An interfaced carrier assembly including an interface circuit having printed contacts to provide electrical interface or feedback control for lapping operations. The printed contacts are formed on a base material on the interface circuit and interface with terminal pads on a slider bar supported by a carrier plate for lapping feedback control. The interface circuit is assembled with the carrier plate with contacts on the interface circuit aligned with terminal pads on the slider bar supported by the carrier plate. Alignment of the terminal pads on the slider bar and contacts on the interface circuit are measured by digital cameras for assembly of the interfaced carrier assembly.
|
12. In combination:
a carrier plate adapted to support a slider bar for lapping operation including a plurality of feedback terminals; an interface circuit including a plurality of contacts coupled to a plurality of conductive paths; and interfacing means for connecting the carrier plate and the interface circuit to provide an electrical interface between the feedback terminals on the slider bar and the plurality of contacts coupled to the plurality of conductive paths on the interface circuit.
13. A control method for lapping operation comprising steps of:
providing a carrier plate supporting a slider bar having a plurality of feedback terminals; providing an interface circuit having a plurality of contacts; measuring alignment of the plurality of feedback terminals on the slider bar and the plurality of contacts on the interface circuit using a digital imaging device; and assembling the interface circuit relative to the carrier plate based upon the measured alignment of the plurality of feedback terminals on the slider bar and the plurality of contacts on the interface circuit.
1. In combination:
a carrier plate adapted to support a slider bar mounted on the carrier plate having a plurality of feedback terminals spaced therealong; an interface circuit including a circuit base having a plurality of conductive paths thereon and opposed first and second surfaces; an adhesive layer between the first surface of the interface circuit and the carrier plate to adhesively connect the first surface of the interface circuit relative to the carrier plate; and a plurality of contacts spaced along the first surface of the interface circuit and the plurality of contacts conductively coupled to the plurality of conductive paths and aligned relative to the plurality of feedback terminals on the slider bar to form an integral wireless electrical interface between the plurality of feedback terminals of the slider bar and the plurality of conductive paths.
2. The combination of
4. The combination of
a backing plate; and an adhesive layer connecting the backing plate to the second surface of the interface circuit.
5. The combination of
a load device adapted to supply a load force to bias the plurality of contacts on the interface circuit toward the plurality of feedback terminals of the slider bar supported on the carrier plate.
6. The combination of
7. The combination of
8. The combination of
a base portion floatably supported in a stepped recessed cavity of the backing plate; and an interface portion interposed between the tip portion of the backing plate and the interface circuit.
9. The combination of
10. The combination of
11. The combination of
14. The method of
adhesively connecting the interface circuit to the carrier plate after the plurality of feedback terminals on the slider bar and the plurality of contacts on the interface circuit are aligned for assembly on a lapping arm relative to a lapping surface.
15. The method of
moving at least one of the first or second platforms to align the plurality of feedback terminals on the slider bar with the plurality of contacts on the interface circuit based upon the measured alignment.
16. The method of
17. The method of
moving the first and second platforms so that the carrier plate abuts the interface circuit to assembly the carrier plate with the interface circuit and backing plate.
18. The method of
removing the assembled carrier plate and interface circuit from the first or second platforms and loading the assembled carrier plate and interface circuit onto a lapping arm of a lapping device.
19. The method of
supplying a load force to the backing plate to bias the plurality of contacts on the interface circuit toward the plurality of feedback terminals on the slider bar.
21. The combination of
22. The combination of
|
This application claims priority of U.S. Provisional Application No. 60/180,522, filed Feb. 7, 2000 by Bruce Anderson, Dongming Liu, Edward M. Erickson and Shanlin Hao for "WIRLESS LAPPING SENSOR HOOK UP", and is also a continuation of International Application No. PCT/US01/03823, filed on Feb. 6, 2001, published in English, by Seagate Technology LLC for "INTERFACE ASSEMBLY FOR LAPPING CONTROL FEEDBACK", which in turn claims priority of the aforementioned U.S. Provisional Application.
The present invention relates to a lapping system for fabricating sliders of a disc drive. In particular, the present invention relates to an interfaced carrier assembly to provide feedback control for lapping operation.
Sliders are fabricated on a wafer and rows of sliders are separated from the wafer to form a slider bar. The slider bar includes a plurality of sliders. During the slider fabrication process, the slider is lapped to desired tolerance dimensions using an abrasive lapping surface. The lapping process is controlled using feedback from electronic lapping guides on the slider. In prior lapping systems, feedback from the electronic lapping guides was transmitted via soldered connections on terminals of the electronic lapping guides. Form factor dimensions are decreasing and tolerance control is increasing reducing available spacing for feedback connections to electronic lapping guides. Soldered connections leave a residue and spacing requirements limit the number of feedback connections possible for control of the lapping process. The present invention addresses these and other problems and offers solutions and advantages over the prior art.
The present invention relates to an interfaced carrier assembly having printed contacts to provide electrical interface or feedback control for lapping operations. The printed contacts are formed on an interface circuit and interface with terminal pads on a slider bar via connection between a carrier plate supporting the slider bar and the interface circuit having the contacts formed thereon. Alignment of the printed contacts on the interface circuit and the terminal pads on the slider bar are measured by digital cameras or imaging device for assembly of the interfaced carrier assembly.
Data storage systems use heads to read and/or write data to a data storage medium. Heads include a slider which supports transducer or operating elements, such as magnetoresistive elements (MR) or inductive transducer elements. Sliders are fabricated on a wafer and rows of sliders are separated from the wafer to form a slider bar 100 as shown in FIG. 1. Slider bar 100 includes a plurality of sliders 102 including transducer elements 104 illustrated diagrammatically fabricated on the slider, for example, by a thin film deposition process. Sliders 102 are separated from slider bar 100 to form individual heads of the data storage system.
The slider bar 100 is lapped to form a smooth air bearing surface (ABS) and to provide a desired "throat height" for operation of the transducer elements. The throat height refers to the dimension or separation between the transducer elements and the disc surface. The bar is lapped to provide a desired throat height for optimum electronic and magnetic operating characteristics of the head. The lapping process involves biasing the slider bar 100 against an abrasive lapping surface to remove material from the slider bar 100. The slider bar 100 includes electronic lapping guides (ELG) 106 (illustrated diagrammatically) which are formed on the wafer at the same time that the transducers are deposited. Feedback from the ELGs 106 is used to control the lapping process to lap the slider bar 100 to a desired throat height as will be described.
As illustrated in
The ELGs 106 spaced along the slider bar measure variations in the curvature or bow of the slider bar 100. A controller 132 controls operation of actuators 130 based upon feedback from the ELGs 106 spaced along the slider bar 100, to supply sufficient force to the slider bar 100 at actuated control points, along the carrier plate 126 to compensate for the curvature or bow of the slider bar 100. Feedback from the ELGs 106 is provided to the controller 132 as shown diagrammatically in
As schematically shown in
The present invention includes a printed interface circuit 150 to electrically couple ELGs 106 or feedback elements to control circuitry of the lapping device as illustrated in FIG. 4. The printed interface circuit 150 includes printed contacts 152 fabricated on a base 154. Contacts 152 are conductively coupled to conductive paths 156 which electrically couple to control circuitry 132 as illustrated schematically by line 158. As shown in
In the illustrated embodiment, the base 154 is formed of a flexible material such as a polyimide material. In the embodiment shown in
For lapping operation, contacts 152 on the interface circuit 150 are aligned with terminal pads 138 on the slider bar 100 supported on carrier plate 126 to provide the desired electrical interface for lapping control. The printed contacts 152 provide electrical interfaces between a plurality of terminal pads 138 without solder residue or interference. Further, the printed structure provides a small contact dimension to increase the number of contacts which can be spaced along the length of a form factor slider bar 100 and provides tighter tolerance control to provide the desired number of electrical connections between closely spaced terminal pads 138.
As shown in
As illustrated in
In the forward position, load plunger 185 biases tip portion 180 towards contacts 152 on the interface circuit 150 to bias the contact 152 against terminal pads 138 on the slider bar 100. An alignment pin 186 seats in a pin hole 188 (shown also in
In the embodiment shown in
As shown, compressible member 194 is formed of a generally "L" shaped member having a base portion 210 and an interface portion 212. Base portion 210 is supported in the recessed cavity portion 206 and floatably supports interface portion 212 in alignment between the foot 202 of backing plate 170 and interface circuit 150 to provide a compressible interface between the tip portion 180 of the backing plate 170 and the interface circuit 150. The base portion 210 of the compressible member 194 floatably supports the interface portion 212 without adhesive connection to allow the interface portion 212 to compress or deform depending upon the dimension of a gap between the contacts 152 on the interface circuit 150 and the terminal pads 138 on the slider bar 100 and forward position of foot 202.
In the embodiment described, the compressible member 194 is formed of an elastomeric material which is deformed without constraint of an adhesive connection to provide an elastic interface between the tip portion 180 of the backing plate 170 to bias interface contacts 152 against the terminal pads 138 on the slider bar 100. In the embodiment shown, the recessed stepped cavity portion 206 is angled or sloped downward from an opening thereto so that the base portion 210 of the compressible member 194 is floatably retained therein during lapping operation.
In the embodiment shown, interface circuit 150 is secured to the carrier plate 126 along a face surface 214 to support contacts 152 in alignment with terminals 138 on slider bar 100 supported on lower surface 184 of the carrier plate 126. In the embodiment shown in
For operation, the contacts 152 on interface circuit 150 must be accurately aligned or positioned relative terminals 138 of the slider bar 100 supported on the carrier plate 126 for proper control feedback. Alignment shifts during lapping operation can degrade feedback for desired precision lapping control. The increased number of feedback connection increases the alignment precision required for proper feedback control.
As shown, assembly device 220 includes opposed first and second component platforms 222, 224 and first and second optical alignment cameras 226, 228 which are supported relative to table 230. Cameras 226, 228 are positioned to measure alignment of terminal pads 138 on the slider bar 100 supported on the carrier plate 126 and contacts 152 on the interface circuit 150. The interface circuit 150 is pre-assembled to a backing plate 170 to form a load interface assembly. The interface circuit 150 is pre-assembled to the backing plate 170 by an adhesive layer connecting the interface circuit 150 to the backing plate 170.
The carrier plate 126 and slider bar 100 and load interface assembly are supported on platforms 226228 with terminals 138 on the slider bar 100 and contacts 152 on the load interface assembly facing cameras 226, 228, respectively, to measure alignment. Cameras 226, 228 are charged coupled devices (CCD) or digital imaging devices which are configured to extract a digital image of the terminal pads 138 and contacts 152. The extracted digital image is processed to determine alignment of the terminal pads 138 and contacts 152 on the carrier plate 126 and interface circuit 150 relative to a reference position for assembly alignment.
In the embodiment shown in
In the embodiment shown in FIG. 9 and schematically in
Slide 234 is moved by actuator 250 under operation of controller 240 based upon alignment feedback from cameras 226, 228. Once slide 234 aligns carrier plate 126 with contacts 152 on the load interface assembly as illustrated in
Carrier plate is pre-assembled with an adhesive layer on face surface 214 and the interface circuit 150 of the load interface assembly is biased against the adhesive layer of the carrier plate 126 via operation of slide 254 to adhesively secure the interfaced carrier assembly for lapping operation. As described, the assembly device uses cameras to align printed contacts 152 with terminal pads 138 on a slider bar 100 to provide increased interface capacity for increased lapping control resolution. In the embodiment described, the pre-assembled interfaced carrier assembly includes a carrier plate and interface circuit assembled with a backing plate by multiple adhesive layers to form a composite assembly. The composite interfaced carrier assembly is assembled to the carrier arm 122 for lapping without extensive assembly calibration of the lapping machine to assure alignment of contacts 152 and terminal pads 138 for reduced operating complexity and maintenance.
It is to be understood that even though numerous characteristics and advantages of various embodiments of the invention have been set forth in the foregoing description, together with details of the structure and function of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the particular elements may vary depending on the particular application while maintaining substantially the same functionality without departing from the scope and spirit of the present invention. In addition, although the preferred embodiment described herein is directed to a magnetic disc drive, it will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other systems, like optical or magneto-optical systems, without departing from the scope and spirit of the present invention.
Anderson, Bruce, Hao, ShanLin, Liu, Dongming, Erickson, Edward M.
Patent | Priority | Assignee | Title |
8161627, | Apr 28 2008 | Western Digital Technologies, INC | Method of making a write head lapping guide about aligned to a non-magnetic layer surrounding a write pole |
9017139, | Mar 12 2013 | Seagate Technology LLC | Lapping carrier having hard and soft properties, and methods |
Patent | Priority | Assignee | Title |
4457114, | Sep 30 1982 | Seagate Technology LLC | Workpiece carrier |
4536992, | Nov 04 1983 | Seagate Technology LLC | Precision lapping system |
4914868, | Sep 28 1988 | INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NEW YORK | Lapping control system for magnetic transducers |
5175935, | Feb 28 1992 | Screw-thread gauge-wire holder | |
5203119, | Mar 22 1991 | Western Digital Technologies, INC | Automated system for lapping air bearing surface of magnetic heads |
5735036, | Dec 16 1994 | International Business Machines Corporation | Lapping process for minimizing shorts and element recession at magnetic head air bearing surface |
5749769, | Jun 07 1995 | MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | Lapping process using micro-advancement for optimizing flatness of a magnetic head air bearing surface |
5899793, | Apr 10 1997 | Fujitsu, Ltd. | Lapping apparatus including a lapping base having pads |
5951371, | Nov 04 1996 | Seagate Technology LLC | Multi-point bending of bars during fabrication of magnetic recording heads |
5967878, | Apr 25 1997 | HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V ; MARIANA HDD B V | Lapping method and system for compensating for substrate bow |
5997381, | Sep 29 1997 | Oracle America, Inc | Lapping sensor for thin film recording elements and method for manufacturing same |
6045431, | Dec 23 1997 | SpeedFam-IPEC Corporation | Manufacture of thin-film magnetic heads |
6132290, | Apr 10 1997 | Fujitsu Limited | Automatic lapping method of a thin film element and a lapping apparatus using the same |
DE1981587A1, | |||
EP504887, |
Date | Maintenance Fee Events |
Feb 08 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 04 2011 | REM: Maintenance Fee Reminder Mailed. |
Aug 26 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 26 2006 | 4 years fee payment window open |
Feb 26 2007 | 6 months grace period start (w surcharge) |
Aug 26 2007 | patent expiry (for year 4) |
Aug 26 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 26 2010 | 8 years fee payment window open |
Feb 26 2011 | 6 months grace period start (w surcharge) |
Aug 26 2011 | patent expiry (for year 8) |
Aug 26 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 26 2014 | 12 years fee payment window open |
Feb 26 2015 | 6 months grace period start (w surcharge) |
Aug 26 2015 | patent expiry (for year 12) |
Aug 26 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |