An improved method for producing a basic B tube configuration for a folded heat exchanger tube (26). A braze clad metal strip (10) having inner (1) and outer (0) surfaces and a opposed edges (12) is progressively formed over and in by a series of progressive roller stations (14A, 16A-14J, 16J) until the lower edges (12) on a pair of central abutting flanges 18 centrally engage the strip inner surface (1). Between two of the roller stations (G and H), a powered dispense valve (20) with nozzle (22) continuously dispenses a bead (24) of material containing flux or, alternatively, flux and braze material. bead (24), rather than being a thin stripe, is a thick semi cylindrical shape, with substantial viscosity. As the flanges (18) move into abutment and the downstream roller stations, the flange edges (12) are forced down into the bead (24), some of which is pumped up between the outer surfaces (0) of the abutted flanges (18), yielding a good, solid braze joint between the two.
|
1. A method of forming a heat exchanger tube (26), comprising the steps of;
progressively forming a strip (10) of metal stock having an outer surface (O) and inner surface (I) at a series of stations (A-J) so as to initially form a pair of substantially flat, substantially perpendicular integral flanges (18) with edges (12) on opposite sides of said strip (10), continually dispensing a bead (24) of flux material directly along the center of the strip inner surface (I), said bead (24) having a predetermined thicknesses, progressively forming said flanges (18) downwardly and toward each other as the edges outer surfaces (O) of said flanges (18) move into a substantially abutting interface and the lower edges (12) of said flanges(18) move down into said bead (24) and into contact with the strip interior surface (I), said bead (24) thickness being sufficient to allow material therefrom to be forced up and into the interface between said flanges (18) as the flanges (18) move into abutment and brazing said strip (10) so as to complete said heat exchanger tube (26).
2. The method of
3. The method of
4. The method of
|
This invention relates to heat exchangers in general, and specifically to an improved method of forming a fabricated heat exchanger tube.
Cross flow heat exchangers, of a type used in automotive applications and elsewhere, include a regularly spaced series of generally straight, flat and parallel tubes, through which a first fluid (such as refrigerant or engine coolant) flows in one direction, and over which a second fluid (typically ambient air) flows in another direction. Thin, corrugated air fins or air centers are brazed between the flat, parallel tube outer surfaces. In high pressure heat exchangers, such as condensers, a solid, extruded tube is often preferred, because of the inherent ability of integrally extruded structural webs to support the internal tube pressure. In lower pressure heat exchangers, such as engine cooling radiators, internal webs are not as necessary, and fabricated or folded tubes made from aluminum strip are typical. Sheet metal strip has the advantage over solid extruded material of being easier to coat with a clad layer of braze material, which melts and provides the raw material needed to create solid joints at the various component interfaces in the heat exchanger core. Even though internal pressure support is not as necessary with a low pressure tube, central structural support can be beneficial if the tube is widened, since widening makes the tube more vulnerable to outward bulging, even with fairly low pressure inside the tube. Some radiator designs use double tube rows in order to achieve sufficient coolant fluid capacity, and it would be beneficial to replace the double row with a double wide single tube.
In order to achieve sufficient structural strength in a wide fabricated tube, several basic prior art designs have been used, all of which are variations, sometimes very minor variations, on the same basic theme. The basic objective is to fold the strip over and in on itself in some fashion to provide an internal strengthening wall. Typically, the internal strengthening wall is a central (or nearly central) abutment of two flanges, welded or brazed together. One variation folds the sheet down the middle, with each section folded over into a right angle flange and then folded again toward the other until the flanges abut at the center to create a "B" shaped cross section. The abutting flanges may be welded or brazed together by any desired joining method. An example may be seen in UK Patent Specification 1,149,923. Another basic variation folds the sheet down the middle, but with each section folding in opposite directions so that the flanges each abut to opposite sides of a central spine, creating a "Z" shaped cross section. An example may be seen in U.S. Pat. No. 4,633,056, where the edges of each section abut to the central spine either at a sharp edge, or with a bent over, curved edge. A variation of the "Z" shape, seen in U.S. Pat. No. 2,655,181, bends each edge into an L shaped foot and abuts one L shaped foot to either side of a central spine, creating a very strong, three layered central wall. The same L shape can also obviously be used for the abutting flanges in the "B" shaped tube, providing for more contact area for brazing or welding, although requiring more sheet stock, at extra cost, for the same size tube. An example of this variation may be seen in U.S. Pat. No. 6,000,641, a patent which also recognizes an additional problem with a "B" cross section tube, which is the effect of the central seam on the brazing process, discussed in more detail below. With any tube cross section, the standard folding process in use today is a continuous series of rollers that progressively folds and forms the tube to shape, as a length of strip is fed through the rollers.
While the basic shape and cross section of essentially every possible variant of a folded, fabricated tube has been suggested or disclosed, the manufacturing methods and processes still have room for improvement, especially in the area of the welding and brazing of the seams. As part oF the brazing process, it is standard practice to apply a flux layer over the clad layer. Flux may be applied by electrostatic powder adhesion, or by slurry spray, to the interior surface of the strip, but either technique wastes flux by applying it to more surface area than just the contacting interfaces. If flux is applied after the tube is folded, it is difficult to get flux into the seam between the abutted flanges, without dipping, flooding or injection techniques that also waste flux.
One proposal to selectively apply flux to a "B" tube may be seen in published European Patent Application EP 0 982 095 A1. As disclosed there, a standard flux composition is applied continuously and indirectly to the central inner surface of a progressively forming tube, in a stripe where it will contact the edges of the abutted central flanges as they are folded down. This indirect flux application is done with a roller, to which the flux paste is continuously applied, and which in turn rolls along the tube central inner surface of the strip to leave behind a thin layer of flux. The rollers that seat the flange edges down into the flux stripe are located downstream of the flux roller. While this is a continuously acting and less wasteful application of flux, it is limited in that only a thin layer of flux may be applied, and of a fluid consistency suitable to the spreading action of the roller. An excessively viscous paste will not be fluid enough to be applicable by a roller, nor would a roller be inherently capable of applying a thick, viscous layer. While such a thin layer is well presented to the terminal edges of the abutting central flanges where they engage the inner surface of the tube, it is not as effective in reaching the much wider interface between abutting flanges themselves, which forms the central seam of the tube.
As noted above, there is another potential problem recognized in the art with the standard "B" shape tube cross section, a problem inherent in the shape and consequent effect of the central tube seam during the brazing process. U.S. Pat. No. 6,000,461 recognizes that the central seam creates a curved, converging depression in the outer surface of the tube, which can, through strong capillary action, draw or scavenge melted braze cladding away from the surface of the slotted header plates into which the tube ends are typically inserted. This jeopardizes the strength and integrity of the braze joints at the header slots. One solution is that extra thick braze cladding material could be provided on the outside of the tube, the header, or even to the fin material, but this would be expensive and not desirable. The patent noted proposes to skive out and enlarge the seam into a wide, non convergent gap, which would, so it is claimed, reduce the capillary action. Regardless of its effect on capillary action, such a widened seam would weaken the tube and subject it to debris trapping and corrosion. An extra manufacturing step such as skiving also adds cost.
Another patent, U.S. Pat. No. 6,129,147, seeks to control the shape of the seam by making an extra fold of the edge of the strip stock up between the pair of abutting flanges, which divides the gap of the seam in two, in effect. This also creates a very impractical and oddly shaped tube cross section, and tooling to actually create such an odd fold would be difficult to devise. Even so, dividing one deep seam into two seams would not solve the braze scavenging, seam capillary problem totally, since each side of the divided seam could still create some capillary action.
The subject invention provides an improved method for producing a folded tube of the type described above. A thick bead of flux and/or braze paste mixture is directly deposited on the inner surface of the strip as it is progressively folded to shape. As the integral flanges are bent inwardly and into abutment with each other, their lower edges are forced downwardly into the bead, and a layer of the thick bead material is squeezed up into the seam interface between the abutting flanges. This provides an excellent bond, with no additional steps necessary beyond the depositing of the bead material itself. The viscosity and consistency of the bead does not have to be limited or tailored to a rolling on process. Extra braze alloy can be provided in the bead to strengthen the bond and limit the scavenging action of the seam noted above, without any deleterious change to the tube cross section or any complication of its folding process.
Referring first to
Referring next to
Referring next to
Referring next to
Referring next to
Once the final tube shape has been formed, the next step is to cut the tube 26 to desired lengths and stack the tube lengths into a standard core, such as a radiator or heater, for example. Once stacked in a core and clamped or bound, the ends of the tube 26 would be inserted into a header slot, or the equivalent, and adjacent pairs of parallel tubes 26 would have standard corrugated air fins or air centers compressed between their outer surfaces O. This stacking and clamping into a core is sufficient to maintain the flat cross section of tube 26, and to keep the flanges 18 abutted and the flange edges 12 firmly embedded down into the material of the bead 24 and in contact with tube inner surface I. In the braze oven, the stacked and bound core is heated, the clad layer the tube outer surface O melts, and melted braze material flows by capillary action into the various component interfaces with surface O, such as tube end to header slot, tube surface to air fin crest, and the seam between the abutted flanges 18. The presence of braze paste or alloy into the bead 24 would provide a stronger bond between the flanges 18, and also be more tolerant of a lack of complete abutment of the outer surfaces (O) of the flanges 18, as compared to reliance on the clad layer on strip 10 alone. The addition of braze alloy to bead 24 also provides a very simple and effective means of dealing with the braze material scavenging problem discussed in U.S. Pat. No. 6,000,461. No extra cladding layer on the headers or air fins would be needed, and the extra concentration of braze alloy in the seam formed between the abutted flanges 18 would stop, or even potentially reverse the robbing of braze material that could otherwise threaten the integrity of the braze joints formed at the various interfaces. This is achieved with no significant change in the basic tube geometry, and without interfering with the basic progressive rolling process that creates the tube shape. In some cases, sufficient braze material on the tube outer surface O may exist, or braze clad air fins may be readily available, and the flux slurry alone would be sufficient in bead 24. For some applications, adding braze alloy to the bead 24 may be sufficient, with no clad layer on either surface of strip 10, although it is most likely that a clad layer on outer surface O would be desired.
Anders, James, Beamer, Henry Earl, Machajewski, Gerald A.
Patent | Priority | Assignee | Title |
6791051, | Aug 22 2002 | Aptiv Technologies Limited | Method for metallurgically attaching a tube to a member |
6791052, | Mar 28 2003 | Delphi Technologies, Inc. | Method for resistance welding a tube to a member |
6821558, | Jul 24 2002 | FLAME-SPRAY INDUSTRIES, INC | Method for direct application of flux to a brazing surface |
6847001, | Aug 22 2002 | Aptiv Technologies Limited | Method for metallurgically joining a tube to a member |
6871553, | Mar 28 2003 | Steering Solutions IP Holding Corporation | Integrating fluxgate for magnetostrictive torque sensors |
6872427, | Feb 07 2003 | Delphi Technologies, Inc | Method for producing electrical contacts using selective melting and a low pressure kinetic spray process |
6875944, | May 06 2003 | Delphi Technologies, Inc. | Method for resistance welding/brazing a tube to a container |
6896933, | Apr 05 2002 | FLAME-SPRAY INDUSTRIES, INC | Method of maintaining a non-obstructed interior opening in kinetic spray nozzles |
6924249, | Oct 02 2002 | FLAME-SPRAY INDUSTRIES, INC | Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere |
6949300, | Aug 15 2001 | FLAME-SPRAY INDUSTRIES, INC | Product and method of brazing using kinetic sprayed coatings |
6953147, | Aug 22 2002 | Delphi Technologies, Inc. | Method for joining a tube to a member |
6953907, | Aug 22 2002 | Delphi Technologies, Inc. | Method for metallurgically joining a tube to a member |
6976531, | Oct 22 2003 | Dana Canada Corporation | Heat exchanger, method of forming a sleeve which may be used in the heat exchanger, and a sleeve formed by the method |
6998560, | Aug 22 2002 | Delphi Technologies, Inc. | Method for metallurgically joining a tube to a member |
7001671, | Oct 09 2001 | FLAME-SPRAY INDUSTRIES, INC | Kinetic sprayed electrical contacts on conductive substrates |
7024946, | Jan 23 2004 | PACIFIC CENTURY MOTORS, INC ; GM Global Technology Operations, Inc | Assembly for measuring movement of and a torque applied to a shaft |
7253372, | Jul 07 2004 | Aptiv Technologies AG | Method for welding heat exchanger tube to tubesheet |
7323653, | Sep 24 2002 | Delphi Technologies, Inc. | Deformation resistance welding of sheet metal, tubes, and similar shapes |
7335341, | Oct 30 2003 | FLAME-SPRAY INDUSTRIES, INC | Method for securing ceramic structures and forming electrical connections on the same |
7351450, | Oct 02 2003 | FLAME-SPRAY INDUSTRIES, INC | Correcting defective kinetically sprayed surfaces |
7423232, | May 06 2003 | Delphi Technologies, Inc. | Method for resistance welding/brazing a tube to a member |
7475831, | Jan 23 2004 | FLAME-SPRAY INDUSTRIES, INC | Modified high efficiency kinetic spray nozzle |
7476422, | May 23 2002 | FLAME-SPRAY INDUSTRIES, INC | Copper circuit formed by kinetic spray |
7476824, | Jul 07 2004 | Aptiv Technologies AG | Welding apparatus for resistance welding heat exchanger tube to tubesheet |
7657986, | Jan 04 2007 | Mahle International GmbH | Method of making a folded condenser tube |
7699095, | Mar 29 2006 | Mahle International GmbH | Bendable core unit |
7802439, | Nov 22 2006 | Johnson Controls Technology Company | Multichannel evaporator with flow mixing multichannel tubes |
8166776, | Jul 27 2007 | Johnson Controls Tyco IP Holdings LLP | Multichannel heat exchanger |
9452486, | Aug 16 2011 | Carrier Corporation | Automatic fluxing machine |
Patent | Priority | Assignee | Title |
5579837, | Nov 15 1995 | HANON SYSTEMS | Heat exchanger tube and method of making the same |
5692300, | Apr 17 1995 | S. A. Day Manufacturing Co., Inc. | Method for forming aluminum tubes and brazing a lockseam formed therein |
5890288, | Aug 21 1997 | HANON SYSTEMS | Method for making a heat exchanger tube |
6000461, | Mar 21 1997 | LIVERNOIS ENGINEERING CO | Method and apparatus for controlled atmosphere brazing of folded tubes |
6119341, | May 12 1994 | Zexel Valeo Climate Control Corporation | Method of manufacturing flat tubes for heat exchanger |
6129147, | Dec 23 1997 | Valeo Thermique Moteur | Folded and brazed tube for heat exchanger and heat exchanger including such tubes |
6209202, | Aug 02 1999 | Visteon Global Technologies, Inc | Folded tube for a heat exchanger and method of making same |
6494254, | Jun 22 2000 | Valeo Thermique Moteur | Brazed tube for a heat exchanger, method of manufacture and exchanger |
20010045277, | |||
EP302232, | |||
EP982095, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 10 2002 | BEAMER, HENRY EARL | Delphi Technologies Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012580 | /0519 | |
Jan 17 2002 | ANDERS, JAMES | Delphi Technologies Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012580 | /0519 | |
Jan 22 2002 | MACHAJEWSKI, GERALD A | Delphi Technologies Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012580 | /0519 | |
Feb 04 2002 | Delphi Technologies, Inc. | (assignment on the face of the patent) | / | |||
Jun 14 2005 | Delphi Technologies, Inc | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 016237 | /0402 | |
Feb 25 2008 | JPMORGAN CHASE BANK, N A | Delphi Technologies, Inc | RELEASE OF SECURITY AGREEMENT | 020808 | /0583 | |
Jul 01 2015 | Delphi Technologies, Inc | Mahle International GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037640 | /0036 |
Date | Maintenance Fee Events |
Feb 09 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 10 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 09 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 09 2006 | 4 years fee payment window open |
Mar 09 2007 | 6 months grace period start (w surcharge) |
Sep 09 2007 | patent expiry (for year 4) |
Sep 09 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 09 2010 | 8 years fee payment window open |
Mar 09 2011 | 6 months grace period start (w surcharge) |
Sep 09 2011 | patent expiry (for year 8) |
Sep 09 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 09 2014 | 12 years fee payment window open |
Mar 09 2015 | 6 months grace period start (w surcharge) |
Sep 09 2015 | patent expiry (for year 12) |
Sep 09 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |