. By way of example, sense amplifier 88 may correspond to that disclosed in U.S. Pat. No. 4,379,459 to Stein, hereby incorporated by reference herein in its entirety.
The electrogram signal provided by EGM amplifier 94 is employed when IMD 10 is being interrogated by an external programmer to transmit a representation of a cardiac analog electrogram. See, for example, U.S. Pat. No. 4,556,063 to Thompson et al., hereby incorporated by reference herein in its entirety. Output pulse generator 96 provides pacing stimuli to patient's heart 8 through coupling capacitor 98 in response to a pacing trigger signal provided by digital controller/timer circuit 74 each time the escape interval times out, an externally transmitted pacing command is received or in response to other stored commands as is well known in the pacing art. By way of example, output amplifier 96 may correspond generally to an output amplifier disclosed in U.S. Pat. No. 4,476,868 to Thompson, hereby incorporated by reference herein in its entirety.
The specific embodiments of input amplifier 88, output amplifier 96 and EGM amplifier 94 identified herein are presented for illustrative purposes only, and are not intended to be limiting in respect of the scope of the present invention. The specific embodiments of such circuits may not be critical to practicing some embodiments of the present invention so long as they provide means for generating a stimulating pulse and are capable of providing signals indicative of natural or stimulated contractions of heart 8.
In some preferred embodiments of the present invention, IMD 10 may operate in various non-rate-responsive modes, including, but not limited to, DDD, DDI, VVI, VOO and VVT modes. In other preferred embodiments of the present invention, IMD 10 may operate in various rate-responsive modes, including, but not limited to, DDDR, DDIR, VVIR, VOOR and VVTR modes. Some embodiments of the present invention are capable of operating in both non-rate-responsive and rate responsive modes. Moreover, in various embodiments of the present invention IMD 10 may be programmably configured to operate so that it varies the rate at which it delivers stimulating pulses to heart 8 only in response to one or more selected sensor outputs being generated. Numerous pacemaker features and functions not explicitly mentioned herein may be incorporated into IMD 10 while remaining within the scope of the present invention.
The present invention is not limited in scope to single-sensor or dual-sensor pacemakers, and is not limited to IMD's comprising activity or pressure sensors only. Nor is the present invention limited in scope to single-chamber pacemakers, single-chamber leads for pacemakers or single-sensor or dual-sensor leads for pacemakers. Thus, various embodiments of the present invention may be practiced in conjunction with more than two leads or with multiple-chamber pacemakers, for example. At least some embodiments of the present invention may be applied equally well in the contexts of single-, dual-, triple- or quadruple-chamber pacemakers or other types of IMD's. See, for example, U.S. Pat. No. 5,800,465 to Thompson et al., hereby incorporated by reference herein in its entirety, as are all U.S. patents referenced therein.
IMD 10 may also be a pacemaker-cardioverter-defibrillator ("PCD") corresponding to any of numerous commercially available implantable PCD's. Various embodiments of the present invention may be practiced in conjunction with PCD's such as those disclosed in U.S. Pat. No. 5,545,186 to Olson et al., U.S. Pat. No. 5,354,316 to Keimel, U.S. Pat. No. 5,314,430 to Bardy, U.S. Pat. No. 5,131,388 to Pless and U.S. Pat. No. 4,821,723 to Baker et al., all hereby incorporated by reference herein, each in its respective entirety.
The atrial/SVC lead shown in
The coronary sinus lead shown in
IMD 10 is shown in
IMD 10 is provided with an electrode system. If the electrode configuration of
Electrodes 2 and 3 are located on or in the ventricle and are coupled to the R-wave amplifier 37, which preferably takes the form of an automatic gain controlled amplifier providing an adjustable sensing threshold as a function of the measured R-wave amplitude. A signal is generated on R-out line 39 whenever the signal sensed between electrodes 2 and 3 exceeds the present sensing threshold.
Electrodes 9 and 13 are located on or in the atrium and are coupled to the P-wave amplifier 43, which preferably also takes the form of an automatic gain controlled amplifier providing an adjustable sensing threshold as a function of the measured P-wave amplitude. A signal is generated on P-out line 45 whenever the signal sensed between electrodes 9 and 13 exceeds the present sensing threshold. The general operation of R-wave and P-wave amplifiers 37 and 43 may correspond to that disclosed in U.S. Pat. No. 5,117,824, by Keimel et al., issued Jun. 2, 1992, for "An Apparatus for Monitoring Electrical Physiologic Signals", hereby incorporated by reference herein in its entirety.
Switch matrix 47 is used to select which of the available electrodes are coupled to wide band (0.5-200 Hz) amplifier 49 for use in digital signal analysis. Selection of electrodes is controlled by the microprocessor 51 via data/address bus 53, which selections may be varied as desired. Signals from the electrodes selected for coupling to bandpass amplifier 49 are provided to multiplexer 55, and thereafter converted to multi-bit digital signals by A/D converter 57, for storage in random access memory 59 under control of direct memory access circuit 61. Microprocessor 51 may employ digital signal analysis techniques to characterize the digitized signals stored in random access memory 59 to recognize and classify the patient's heart rhythm employing any of the numerous signal processing methodologies known to the art.
The remainder of the circuitry is dedicated to the provision of cardiac pacing, cardioversion and defibrillation therapies, and, for purposes of the present invention may correspond to circuitry known to those skilled in the art. The following exemplary apparatus is disclosed for accomplishing pacing, cardioversion and defibrillation functions. Pacer timing/control circuitry 63 preferably includes programmable digital counters which control the basic time intervals associated with DDD, VVI, DVI, VDD, AAI, DDI and other modes of single and dual chamber pacing well known to the art. Circuitry 63 also preferably controls escape intervals associated with anti-tachyarrhythmia pacing in both the atrium and the ventricle, employing any anti-tachyarrhythmia pacing therapies known to the art.
Intervals defined by pacing circuitry 63 include atrial and ventricular pacing escape intervals, the refractory periods during which sensed P-waves and R-waves are ineffective to restart timing of the escape intervals and the pulse widths of the pacing pulses. The durations of these intervals are determined by microprocessor 51, in response to stored data in memory 59 and are communicated to pacing circuitry 63 via address/data bus 53. Pacer circuitry 63 also determines the amplitude of the cardiac pacing pulses under control of microprocessor 51.
During pacing, escape interval counters within pacer timing/control circuitry 63 are reset upon sensing of R-waves and P-waves as indicated by a signals on lines 39 and 45, and in accordance with the selected mode of pacing on time-out trigger generation of pacing pulses by pacer output circuitry 65 and 67, which are coupled to electrodes 9, 13, 2 and 3. Escape interval counters are also reset on generation of pacing pulses and thereby control the basic timing of cardiac pacing functions, including anti-tachyarrhythmia pacing. The durations of the intervals defined by escape interval timers are determined by microprocessor 51 via data/address bus 53. The value of the count present in the escape interval counters when reset by sensed R-waves and P-waves may be used to measure the durations of R-R intervals, P-P intervals, P-R intervals and R-P intervals, which measurements are stored in memory 59 and used to detect the presence of tachyarrhythmias.
Microprocessor 51 most preferably operates as an interrupt driven device, and is responsive to interrupts from pacer timing/control circuitry 63 corresponding to the occurrence of sensed P-waves and R-waves and corresponding to the generation of cardiac pacing pulses. Those interrupts are provided via data/address bus 53. Any necessary mathematical calculations to be performed by microprocessor 51 and any updating of the values or intervals controlled by pacer timing/control circuitry 63 take place following such interrupts.
Detection of atrial or ventricular tachyarrhythmias, as employed in the present invention, may correspond to tachyarrhythmia detection algorithms known in the art. For example, the presence of an atrial or ventricular tachyarrhythmia may be confirmed by detecting a sustained series of short R-R or P-P intervals of an average rate indicative of tachyarrhythmia or an unbroken series of short R-R or P-P intervals. The suddenness of onset of the detected high rates, the stability of the high rates, and a number of other factors known in the art may also be measured at this time. Appropriate ventricular tachyarrhythmia detection methodologies measuring such factors are described in U.S. Pat. No. 4,726,380 issued to Vollmann, U.S. Pat. No. 4,880,005 issued to Pless et al. and U.S. Pat. No. 4,830,006 issued to Haluska et al., all incorporated by reference herein, each in its respective entirety. An additional set of tachycardia recognition methodologies is disclosed in the article "Onset and Stability for Ventricular Tachyarrhythmia Detection in an Implantable Pacer-Cardioverter-Defibrillator" by Olson et al., published in Computers in Cardiology, Oct. 7-10, 1986, IEEE Computer Society Press, pages 167-170, also incorporated by reference herein in its entirety. Atrial fibrillation detection methodologies are disclosed in Published PCT Application Ser. No. US92/02829, Publication No. WO92/18198, by Adams et al., and in the article "Automatic Tachycardia Recognition", by Arzbaecher et al., published in PACE, May-June, 1984, pp. 541-547, both of which are incorporated by reference herein in their entireties.
In the event an atrial or ventricular tachyarrhythmia is detected and an anti-tachyarrhythmia pacing regimen is desired, appropriate timing intervals for controlling generation of anti-tachyarrhythmia pacing therapies are loaded from microprocessor 51 into the pacer timing and control circuitry 63, to control the operation of the escape interval counters therein and to define refractory periods during which detection of R-waves and P-waves is ineffective to restart the escape interval counters.
Alternatively, circuitry for controlling the timing and generation of anti-tachycardia pacing pulses as described in U.S. Pat. No. 4,577,633, issued to Berkovits et al. on Mar. 25, 1986, U.S. Pat. No. 4,880,005, issued to Pless et al. on Nov. 14, 1989, U.S. Pat. No. 4,726,380, issued to Vollmann et al. on Feb. 23, 1988 and U.S. Pat. No. 4,587,970, issued to Holley et al. on May 13, 1986, all of which are incorporated herein by reference in their entireties, may also be employed.
In the event that generation of a cardioversion or defibrillation pulse is required, microprocessor 51 may employ an escape interval counter to control timing of such cardioversion and defibrillation pulses, as well as associated refractory periods. In response to the detection of atrial or ventricular fibrillation or tachyarrhythmia requiring a cardioversion pulse, microprocessor 51 activates cardioversion/defibrillation control circuitry 29, which initiates charging of the high voltage capacitors 33 and 35 via charging circuit 69, under the control of high voltage charging control line 71. The voltage on the high voltage capacitors is monitored via VCAP line 73, which is passed through multiplexer 55 and in response to reaching a predetermined value set by microprocessor 51, results in generation of a logic signal on Cap Full (CF) line 77 to terminate charging. Thereafter, timing of the delivery of the defibrillation or cardioversion pulse is controlled by pacer timing/control circuitry 63. Following delivery of the fibrillation or tachycardia therapy microprocessor 51 returns the device to q cardiac pacing mode and awaits the next successive interrupt due to pacing or the occurrence of a sensed atrial or ventricular depolarization.
Several embodiments of appropriate systems for the delivery and synchronization of ventricular cardioversion and defibrillation pulses and for controlling the timing functions related to them are disclosed in U.S. Pat. No. 5,188,105 to Keimel, U.S. Pat. No. 5,269,298 to Adams et al. and U.S. Pat. No. 4,316,472 to Mirowski et al., hereby incorporated by reference herein, each in its respective entirety. Any known cardioversion or defibrillation pulse control circuitry is believed to be usable in conjunction with various embodiments of the present invention, however. For example, circuitry controlling the timing and generation of cardioversion and defibrillation pulses such as that disclosed in U.S. Pat. No. 4,384,585 to Zipes, U.S. Pat. No. 4,949,719 to Pless et al., or U.S. Pat. No. 4,375,817 to Engle et al., all hereby incorporated by reference herein in their entireties, may also be employed.
Continuing to refer to
An example of circuitry which may be used to control delivery of monophasic pulses is disclosed in U.S. Pat. No. 5,163,427 to Keimel, also incorporated by reference herein in its entirety. Output control circuitry similar to that disclosed in U.S. Pat. No. 4,953,551 to Mehra et al. or U.S. Pat. No. 4,800,883 to Winstrom, both incorporated by reference herein in their entireties, may also be used in conjunction with various embodiments of the present invention to deliver biphasic pulses.
Alternatively, IMD 10 may be an implantable nerve stimulator or muscle stimulator such as that disclosed in U.S. Pat. No. 5,199,428 to Obel et al., U.S. Pat. No. 5,207,218 to Carpentier et al. or U.S. Pat. No. 5,330,507 to Schwartz, or an implantable monitoring device such as that disclosed in U.S. Pat. No. 5,331,966 issued to Bennet et al., all of which are hereby incorporated by reference herein, each in its respective entirety. The present invention is believed to find wide application to any form of implantable electrical device for use in conjunction with electrical leads.
Event 120 in
As soon as R1 is detected by IMD 10, the algorithms performed within microcomputer circuit 58 initiate a first extended PVARP 205. The extended PVARP 205 (post ventricular atrial refractory period) is a blanking interval, during which atrial events are not acknowledged. This period is typically set at 400 ms, though it may range from about 350 ms to 450 ms. The initiation of an extended PVARP is a precautionary step to prevent recognizing retrograde P waves (which would normally occur during PVARP, if at all) as legitimate atrial events. The occurrence of pacemaker mediated tachycardia (PMT) can be reduced by utilizing the extended PVARP. Simultaneously, the lower rate timer 210 is also initiated with the initiation of the extended PVARP 200 of 400 ms, in this example.
After the IVCD 200 has ended, the right ventricular lead senses R2. Since this is a ventricular event without a preceding atrial event, it is classified as a PVC. As such, a second extended PVARP 215 of 400 ms is initiated and the lower rate timer is reset at 220.
During the overlap between the first extended PVARP 205 and the second extended PVARP 215, a legitimate atrial event 130 occurs. That is, a P wave is generated. However, as intended, atrial events are not recognized during this blanking period. Subsequently, event 135 occurs which is a proper intrinsic atrio-ventricular conducted beat. However, because atrial event 130 was in effect not sensed, IMD 10 recognizes event 135 as another PVC. The lead within the right ventricle senses event 138 and a first extended PVARP of 400 ms is initiated. After the expiration of the IVCD 200 (130 ms) the lead within the left ventricle also senses event 135, but recognizes it as a separate event 140. Again, there is no intervening atrial event, thus it is classified as a PVC. A second extended PVARP 230 of 400 ms is initiated.
An atrial event 145 occurs after some period of time. Because heart 8 has returned to an intrinsic beat, atrial event 145 should be recognized by IMD 10. If IMD 10 only utilized a single ventricular lead, atrial event 145 would have been properly recognized because it falls outside of the blanking interval defined by the first extended PVARP 225 of 400 ms. However, because a second ventricular lead was utilized, the same event 135 caused the second extended PVARP 230 of 400 ms to occur. This effectively extended the blanking interval to the time predefined for extended PVARP plus the time of the IVCD, for a total of about 530 ms, in this case. This longer blanking period prevents the atrial event 145 from being properly recognized.
As such, when another intrinsic conducted beat 150 occurs, it is again incorrectly recognized as a PVC by IMD 10. This process repeats itself in a cyclic manner until the atrial rate slows sufficiently to break the cycle and is referred to as extended ventricular sensing. While this process is cycling, therapy for the patient is lost.
IMD 10 senses an atrial event at event 300. A predetermined amount of time later, a biventricular pacing complex is properly generated as event 310. At event 315 a T wave is propagated. At event 320, a ventricular event is sensed. Since no atrial event preceded it, event 320 is (properly) classified as a PVC. In this case, left ventricular lead first senses the PVC as R1 event 322. As such, according to the previously discussed PVC response parameters an extended PVARP 410 of 400 ms is initiated.
At this point, the programmed ventricular blanking period (VBP) 415 is also initiated. During VBP 415, ventricular events are no longer recognized by IMD 10. Hence, they are effectively blanked out. VBP coincides with but is shorter than extended PVARP 410. Thus, for a period of time when the two overlap, both atrial and ventricular events are effectively blanked via the extended PVARP, and programmed VBP respectively.
VBP 415 prevents the triggering of a second extended PVARP of 400 ms. As explained above, without VBP 415, a second extended PVARP would have been triggered by the detection of R2 at event 324. However, since ventricular signals are blanked during VBP 415, only PVARP 410 is initiated. At the same time, lower rate timer 420 is also initiated.
VBP 415 is set for a predetermined period of time. At a minimum, VBP must cover the IVCD in order to prevent the second ventricular lead from triggering a PVARP based on the same event that triggered the first ventricular lead. That is, the VBP 415 needs to be long enough so that R2 is ignored. VBP should not extend too far beyond the IVCD so that subsequent genuine PVC's are also ignored.
VBP 415 will initially be set by measuring the IVCD in a given patient. In order to account for the natural fluctuations in this time period that occur with each heartbeat, the VBP will be set to the measured IVCD plus a margin of error. A margin of error of about 10-30% of the IVCD provides a satisfactory result. Thus, the VBP becomes the measured IVCD+10-30% of the IVCD. The initial measurements of the IVCD can be made by a cardiologist and used to preprogram (or reprogram) IMD 10. Alternatively, IMD 10 can either initially determine or periodically sense the patient's IVCD and then use that data to set the VBP. Thus, in this case the IVCD is about 130 ms so VBP 415 will be about 143 ms (130 ms+10%).
A refractory atrial event occurs as event 330. This event occurs after VBP 415 has expired (i.e., after 143 ms), but while PVARP 410 is continuing and it is accordingly blanked. An intrinsic conducted beat occurs at event 335. Since atrial event 330 was not recognized as such, event 335 is classified as a PVC. This determination is made as right ventricular lead senses the beat (RV) as event 338. It is at this point that an extended PVARP 425 of 400 ms is initiated and programmed VBP 430 of 143 ms is also initiated. As the intrinsic beat is conducted through the left ventricle (as event 340), it is blanked because it occurs within the programmed VBP 430. Thus, a second extended PVARP is avoided.
IMD 10 senses an atrial event as event 345. It is important to note the timing of this event. That is, if a second extended PVARP had been initiated after IVCD 401, atrial event 345 would not have been sensed. However, by incorporating the programmed VBP 430, this situation is effectively avoided. As such, a properly generated biventricular pacing complex is generated by IMD 10 and therapy is restored to the patient.
In this manner, the PVC response feature can be effectively employed within a biventricular IMD 10 while still effectively preventing PMT.
As step 530, the ventricular sensed event is classified as a PVC and the preprogrammed PVC response is initiated. That response includes initiating the programmed VBP at step 540 and simultaneously initiating the extended PVARP at step 550. As explained above, during the period of overlap between the extended PVARP and the programmed VBP, neither ventricular nor atrial events are sensed and any such event occurring is essentially blanked by IMD 10. The VBP concludes first. Thus, for the remainder of the extended PVARP, subsequently occurring ventricular events can reinitiate a PVC response. Finally, it is only after the conclusion of the extended PVARP that atrial events will be sensed as such. Thus, after steps 540 and 550, the process returns to step 500. In order for an intervening atrial event to have been sensed as required at step 510 (after returning from step 550), that atrial event must have occurred after the cessation of the extended PVARP at step 550.
The preceding specific embodiments are illustrative of the practice of the invention. It is to be understood, therefore, that other expedients known to those skilled in the art or disclosed herein may be employed without departing from the invention or the scope of the claims. For example, the present invention is not limited to biventricular pacing systems, Biatrial pacing systems, or dual chamber pacing systems. Rather, the present invention can be employed in any pacing system wherein a programmable Ventricular Blanking Period can aid in the prevention or limit the furtherance of negative cardiac conditions or negative pacing system performance. The present invention further includes within its scope methods of making and using the pacing system incorporating the programmable VBP described hereinabove.
In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts a nail and a screw are equivalent structures.
Patent | Priority | Assignee | Title |
10905884, | Jul 20 2012 | MAXWELL BIOMEDICAL, INC , | Multi-stage atrial cardioversion therapy leads |
6766196, | Oct 19 2001 | Pacesetter, Inc.; Pacesetter, Inc | Anti-tachycardia pacing methods and devices |
7072714, | Jul 19 2001 | BIOTRONIK MESS-UND THERAPIEGERAETE GMBH & CO INGENIEURBUERO BERLIN | Pacemaker control dependent on natural AV conduction or PVC/VES detection |
7260432, | Oct 11 2001 | Cardiac Pacemakers, Inc | Timing cycles for synchronized multisite cardiac pacing |
7502646, | Jul 31 2006 | Medtronic, Inc | Pacing mode event classification with rate smoothing and increased ventricular sensing |
7502647, | Jul 31 2006 | Medtronic, Inc | Rate smoothing pacing modality with increased ventricular sensing |
7509168, | Jan 11 2006 | Pacesetter, Inc. | Cardiac stimulation device and method providing pacemaker mediated tachycardia detection during biventricular pacing stimulation |
7515958, | Jul 31 2006 | Medtronic, Inc | System and method for altering pacing modality |
7542799, | Jan 21 2005 | Medtronic, Inc | Implantable medical device with ventricular pacing protocol |
7565196, | Jun 15 2006 | Medtronic, Inc | System and method for promoting intrinsic conduction through atrial timing |
7587240, | Dec 15 2004 | Cardiac Pacemakers, Inc | Atrial capture verification |
7593773, | Jan 21 2005 | Medtronic, Inc | Implantable medical device with ventricular pacing protocol including progressive conduction search |
7599740, | Dec 21 2000 | Medtronic, Inc. | Ventricular event filtering for an implantable medical device |
7647105, | Nov 30 2005 | Medtronic, Inc | Method and system for detecting and treating junctional rhythms |
7689281, | Jul 31 2006 | Medtronic, Inc | Pacing mode event classification with increased ventricular sensing |
7715914, | Jul 31 2006 | Medtronic, Inc | System and method for improving ventricular sensing |
7720537, | Jul 31 2006 | Medtronic, Inc | System and method for providing improved atrial pacing based on physiological need |
7738955, | Dec 21 2000 | Medtronic, Inc | System and method for ventricular pacing with AV interval modulation |
7751876, | Sep 23 2005 | Hewlett-Packard Development Company, L.P. | Method and system for detecting premature ventricular contraction from a surface electrocardiogram |
7783350, | Jun 15 2006 | Medtronic, Inc | System and method for promoting intrinsic conduction through atrial timing modification and calculation of timing parameters |
7801610, | Nov 17 2006 | Cardiac Pacemakers, Inc.; Cardiac Pacemakers, Inc | Methods and systems for management of atrial retrograde conduction and pacemaker mediated tachyarrhythmia |
7813798, | Feb 14 2002 | Pacesetter, Inc. | Systems and methods for preventing, detecting, and terminating pacemaker mediated tachycardia in biventricular implantable cardiac stimulation systems |
7856269, | Jul 31 2006 | Medtronic, Inc | System and method for determining phsyiologic events during pacing mode operation |
7869872, | Jun 15 2006 | Medtronic, Inc | System and method for determining intrinsic AV interval timing |
7894898, | Jun 15 2006 | Medtronic, Inc | System and method for ventricular interval smoothing following a premature ventricular contraction |
7904157, | Oct 25 2004 | Medtronic, Inc. | Self limited rate response |
7908006, | Dec 15 2004 | Cardiac Pacemakers, Inc | Cardiac pacing response classification using an adaptable classification interval |
7925344, | Jan 20 2006 | Medtronic, Inc | System and method of using AV conduction timing |
7930029, | Dec 15 2004 | Cardiac Pacemakers, Inc | Template initialization for evoked response detection |
7957803, | Dec 15 2004 | Cardiac Pacemakers, Inc. | Atrial capture verification |
8032216, | Jun 15 2006 | Medtronic, Inc. | System and method for determining intrinsic AV interval timing |
8046063, | Feb 28 2006 | Medtronic INC | Implantable medical device with adaptive operation |
8060202, | Dec 21 2000 | Medtronic, Inc. | Ventricular event filtering for an implantable medical device |
8108043, | Nov 30 2005 | Medtronic, Inc. | Method and system for detecting and treating junctional rhythms |
8155741, | May 25 2005 | Cardiac Pacemakers, Inc. | Retrograde atrial sensing for identifying sub-threshold atrial pacing |
8229558, | Feb 27 2009 | Medtronic, Inc | System and method for conditional biventricular pacing |
8229560, | Jan 20 2006 | Medtronic, Inc. | System and method of using AV conduction timing |
8229561, | Dec 15 2004 | Cardiac Pacemakers, Inc | Atrial retrograde management |
8244354, | Feb 27 2009 | Medtronic, Inc | System and method for conditional biventricular pacing |
8265750, | Feb 27 2009 | Medtronic, Inc | System and method for conditional biventricular pacing |
8290590, | Nov 17 2006 | Cardiac Pacemakers, Inc. | Dynamic morphology based atrial automatic threshold |
8332030, | Apr 27 2005 | Medtronic, Inc. | Device and method for providing atrial-synchronized ventricular pacing with selective atrial tracking |
8396553, | Feb 27 2009 | Medtronic, Inc | System and method for conditional biventricular pacing |
8452405, | May 05 2009 | Cardiac Pacemakers, Inc. | Methods and systems for mitigating the occurrence of arrhythmia during atrial pacing |
8565873, | Jul 31 2006 | Medtronic, Inc. | System and method for providing improved atrial pacing based on physiological need |
8588909, | Jun 12 2012 | Pacesetter, Inc.; Pacesetter, Inc | Triggered mode pacing for cardiac resynchronization therapy |
8880172, | May 25 2005 | Cardiac Pacemakers, Inc. | Retrograde atrial sensing for identifying sub-threshold atrial pacing |
9216292, | Nov 17 2006 | Cardiac Pacemakers, Inc. | Dynamic morphology based atrial automatic threshold |
9227073, | Nov 17 2006 | Cardiac Pacemakers, Inc. | Dynamic morphology based atrial automatic threshold |
9289619, | Oct 11 2001 | Cardiac Pacemakers, Inc. | Timing cycles for synchronized multisite cardiac pacing |
9415227, | Feb 28 2006 | Medtronic, Inc. | Implantable medical device with adaptive operation |
9931509, | Dec 21 2000 | Medtronic, Inc. | Fully inhibited dual chamber pacing mode |
Patent | Priority | Assignee | Title |
3937226, | Jul 10 1974 | Medtronic, Inc. | Arrhythmia prevention apparatus |
4088140, | Jun 18 1976 | Medtronic, Inc. | Demand anti-arrhythmia pacemaker |
4316472, | Apr 25 1974 | HASCHKA-JONES JOINT VENTURE | Cardioverting device with stored energy selecting means and discharge initiating means, and related method |
4354497, | May 23 1977 | Medtronic, Inc. | Cardiac depolarization detection apparatus |
4375817, | Jul 19 1979 | Medtronic, Inc. | Implantable cardioverter |
4384585, | Mar 06 1981 | Medtronic, Inc. | Synchronous intracardiac cardioverter |
4476868, | Nov 06 1978 | MED REL, INC | Body stimulator output circuit |
4556063, | Oct 07 1980 | Medtronic, Inc. | Telemetry system for a medical device |
4587970, | Jan 22 1985 | Pacesetter, Inc | Tachycardia reversion pacer |
4726380, | Oct 17 1983 | Pacesetter, Inc | Implantable cardiac pacer with discontinuous microprocessor, programmable antitachycardia mechanisms and patient data telemetry |
4727877, | Dec 18 1984 | Medtronic, Inc. | Method and apparatus for low energy endocardial defibrillation |
4788980, | Jul 18 1986 | Pacesetter, Inc | Pacemaker having PVC response and PMT terminating features |
4800883, | Apr 02 1986 | Intermedics, Inc. | Apparatus for generating multiphasic defibrillation pulse waveform |
4880005, | Aug 12 1985 | Intermedics, Inc. | Pacemaker for detecting and terminating a tachycardia |
4928688, | Jan 23 1989 | MIROWSKI FAMILY VENTURES L L C | Method and apparatus for treating hemodynamic disfunction |
4949719, | Apr 26 1989 | Pacesetter, Inc | Method for cardiac defibrillation |
4953551, | Nov 14 1987 | Medtronic, Inc. | Method of defibrillating a heart |
5099838, | Dec 15 1988 | Medtronic, Inc. | Endocardial defibrillation electrode system |
5117824, | Nov 14 1990 | Medtronic, Inc.; Medtronic, Inc | Apparatus for monitoring electrical physiologic signals |
5131388, | Mar 14 1991 | Pacesetter, Inc | Implantable cardiac defibrillator with improved capacitors |
5144949, | Mar 15 1991 | Medtronic, Inc.; Medtronic, Inc | Dual chamber rate responsive pacemaker with automatic mode switching |
5158078, | Aug 14 1990 | Medtronic, Inc.; MEDTRONIC, INC , A CORP OF MN | Rate responsive pacemaker and methods for optimizing its operation |
5188105, | Nov 14 1990 | Medtronic, Inc.; Medtronic, Inc | Apparatus and method for treating a tachyarrhythmia |
5199428, | Mar 22 1991 | Medtronic, Inc. | Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload |
5269298, | Oct 23 1992 | Cardiac Pacemakers, Inc | Atrial defibrillator and method for providing synchronized delayed cardioversion |
5312453, | May 11 1992 | Medtronic, Inc.; MEDTRONIC, INC , A MN CORP | Rate responsive cardiac pacemaker and method for work-modulating pacing rate deceleration |
5314430, | Jun 24 1993 | Medtronic, Inc. | Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use |
5330507, | Apr 24 1992 | Medtronic, Inc. | Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias |
5331966, | Apr 05 1991 | Medtronic, Inc. | Subcutaneous multi-electrode sensing system, method and pacer |
5388586, | Dec 23 1992 | ELA Medical | Methods and apparatus for sensing intracardiac signals for an inplantable cardiac pacemaker |
5545186, | Mar 30 1995 | Medtronic, Inc | Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias |
5683429, | Apr 30 1996 | Medtronic, Inc.; Medtronic, Inc | Method and apparatus for cardiac pacing to prevent atrial fibrillation |
6311088, | Apr 13 1999 | Medtronic, Inc.; Medtronic, Inc | Dual-chamber pacemaker with optimized PVARP following event that may disrupt AV synchrony |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 26 2001 | Medtronic, Inc. | (assignment on the face of the patent) | / | |||
May 18 2001 | STRUBLE, CHESTER | Medtronic, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012097 | /0234 |
Date | Maintenance Fee Events |
Jan 19 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 03 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 27 2015 | REM: Maintenance Fee Reminder Mailed. |
Aug 19 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 19 2006 | 4 years fee payment window open |
Feb 19 2007 | 6 months grace period start (w surcharge) |
Aug 19 2007 | patent expiry (for year 4) |
Aug 19 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 19 2010 | 8 years fee payment window open |
Feb 19 2011 | 6 months grace period start (w surcharge) |
Aug 19 2011 | patent expiry (for year 8) |
Aug 19 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 19 2014 | 12 years fee payment window open |
Feb 19 2015 | 6 months grace period start (w surcharge) |
Aug 19 2015 | patent expiry (for year 12) |
Aug 19 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |