A method of depositing large particles having an average nominal diameter of greater than 106 microns up to 250 microns onto substrates using a kinetic spray system is disclosed. The method utilizes a powder injector tube having a reduced inner diameter and a de Laval type nozzle having an elongated throat to exit end length. The method permits deposition of much larger particles than previously possible.

Patent
   6623796
Priority
Apr 05 2002
Filed
Apr 05 2002
Issued
Sep 23 2003
Expiry
Apr 05 2022
Assg.orig
Entity
Large
44
26
EXPIRED
1. A method of kinetic spray coating a substrate comprising the steps of:
a) providing particles having an average nominal diameter of greater than 106 to 250 microns;
b) entraining the particles into a flow of a gas, the gas at a temperature below a melt temperature of the particles; and
c) directing the particles entrained in the flow of gas through a supersonic nozzle having a length from a throat to an exit end of from 200 to 400 millimeters, thereby accelerating the particles to a velocity sufficient to result in adherence of the particles on a substrate positioned opposite the nozzle.
11. A method of kinetic spray coating a substrate comprising the steps of:
a) providing particles having an average nominal diameter equal of greater than 106 to 250 microns;
b) passing the particles through a powder injector tube having an inner diameter equal to or less than 0.90 millimeters and into a flow of a gas;
c) entraining the particles into the flow of the gas, the gas at a temperature below a melt temperature of the particles; and
d) directing the particles entrained in the flow of gas through a supersonic nozzle having a length from a throat to an exit end of from 200 to 400 millimeters thereby accelerating the particles to a velocity sufficient to result in adherence of the particles on a substrate positioned opposite the nozzle.
2. The method of claim 1, wherein step a) comprises providing particles having an average nominal diameter of from 125 to 250 microns.
3. The method of claim 1, wherein step a) comprises providing particles comprising at least one of a metal, an alloy, a polymer, a ceramic, a diamond, or mixtures thereof.
4. The method of claim 1, wherein step b) further comprises setting the gas at a temperature of from 300 to 3000°C F.
5. The method of claim 4, wherein the gas is set at a temperature of from 300 to 1500°C F.
6. The method of claim 1, further comprising directing the particles entrained in the flow of gas through a supersonic nozzle having a throat diameter of from 3.5 to 1.5 millimeters.
7. The method of claim 1, further comprising directing the particles entrained in the flow of gas through a supersonic nozzle having a throat diameter of from 3.0 to 2.0 millimeters.
8. The method of claim 1, wherein step c) comprises directing the particles entrained in the flow of gas through a supersonic nozzle having a length from the throat to the exit end of from 250 to 350 millimeters.
9. The method of claim 1, further comprising the step of directing the particles of step a) through an injector tube having an inner diameter of from 0.40 to 0.90 millimeters and then entraining the particles into the flow of gas in step b).
10. The method of claim 1, wherein step c) further comprises positioning a substrate comprising at least one of a metal, an alloy, a ceramic, a plastic, or a mixture thereof opposite the nozzle.
12. The method of claim 11, wherein step a) comprises providing particles having an average nominal diameter of from 125 to 250 microns.
13. The method of claim 11, wherein step a) comprises providing particles comprising at least one of a metal, an alloy, a polymer, a ceramic, a diamond, or mixtures thereof.
14. The method of claim 11, wherein step b) further comprises setting the gas at a temperature of from 300 to 3000°C F.
15. The method of claim 14, wherein the gas is set at a temperature of from 300 to 1500°C F.
16. The method of claim 11, further comprising directing the particles entrained in the flow of gas through a supersonic nozzle having a throat diameter of from 3.5 to 1.5 millimeters.
17. The method of claim 11, further comprising directing the particles entrained in the flow of gas through a supersonic nozzle having a throat diameter of from 3.0 to 2.0 millimeters.
18. The method of claim 11, wherein step d) comprises directing the particles entrained in the flow of gas through a supersonic nozzle having a length from the throat to the exit end of from 250 to 350 millimeters.
19. The method of claim 11, wherein step b) comprises passing the particles of step a) through a powder injector tube having an inner diameter of from 0.40 to 0.90 millimeters.
20. The method of claim 11, wherein step d) further comprises positioning a substrate comprising at least one of a metal, an alloy, a ceramic, a plastic, or a mixture thereof opposite the nozzle.

U.S. Pat. No. 6,139,913, "Kinetic Spray Coating Method and Apparatus," and U.S. Pat. No. 6,283,386 "Kinetic Spray Coating Apparatus" are incorporated by reference herein.

The present invention is directed to a method for producing a coating using a kinetic spray system with much larger particles than previously used. The invention further includes a kinetic spray nozzle for use with the larger particles. The invention permits one to increase the particle size used in the system up to at least 250 microns, thereby increasing the range of useful particles and decreasing the processing difficulties associated with the smaller particles typically used.

A new technique for producing coatings on a wide variety of substrate surfaces by kinetic spray, or cold gas dynamic spray, was recently reported in an article by T. H. Van Steenkiste et al., entitled "Kinetic Spray Coatings," published in Surface and Coatings Technology, vol. 111, pages 62-71, Jan. 10, 1999. The article discusses producing continuous layer coatings having low porosity, high adhesion, low oxide content and low thermal stress. The article describes coatings being produced by entraining metal powders in an accelerated air stream, through a converging-diverging de Laval type nozzle and projecting them against a target substrate. The particles are accelerated in the high velocity air stream by the drag effect. The air used can be any of a variety of gases including air or helium. It was found that the particles that formed the coating did not melt or thermally soften prior to impingement onto the substrate. It is theorized that the particles adhere to the substrate when their kinetic energy is converted to a sufficient level of thermal and mechanical deformation. Thus, it is believed that the particle velocity must be high enough to exceed the yield stress of the particle to permit it to adhere when it strikes the substrate. It was found that the deposition efficiency of a given particle mixture was increased as the inlet air temperature was increased. Increasing the inlet air temperature decreases its density and increases its velocity. The velocity varies approximately as the square root of the inlet air temperature. The actual mechanism of bonding of the particles to the substrate surface is not fully known at this time. It is believed that the particles must exceed a critical velocity prior to their being able to bond to the substrate. The critical velocity is dependent on the material of the particle. It is believed that the initial particles to adhere to a substrate have broken the oxide shell on the substrate material permitting subsequent metal to metal bond formation between plastically deformed particles and the substrate. Once an initial layer of particles has been formed on a substrate subsequent particles bind not only to the voids between previous particles bound to the substrate but also engage in particle to particle bonds. The bonding process is not due to melting of the particles in the air stream because the temperature of the air stream is always below the melting temperature of the particles and the temperature of the particles is always below that of the air stream.

This work improved upon earlier work by Alkimov et al. as disclosed in U.S. Pat. No. 5,302,414, issued Apr. 12, 1994. Alkimov et al. disclosed producing dense continuous layer coatings with powder particles having a particle size of from 1 to 50 microns using a supersonic spray.

The Van Steenkiste article reported on work conducted by the National Center for Manufacturing Sciences (NCMS) to improve on the earlier Alkimov process and apparatus. Van Steenkiste et al. demonstrated that Alkimov's apparatus and process could be modified to produce kinetic spray coatings using particle sizes of greater than 50 microns and up to about 106 microns.

This modified process and apparatus for producing such larger particle size kinetic spray continuous layer coatings are disclosed in U.S. Pat. Nos. 6,139,913, and 6,283,386. The process and apparatus provide for heating a high pressure air flow up to about 650°C C. and combining this with a flow of particles. The heated air and particles are directed through a de Laval-type nozzle to produce a particle exit velocity of between about 300 m/s (meters per second) to about 1000 m/s. The thus accelerated particles are directed toward and impact upon a target substrate with sufficient kinetic energy to impinge the particles to the surface of the substrate. The temperatures and pressures used are sufficiently lower than that necessary to cause particle melting or thermal softening of the selected particle. Therefore, no phase transition occurs in the particles prior to impingement. It has been found that each type of particle material has a threshold critical velocity that must be exceeded before the material begins to adhere to the substrate. The disclosed method did not disclose the use of particles in excess of 106 microns.

One difficulty associated with all of these prior art kinetic spray systems arises from the small size of the particles that are used. The largest particles are 106 microns, and more typically the particles range from 10 to 50 microns. Because of their large surface to volume ratio these particles tend to have a higher level of oxide formation which is detrimental to the process. It is also difficult to handle these small particles in the feed systems, because they tend to clog the systems. Thus it would be very beneficial to develop a process that could use larger particles to reduce these problems.

In a first embodiment the present invention is a method of kinetic spray coating a substrate comprising the steps of: providing particles having an average nominal diameter equal to or less than 250 microns; entraining the particles into a flow of a gas, the gas at a temperature below a melt temperature of the particles; and directing the particles entrained in the flow of gas through a supersonic nozzle having a length from a throat to an exit end of from 200 to 400 millimeters thereby accelerating the particles to a velocity sufficient to result in adherence of the particles on a substrate positioned opposite the nozzle.

In a second embodiment the present invention is a method of kinetic spray coating a substrate comprising the steps of: providing particles having an average nominal diameter equal to or less than 250 microns; passing the particles through a powder injector tube having an inner diameter equal to or less than 0.90 millimeters and into a flow of a gas; entraining the particles into the flow of the gas, the gas at a temperature below a melt temperature of the particles; and directing the particles entrained in the flow of gas through a supersonic nozzle having a length from a throat to an exit end of from 200 to 400 millimeters thereby accelerating the particles to a velocity sufficient to result in adherence of the particles on a substrate positioned opposite the nozzle.

In the drawings:

FIG. 1 is a generally schematic layout illustrating a kinetic spray system for performing the method of the present invention; and

FIG. 2 is an enlarged cross-sectional view of a kinetic spray nozzle used in the system.

The present invention comprises an improvement to the kinetic spray process as generally described in U.S. Pat. Nos. 6,139,913, 6,283,386 and the article by Van Steenkiste, et al. entitled "Kinetic Spray Coatings" published in Surface and Coatings Technology Volume III, Pages 62-72, Jan. 10, 1999, all of which are herein incorporated by reference.

Referring first to FIG. 1, a kinetic spray system according to the present invention is generally shown at 10. System 10 includes an enclosure 12 in which a support table 14 or other support means is located. A mounting panel 16 fixed to the table 14 supports a work holder 18 capable of movement in three dimensions and able to support a suitable workpiece formed of a substrate material to be coated. The enclosure 12 includes surrounding walls having at least one air inlet, not shown, and an air outlet 20 connected by a suitable exhaust conduit 22 to a dust collector, not shown. During coating operations, the dust collector continually draws air from the enclosure 12 and collects any dust or particles contained in the exhaust air for subsequent disposal.

The spray system 10 further includes an air compressor 24 capable of supplying air pressure up to 3.4 MPa (500 psi) to a high pressure air ballast tank 26. The air ballast tank 26 is connected through a line 28 to both a high pressure powder feeder 30 and a separate air heater 32. The air heater 32 supplies high pressure heated air, the main gas described below, to a kinetic spray nozzle 34. The powder feeder 30 mixes particles of a spray powder with unheated high pressure air and supplies the mixture to a supplemental inlet line 48 of the nozzle 34. A computer control 35 operates to control both the pressure of air supplied to the air heater 32 and the temperature of the heated main gas exiting the air heater 32.

FIG. 2 is a cross-sectional view of the nozzle 34 and its connections to the air heater 32 and the supplemental inlet line 48. A main air passage 36 connects the air heater 32 to the nozzle 34. Passage 36 connects with a premix chamber 38 which directs air through a flow straightener 40 and into a mixing chamber 42. Temperature and pressure of the air or other heated main gas are monitored by a gas inlet temperature thermocouple 44 in the passage 36 and a pressure sensor 46 connected to the mixing chamber 42.

The mixture of unheated high pressure air and coating powder is fed through the supplemental inlet line 48 to a powder injector tube 50 comprising a straight pipe having a predetermined inner diameter. The tube 50 has a central axis 52 which is preferentially the same as the axis of the premix chamber 38. The tube 50 extends through the premix chamber 38 and the flow straightener 40 into the mixing chamber 42.

Mixing chamber 42 is in communication with the de Laval type nozzle 54. The nozzle 54 has an entrance cone 56 that decreases in diameter to a throat 58. Downstream of the throat is an exit end 60. The largest diameter of the entrance cone 56 may range from 10 to 6 millimeters, with 7.5 millimeters being preferred. The entrance cone 56 narrows to the throat 58. The throat 58 may have a diameter of from 3.5 to 1.5 millimeters, with from 3 to 2 millimeters being preferred. The portion of the nozzle 54 from downstream of the throat 58 to the exit end 60 may have a variety of shapes, but in a preferred embodiment it has a rectangular cross-sectional shape. At the exit end 60 the nozzle 54 preferably has a rectangular shape with a long dimension of from 8 to 14 millimeters by a short dimension of from 2 to 6 millimeters.

As disclosed in U.S. Pat. Nos. 6,139,913 and 6,283,386 the powder injector tube 50 supplies a particle powder mixture to the system 10 under a pressure in excess of the pressure of the heated main gas from the passage 36. The nozzle 54 produces an exit velocity of the entrained particles of from 300 meters per second to as high as 1200 meters per second. The entrained particles gain kinetic and thermal energy during their flow through this nozzle. It will be recognized by those of skill in the art that the temperature of the particles in the gas stream will vary depending on the particle size and the main gas temperature. The main gas temperature is defined as the temperature of heated high-pressure gas at the inlet to the nozzle 54. Since these temperatures are substantially less than the melting point of the particles, even upon impact, there is no change in the solid phase of the original particles due to transfer of kinetic and thermal energy, and therefore no change in their original physical properties. The particles are always at a temperature below the main gas temperature. The particles exiting the nozzle 54 are directed toward a surface of a substrate to coat it.

Upon striking a substrate opposite the nozzle 54 the particles flatten into a nub-like structure with an aspect ratio of generally about 5 to 1. When the substrate is a metal and the particles are a metal the particles striking the substrate surface fracture the oxidation on the surface layer and subsequently form a direct metal-to-metal bond between the metal particle and the metal substrate. Upon impact the kinetic sprayed particles transfer substantially all of their kinetic and thermal energy to the substrate surface and stick if their yield stress has been exceeded. As discussed above, for a given particle to adhere to a substrate it is necessary that it reach or exceed its critical velocity which is defined as the velocity where at it will adhere to a substrate when it strikes the substrate after exiting the nozzle. This critical velocity is dependent on the material composition of the particle. In general, harder materials must achieve a higher critical velocity before they adhere to a given substrate. It is not known at this time exactly what is the nature of the particle to substrate bond; however, it is believed that a portion of the bond is due to the particles plastically deforming upon striking the substrate.

As disclosed in U.S. Pat. No. 6,139,913 the substrate material may be comprised of any of a wide variety of materials including a metal, an alloy, a semi-conductor, a ceramic, a plastic, and mixtures of these materials. All of these substrates can be coated by the process of the present invention. The particles used in the present invention may comprise any of the materials disclosed in U.S. Pat. Nos. 6,139,913 and 6,283,386 in addition to other know particles. These particles generally comprise metals, alloys, ceramics, polymers, diamonds and mixtures of these.

As discussed above, present kinetic spray systems generally utilize particles of 106 microns or less. Larger particles do not adhere to the substrates in current systems. The present invention discloses a method for using much larger particles than previous systems. In fact, the present invention discloses use of particle in the range of up to 250 microns. This is accomplished by making two modifications to present kinetic spray systems.

First, the inner diameter of the powder injector tube 50, which directs the powder into the de Laval nozzle 54, is reduced to a size of from 0.90 millimeter to 0.40 millimeter. This is in contrast to a typical system wherein the powder injector tube generally has an inner diameter of approximately 2.45 millimeters or larger. This is believed to provide two important benefits that allow for spraying of larger particles. The smaller diameter reduces the amount of unheated air that is combined with the heated main gas in the mixing chamber 42 and thereby leads to a smaller reduction in the main gas temperature. The higher the main gas temperature the faster a given particle is accelerated over a given distance. In addition, the smaller the inner diameter of the injector tube 50 the less turbulence it introduces in the flow of the gas through the nozzle 54. Turbulence is detrimental to acceleration of particles in the nozzle 54. As a theoretical limit the size of the inner diameter of the injector tube 50 can be reduced down to the size of the particles one is injecting, however, in general it is preferably from 0.90 to 0.40 millimeters in diameter.

Second, the length of the nozzle 54 from the throat 58 to the exit end 60 is greatly increased. In a typical system the length of the nozzle 54 from the throat 58 to the exit end 60 is from 60 to 80 millimeters. In the present invention the length has been increased to from 200 to 400 millimeters. This increase in length in combination with the smaller injector tube 50 inner diameter allows one to spray particles up to 250 microns in diameter. The longer nozzle 54 allows one to keep the main gas temperature below the melting temperature of many useful materials and to use very large particles of these materials. In general, the present invention extends the size of usable powders to ones up to 250 microns in diameter. The longer length enables the main gas to accelerate the larger particles to velocities upon exit of from 300 to 1200 m/s.

In a first example the system 10 was use to spray copper particles having an average nominal diameter of 250 microns onto an aluminum substrate. The substrate was not sandblasted prior to attempts to coat it. Using a nozzle 54 having a length of 80 millimeters from throat 58 to exit end 60, a throat 58 of 2 millimeters, and an injector tube 50 inner diameter of 0.89, the particles could not be adhered to the substrate. When the system 10 was changed to a nozzle 54 having a length of 300 millimeters from the 2 millimeter throat 58 to the exit end 60 the particles adhered very well to the substrate. The nozzle 54 had a rectangular cross-sectional area beyond the throat 58 and an exit size of 5 by 12.5 millimeters. In both experiments the main gas temperature was set at 1200°C F. and its pressure was 300 psi. The powder feed parameters were: 70°C F., 350 psi and 500 rpm on the feeder.

While the preferred embodiment of the present invention has been described so as to enable one skilled in the art to practice the present invention, it is to be understood that variations and modifications may be employed without departing from the concept and intent of the present invention as defined in the following claims. The preceding description is intended to be exemplary and should not be used to limit the scope of the invention. The scope of the invention should be determined only by reference to the following claims.

Van Steenkiste, Thomas Hubert

Patent Priority Assignee Title
10272543, Jun 09 2015 SUGINO MACHINE LIMITED Nozzle
6811812, Apr 05 2002 FLAME-SPRAY INDUSTRIES, INC Low pressure powder injection method and system for a kinetic spray process
6871553, Mar 28 2003 Steering Solutions IP Holding Corporation Integrating fluxgate for magnetostrictive torque sensors
6872427, Feb 07 2003 Delphi Technologies, Inc Method for producing electrical contacts using selective melting and a low pressure kinetic spray process
6896933, Apr 05 2002 FLAME-SPRAY INDUSTRIES, INC Method of maintaining a non-obstructed interior opening in kinetic spray nozzles
6905728, Mar 22 2004 Honeywell International, Inc. Cold gas-dynamic spray repair on gas turbine engine components
6924249, Oct 02 2002 FLAME-SPRAY INDUSTRIES, INC Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere
6949300, Aug 15 2001 FLAME-SPRAY INDUSTRIES, INC Product and method of brazing using kinetic sprayed coatings
7001671, Oct 09 2001 FLAME-SPRAY INDUSTRIES, INC Kinetic sprayed electrical contacts on conductive substrates
7024946, Jan 23 2004 PACIFIC CENTURY MOTORS, INC ; GM Global Technology Operations, Inc Assembly for measuring movement of and a torque applied to a shaft
7108893, Sep 23 2002 FLAME-SPRAY INDUSTRIES, INC Spray system with combined kinetic spray and thermal spray ability
7125586, Apr 11 2003 FLAME-SPRAY INDUSTRIES, INC Kinetic spray application of coatings onto covered materials
7335341, Oct 30 2003 FLAME-SPRAY INDUSTRIES, INC Method for securing ceramic structures and forming electrical connections on the same
7351450, Oct 02 2003 FLAME-SPRAY INDUSTRIES, INC Correcting defective kinetically sprayed surfaces
7475831, Jan 23 2004 FLAME-SPRAY INDUSTRIES, INC Modified high efficiency kinetic spray nozzle
7476422, May 23 2002 FLAME-SPRAY INDUSTRIES, INC Copper circuit formed by kinetic spray
7637441, Mar 24 2006 Sulzer Metco AG Cold gas spray gun
7674076, Jul 14 2006 FLAME-SPRAY INDUSTRIES, INC Feeder apparatus for controlled supply of feedstock
7717703, Feb 25 2005 Technical Engineering, LLC Combustion head for use with a flame spray apparatus
8113413, Dec 13 2006 MATERION NEWTON INC Protective metal-clad structures
8132740, Jan 10 2006 Tessonics Corporation Gas dynamic spray gun
8197894, May 04 2007 MATERION NEWTON INC Methods of forming sputtering targets
8226741, Oct 03 2006 MATERION NEWTON INC Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
8246903, Sep 09 2008 MATERION NEWTON INC Dynamic dehydriding of refractory metal powders
8448840, Dec 13 2006 MATERION NEWTON INC Methods of joining metallic protective layers
8470396, Sep 09 2008 MATERION NEWTON INC Dynamic dehydriding of refractory metal powders
8491959, May 04 2007 MATERION NEWTON INC Methods of rejuvenating sputtering targets
8703233, Sep 29 2011 H C STARCK SOLUTIONS EUCLID, LLC Methods of manufacturing large-area sputtering targets by cold spray
8715386, Oct 03 2006 MATERION NEWTON INC Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
8734896, Sep 29 2011 H C STARCK SOLUTIONS EUCLID, LLC Methods of manufacturing high-strength large-area sputtering targets
8777090, Dec 13 2006 MATERION NEWTON INC Methods of joining metallic protective layers
8802191, May 05 2005 H C STARCK SURFACE TECHNOLOGY AND CERAMIC POWDERS GMBH Method for coating a substrate surface and coated product
8852667, May 27 2009 Si Chuan University Method for preparation of bioactive glass coatings by liquid precursor thermal spray
8877283, May 12 2009 Si Chuan University Method for preparing porous hydroxyapatite coatings by suspension plasma spraying
8883250, May 04 2007 MATERION NEWTON INC Methods of rejuvenating sputtering targets
8961867, Sep 09 2008 MATERION NEWTON INC Dynamic dehydriding of refractory metal powders
9095932, Dec 13 2006 MATERION NEWTON INC Methods of joining metallic protective layers
9108273, Sep 29 2011 H C STARCK SOLUTIONS EUCLID, LLC Methods of manufacturing large-area sputtering targets using interlocking joints
9120183, Sep 29 2011 H C STARCK SOLUTIONS EUCLID, LLC Methods of manufacturing large-area sputtering targets
9293306, Sep 29 2011 H C STARCK SOLUTIONS EUCLID, LLC Methods of manufacturing large-area sputtering targets using interlocking joints
9412568, Sep 29 2011 H C STARCK SOLUTIONS EUCLID, LLC Large-area sputtering targets
9481933, Dec 04 2009 The Regents of the University of Michigan Coaxial laser assisted cold spray nozzle
9646722, Dec 28 2012 Global Nuclear Fuel - Americas, LLC Method and apparatus for a fret resistant fuel rod for a light water reactor (LWR) nuclear fuel bundle
9783882, May 04 2007 MATERION NEWTON INC Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
Patent Priority Assignee Title
3100724,
3993411, Apr 20 1972 General Electric Company Bonds between metal and a non-metallic substrate
4263335, Jul 26 1978 PPG Industries, Inc. Airless spray method for depositing electroconductive tin oxide coatings
4416421, Oct 06 1980 BROWNING, JAMES A Highly concentrated supersonic liquified material flame spray method and apparatus
4606495, Dec 22 1983 United Technologies Corporation Uniform braze application process
4891275, Oct 29 1982 Norsk Hydro A.S. Aluminum shapes coated with brazing material and process of coating
4939022, Apr 04 1988 Delphi Technologies Inc Electrical conductors
5187021, Feb 08 1989 DIAMOND FIBER ACQUISITION, INC Coated and whiskered fibers for use in composite materials
5271965, Jan 16 1991 Thermal spray method utilizing in-transit powder particle temperatures below their melting point
5302414, May 19 1990 PETER RICHTER Gas-dynamic spraying method for applying a coating
5308463, Sep 13 1991 Hoechst Aktiengesellschaft Preparation of a firm bond between copper layers and aluminum oxide ceramic without use of coupling agents
5340015, Mar 22 1993 Micron Technology, Inc Method for applying brazing filler metals
5395679, Mar 29 1993 CASANTRA ACQUISTION III LLC; CASANTRA ACQUISITION III LLC Ultra-thick thick films for thermal management and current carrying capabilities in hybrid circuits
5424101, Oct 24 1994 GM Global Technology Operations LLC Method of making metallized epoxy tools
5464146, Sep 29 1994 RESEARCH FOUNDATION, THE Thin film brazing of aluminum shapes
5476725, Mar 18 1991 Alcoa Inc Clad metallurgical products and methods of manufacture
5527627, Mar 29 1993 CASANTRA ACQUISTION III LLC; CASANTRA ACQUISITION III LLC Ink composition for an ultra-thick thick film for thermal management of a hybrid circuit
5593740, Jan 17 1995 Synmatix Corporation Method and apparatus for making carbon-encapsulated ultrafine metal particles
5648123, Apr 02 1992 Hoechst Aktiengesellschaft Process for producing a strong bond between copper layers and ceramic
5965193, Apr 11 1994 DOWA MINING CO , LTD Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material
5975996, Jul 18 1996 The Penn State Research Foundation Abrasive blast cleaning nozzle
6033622, Sep 21 1998 The United States of America as represented by the Secretary of the Air Method for making metal matrix composites
6074737, Mar 05 1996 Sprayform Holdings Limited Filling porosity or voids in articles formed in spray deposition processes
6129948, Dec 23 1996 National Center for Manufacturing Sciences Surface modification to achieve improved electrical conductivity
6139913, Jun 29 1999 FLAME-SPRAY INDUSTRIES, INC Kinetic spray coating method and apparatus
6283386, Jun 29 1999 FLAME-SPRAY INDUSTRIES, INC Kinetic spray coating apparatus
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 05 2002Delphi Technologies, Inc.(assignment on the face of the patent)
Apr 16 2002VAN STEENKISTE, THOMAS HUBERTDelphi Technologies, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0129860337 pdf
Date Maintenance Fee Events
Apr 11 2007REM: Maintenance Fee Reminder Mailed.
Sep 23 2007EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Sep 23 20064 years fee payment window open
Mar 23 20076 months grace period start (w surcharge)
Sep 23 2007patent expiry (for year 4)
Sep 23 20092 years to revive unintentionally abandoned end. (for year 4)
Sep 23 20108 years fee payment window open
Mar 23 20116 months grace period start (w surcharge)
Sep 23 2011patent expiry (for year 8)
Sep 23 20132 years to revive unintentionally abandoned end. (for year 8)
Sep 23 201412 years fee payment window open
Mar 23 20156 months grace period start (w surcharge)
Sep 23 2015patent expiry (for year 12)
Sep 23 20172 years to revive unintentionally abandoned end. (for year 12)