A communication system is disclosed enabling communication from a surface location to a downhole location where instructions communicated are executed. The system employs accelerometers to sense vibrations traveling within the annulus fluid or the tubing string. The accelerators provide signals representative of the vibration generated at the surface of the well to a microcontroller. The microcontroller is programmed to energize a nichrome element to actuate the downhole tool in response to a user-defined vibration sequence. The vibration sequence includes a defined number of vibration cycles. Each cycle includes alternating periods of vibration and no vibrations with each period lasting for a defined length of time. The user may program the parameters of the sequence and arm the vibration receiving unit on site through a handheld terminal that interfaces with the microcontroller.
|
21. A method for communicating in a wellbore comprising:
generating a vibration at a first location by selectively operating machinery having a function other than causing vibration; propagating said vibration; and sensing said vibration at a second location.
1. A remote downhole tool actuation system comprising:
a fluid pump vibration initiator; a vibration propagator in vibrating communication with said vibration initiator; and a vibration receiver attachable to said downhole tool and in communication with an actuator of said tool.
12. A method of remotely actuating a downhole tool comprising:
causing a vibration in a tubing string of a wellbore by selectively operating machinery having a function other than causing vibration; propagating said vibration downhole; sensing said vibration; and actuating said tool upon said sensing.
47. A remote downhole tool actuation system comprising:
a vibration initiator having a function other than as a vibration source; a vibration propagator in vibrating communication with said vibration initiator; and a vibration receiver attachable to said downhole tool and in communication with an actuator of said tool.
22. An apparatus for actuating a downhole tool remotely in response to a defined sequence of vibrations created by selectively operating machinery having a function other than causing vibration; said apparatus comprising:
a transducer for generating an electrical signal representative of the sensed vibrations; and a computer in communication with said transducer, said computer actuating the downhole tool in response to the defined sequence of vibrations.
28. An apparatus for actuating a downhole tool remotely in response to a defined sequence of vibration, said apparatus comprising:
a transducer for generating an electrical signal representative of the sensed vibrations; and a computer in communication with said transducer, said computer actuating the downhole tool in response to the defined sequence of vibrations; and a converter for generating a direct current voltage signal representative of the root mean square value of said electrical signal, wherein said direct current voltage signal is provided to said computer.
39. A method of detecting a sequence of vibrations created by selectively operating machinery having a function other than causing vibration, said method comprising the steps of:
receiving an electronic signal representative of the presence of a vibration; verifying the presence of a vibration for a first defined period of time; verifying the absence of a vibration for a second defined period of time; and generating an actuation signal in response to the sequential repeating of verifying the presence of a vibration and verifying the absence of a vibration for a defined number of cycles.
2. A remote downhole tool actuation system as claimed in
3. A remote downhole tool actuation system as claimed in
4. A remote downhole tool actuation system as claimed in
5. A remote downhole tool actuation system as claimed in
6. A remote downhole tool actuation system as claimed in
7. A remote downhole tool actuation system as claimed in
8. A remote downhole tool actuation system as claimed in
9. A remote downhole tool actuation system as claimed in
10. A remote downhole tool actuation system as claimed in
11. A remote downhole tool actuation system as claimed in
13. A method of remotely actuating a downhole tool as claimed in
14. A method of remotely actuating a downhole tool as claimed in
15. A method of remotely actuating a downhole tool as claimed in
16. A method of remotely actuating a downhole tool as claimed in
17. A method of remotely actuating a downhole tool as claimed in
18. A method of remotely actuating a downhole tool as claimed in
19. A method of remotely actuating a downhole tool as claimed in
20. A method of remotely actuating a downhole tool as claimed in
23. An apparatus as claimed in
24. An apparatus as claimed in
25. An apparatus as claimed in
26. An apparatus as claimed in
27. An apparatus as claimed in
29. An apparatus as claimed in
a circuit for filtering said electronic signal of said transducer to provide a baseline signal representative of the electronic signal when no vibration is present; and a comparator for subtracting said baseline signal from said direct voltage signal to generate a compensated signal.
30. An apparatus as claimed in
31. An apparatus as claimed in
32. An apparatus as claimed in
33. An apparatus as claimed in
34. An apparatus as claimed in
35. An apparatus as claimed in
36. An apparatus as claimed in
37. An apparatus as claimed in
38. An apparatus as claimed in
40. A method as claimed in
41. A method as claimed in
comparing the electronic signal to a defined threshold level; and verifying the level of the electronic signal is greater than the defined threshold level for the first defined period of time.
42. A method as claimed in
comparing the electronic signal to a defined threshold level; and verifying the electronic signal level is less than the defined threshold level for the second defined period of time.
43. A method as claimed in
44. A method as claimed in
45. A method as claimed in
46. A method as claimed in
|
This application is a continuation application of U.S. Ser. No. 09/239,114 filed Jan. 28, 1999 now abandoned, which claims priority to U.S. provisional patent application Serial No. 60/072,903 filed Jan. 28, 1998.
1. Field of the Invention
The invention relates to oil field communication with downhole tools. More particularly, the invention relates to a communication/actuation system wherein vibration is the transmission media. Vibrations provide instructions downhole in a reliable manner for communicating such instructions to downhole tools which then activate. The invention is also directed to more general surface-to-downhole and downhole-to-downhole communications.
2. Prior Art
The prior art teaches one of ordinary skill in the art to provide an apparatus at the surface or other location in a wellbore, to generate an acoustic pressure pulse coupled to the fluid (i.e. liquid) in the tubing string. The pulse is carried downhole to a tool having strain sensors therein capable of sensing the pulse or pulses as they reach the sensor. A programmed sequence of pulses will be awaited by the tool prior to actuation. Upon sensing the programmed sequence, the electronics package in the tool signals an actuation of the tool. This system is set forth in more detail in U.S. Pat. Nos. 5,579,283, 5,343,963 and 5,226,494, all of the contents of which are fully incorporated herein by reference.
While the systems(s) disclosed in the referenced patents are very effective in many situations, they fail to be reliable when there is a gas bubble in the fluid column. As one of ordinary skill in the art will appreciate, the acoustic pulse travels well in its host (liquid) medium but suffers significant losses when crossing an interface with another medium as is the case when there is a "bubble" of gas (e.g. Nitrogen) in the tubing string. When this condition is present, little if any of the message from the surface is effectively communicated downhole because the pulse has been so attenuated by the gas bubble(s) that it lacks sufficient magnitude to be sensed by the strain gauges on the downhole tool. This is, of course, if indeed any portion of the pulse reaches the strain gauges at all. This has been problematic in some wells and therefore needs a remedy. What is needed is a communication means for operating downhole tools that is unmitigated by the type of fluid or hardware through or around which it propagates.
The above-discussed and other drawbacks and deficiencies of the prior art are overcome or alleviated by the remote actuation/communication system of the invention. The invention provides reliable communication to downhole tools by employing vibration initiators and vibration receivers. The vibrations are created generally at the surface by either an acoustic pulse machine like that disclosed in the prior art listed above or by operating a pump or other machinery. The vibrations are coupled to the well annulus by a hose connected to the vibration generating device and to the well fluid. The hose generally is filled with water but could be filled with another liquid as desired. The liquid in the hose conveys the vibration from the vibration generating machine and transmits the vibration to the well fluid. The vibrations are then propagated downhole naturally in the liquid of the wellbore or in the tubing string. Where an acoustic pulse is employed, it travels down fluid in the annulus of the well in much the same way it travels in the tubing fluid in the prior art. An astute reader will recognize two apparent problems: one is that there may be gas in the annulus which presumptively would create the problem associated with the prior art and two that there may be packers or other hardware located in the annulus that would defeat propagation of the pulse. If strain gauges were used in the invention and waited for a pressure pulse, the concerns set forth would nearly certainly be wrought out but because the invention employs accelerometers to sense vibrations as opposed to pressure pulses, the message is receivable by the downhole tool intended to receive the signal. More specifically, although the pressure pulse would be lost (in a gas bubble) or reflected (e.g. by a packer) the vibration associated with the pulse is coupled to the pipe itself and is propagated through any pulse attenuating areas that would stop or reflect a pressure pulse because the tubing string is continuous. By employing high frequency or high band width accelerometer(s) in vibratory communication with the propagation medium and in electrical communication with a downhole microcontroller-based vibration receiving system, it is possible to reliably provide information to the downhole tool. The microcontroller in a downhole tool will be programmed to await a certain series of signals from the accelerometer and then actuate the tool. By creating pulses with a vibration source, the vibrations associated therewith are sent downhole and sensed by the accelerometer. Similarly, if the vibrations are caused by other machinery they are still received by the accelerometer, which provides a signal to the microcontroller for each vibration event sensed. Alternatively, and more economically, due to the avoidance of the need for the pulse apparatus or other specialized equipment, the rig pump, which, as is appreciated, is already on the rig, may be employed to create the vibrations.
Vibration is inherent in the pipe when fluid is circulated by the rig pump. Therefore, if the pump is turned on and off a number of times and for certain amounts of time to match a programmed vibration sequence in the downhole tool, the accelerometers will pick up the vibration and the tool will actuate. This is a particularly important alternative for smaller drilling companies due to the expense of renting and transporting the pulse apparatus and paying for the technician to run the rented equipment.
Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:
Referring to
The downhole tools to be actuated by the remote actuation system of the invention employ at least one accelerometer which will measure acceleration, or in other words sense vibration, in one direction. In this case the accelerometer should be oriented to measure acceleration in the axial direction of the tubing. The preference for an axial accelerometer is that this is the direction of most of the vibration. While a single accelerometer will function well, it is advantageous to use at least two accelerometers to track vibration in two axes (i.e X and Y) which are preferably in the axis of the tubing and transverse to the tubing respectively, to increase the sensitivity of the system. In a preferred embodiment at least two, as discussed, or even three accelerometers X, Y and Z might be employed to render the tool more sensitive to vibration. Since filters are employed in the microcontroller discussed hereunder, the extra sensitivity of the additional accelerometers does not negatively affect precision of the system. The filters allow the microcontroller to "hear" only the correct vibrations. Referring to
Referring to
As shown schematically in
The accelerometer 48 provides an ac voltage output signal as shown in
Capacitors 62-66 and resistors 68, 70 are interconnected to integrated circuit 56 in a known arrangement for filtering and properly scaling the output dc voltage at port 60. The output dc voltage at port 60 of integrated circuit 56 is provided to the positive terminal 70 of comparator 72. The output signal of the accelerator 48 is also provided to the negative terminal 74 of comparator 72 through capacitor 76 and resistor 78 connected in series. Capacitor 80 and resistor 82 are connected in parallel between the negative terminal 74 of comparator 72 and ground 84. The RC networks filter the accelerator output signal to provide a baseline signal of the accelerator output signal to comparator 72. The comparator 72 provides a dc output voltage representative of the accelerator output signal minus the baseline voltage at terminal 86. The dc output voltage at 86 is provided to the positive terminal 88 of the operational amplifier 90. The negative terminal 92 of amplifier 90 is connected to ground 84 through resistor 94 and is connected to its output terminal 96 through feedback resistor 98. Operational amplifier 90 amplifies the dc voltage signal at 86 to a suitable voltage to be received by the microcontroller 30 at port 52.
Referring to
The +6 volt battery pack 46 is connected to a +5 volt dc regulator 110 which converts the +6 volt power to a regulated +5 volt for powering the electronics of circuit board 32.
The vibration receiving system 28 also includes a circuit 112 for monitoring the output voltage of the battery pack 46 to determine whether the battery pack is sufficiently charged. The voltage monitoring circuit 112 generates an output signal representative of the voltage of the battery pack and provides it to input port 114 of the microcontroller 30. In a preferred embodiment, the battery pack 46 is preferably a flex battery pack commercially available from Baker Oil Tools, Houston, Tex., and covered by U.S. Pat. No. 5,516,603, the entire contents of which are incorporated herein by reference. The battery pack preferably employs nine cells. Two of the nine cells are reserved for the microcontroller 30 while the other seven cells power both the remaining components of the circuit board 32 and the nichrome element 34. The two reserved cells prevent current drop in the microcontroller 30 during powering of the nichrome element 34 which might otherwise reset the microcontroller.
EPROM 38 provides non-volatile memory for storing parameters used by the algorithm controlling the energization of the FET switches. The EEPROM may also be used to store the computer software therein.
As described hereinafter in greater detail, the vibration receiving system 28 may be armed (powered up) at the surface of the well prior to lowering the tool 24 into the well. In an alternative, the receiving system may be armed within the wellhole at a predetermined depth. This delaying in powering the receiving system 28 aids to conserve the power of the battery pack 46. A temperature sensor 115 provides a signal to the microcontroller 30 representative of the temperature of the wellhole. The microcontroller is programmed to arm the receiving system when the temperature of the hole reaches a predetermined value.
The microcontroller 30 is programmable at the drill site using a laptop computer 116. The laptop computer communicates through a computer interface 117 that provides a standard RS232 interface to port 118 of the microcontroller 30. To conserve on-board battery power, the laptop computer 116 provides external power to energize the electronics on the circuit board while programming the microcontroller. The tool must be disassembled to provide access to the RS232 interface for interconnecting the laptop computer to the microcontroller. Once the tool 24 is assembled, communication with the microcontroller 30 is available only through a single prong terminal interface, such as a Kemlon connector, which allows an electrical connection of a handheld terminal 122 to the microcontroller. A handheld interface 120 is designed to communicate with the handheld terminal, which is a dumb terminal, via the RS232 serial port. The parameters for the serial interface is 2400 baud, 8 bits, 1 stop bit and no hardware or software handshake.
The handheld terminal 122 is used to select the necessary parameters for defining the proper vibration sequence required to command the microcontroller 30 to energize the nichrome element 34. When the vibration receiving system 28 is successfully powered up, the handheld terminal 122 will display a main menu 124 shown in FIG. 5. The main menu serves two purposes. First, it shows the current parameter settings. Second, it allows an opportunity to change the settings, arm the tool 24, save the current settings and obtain an abbreviated help screen. This is done by typing a letter A-F that corresponds to the desired setting to be changed. The handheld terminal 122 includes a display screen and alphanumeric keypad (not shown) for entering parameters and commands. The following four parameters that may be stored in memory for use by the pump detection algorithm are the "Pump-On Threshold", the "Pump-On Period", the "Pump-Off Period" and the "Pump Cycle".
Upon power up, the microcontroller 30 reads the parameters stored in the EEPROM 38 and sends the main user menu of FIG. 5 through the RS232 interface to the handheld terminal 122. The current "Pump-On Threshold", the "Pump-On Period", the "Pump-Off Period" and the "Pump Cycle" parameters are displayed. A list of commands are also displayed to the user. Entering of an appropriate command allows the user to enter a new value for a selected parameter. These values are saved in the EEPROM only at the user's request.
When the user enters an "e" or "E"at the command prompt of any menu, the user is prompted to confirm that the user wishes to arm the tool by typing "y" for yes for arming and "n" for no for not arming the tool in submenu 132 of
Furthermore, the handheld terminal 122 may be used to interface with the microcontroller 30 for testing the firmware. Several of the tests involve the use of an integrated circuit (not shown), such as an In Circuit Emulator (ICE). Though this is an intrusive test tool, it provides the most effective method of monitoring firmware performance. One of the tests includes a hardware initialization test that verifies the operation of the hardware initialization function by initializing the microcontroller 30 and other circuit board hardware. The user may also verify the operation of the power on self-test (POST). This function performs a power up self-test of the hardware. It performs an EEPROM write/read test and RAM write/read test. The test results are then stored in the EEPROM 38. The user may also test the applications function of the microcontroller. In addition, the tests verify the operation of the pump detection algorithm by testing that the algorithm functions properly under at least three simulated accelerator output conditions. First, the algorithm is tested wherein the simulated input for a proper pump cycle is provided. Second, a simulated input signal emulating a premature Pump-Off condition after reaching "Pump-On Threshold" is provided. Third, an input condition signal emulating a premature Pump-Off condition during the "Pump-Off Period" is provided.
The flow diagram of
Referring to block 142 of
Initially, the pump state variable is PUMP_IDLE and therefore, control passes to the PUMP_IDLE routine at block 152. If the pump value is less than the "Pump-On Threshold" parameter stored in the EEPROM 38, the microcontroller 30 continues monitoring the accelerator output signal at block 148 until the pump value exceeds the "Pump-On Threshold" parameter (see block 154). When the pump value exceeds the "Pump-On Threshold" parameter in block 154, the microcontroller sets the pump-up-sec variable to zero and changes the pump state variable to PUMP_IDLE2ON in blocks 156 and 158, respectively (also see FIG. 6). The pump-up-sec variable provides the initial count for a timer that times the "Pump-On Period" and "Pump-Off Period".
At block 150, the pump state variable is PUMP_IDLE2ON and therefore, control passes to the PUMP_IDLE2ON routine in block 160. In block 162, the microcontroller 30 continues to monitor its input port 52 for a pump value greater than the "Pump-On Threshold" parameter. If the pump value drops below the "Pump-On Threshold" parameter before the "Pump-On Period" has expired (see block 164), the pump-state variable is reinitialized back to PUMP_IDLE state and the pump-cycle variable back to zero as shown in blocks 166 and 168, respectively. If the pump value remains above the pump threshold, control will continue to flow through the PUMP_IDLE2ON routine until the pump value has remained above the "Pump-On Threshold" parameter for the entire "Pump-On Period". At this time, the pump state is change to PUMP_ON state at block 170, as shown in FIG. 6.
At block 150, the pump state variable is PUMP_ON and therefore, control passes to the PUMP_ON routine in block 172. In block 174, the microcontroller 30 continues to monitor its input port 52 for a pump value less than the "Pump-On Threshold" parameter (see block 174). When the pump value drops below the "Pump-On Threshold" parameter in block 174, the microcontroller 30 sets the pump-up-sec variable to zero and changes the pump state variable to PUMP_ON2OFF in blocks 176 and 178, respectively (see FIG. 6).
At block 150, the pump state variable is PUMP_ON2OFF and therefore, control passes to the PUMP_ON2OFF routine in block 180. In block 182, the microcontroller 30 continues to monitor its input port 52 for a pump value less than the "Pump-On Threshold" parameter. If the pump value increases above the "Pump-On Threshold" parameter before the "Pump-Off Period" has expired (see block 184), the pump-state variable is reinitialized back to PUMP_IDLE state and the pump-cycle variable back to zero as shown in blocks 166 and 168, respectively. If the pump value remains below the "Pump-On Threshold" parameter, control will continue to flow through the PUMP_ON2OFF routine until the pump value has remained below the "Pump-Off Threshold" parameter for the entire "Pump-Off Period". At this time, the pump state is change to PUMP_IDLE state at block 186 and the pump-cycle variable is incremented by 1 at block 188.
The microcontroller 30 will continue to cycle through each of the four routines to complete each "on-off" cycle until the pump-cycle variable is equal to the number of "Pump Cycles" stored in the EEPROM 38. When the correct number of pump cycles is completed (see block 146), the microcontroller 30 generates a pair of signals to energize the FET switches 40 to connect the battery pack 46 across the nichrome element 34 as shown in FIG. 3. The pump detection algorithm 140 then ends.
The vibration receiver system 28 of the invention is contained mostly within an atmospheric chamber in the downhole tool 24, the accelerometer 48 being located preferably in a hole drilled in the external surface of the tool and retained therein preferably with epoxy. For each axis accelerometer, an additional hole in the tool would be provided. It is possible, however, to have each of the axes to be sensed contained in a single package and therefore mountable in a single hole in the tool.
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.
Tubel, Paulo S., Bergeron, Clark, Griffin, Clarence V.
Patent | Priority | Assignee | Title |
10041335, | Mar 07 2008 | Wells Fargo Bank, National Association | Switching device for, and a method of switching, a downhole tool |
10060256, | Nov 17 2015 | BAKER HUGHES, A GE COMPANY, LLC | Communication system for sequential liner hanger setting, release from a running tool and setting a liner top packer |
10262168, | May 09 2007 | Wells Fargo Bank, National Association | Antenna for use in a downhole tubular |
10605024, | Nov 10 2017 | BAKER HUGHES, A GE COMPANY, LLC | System using flow vibration detection and method |
6987463, | Feb 19 1999 | Halliburton Energy Services, Inc | Method for collecting geological data from a well bore using casing mounted sensors |
7123160, | Aug 13 2003 | Intelliserv, LLC | Method for triggering an action |
7173542, | Feb 19 1999 | Halliburton Energy Services, Inc | Data relay for casing mounted sensors, actuators and generators |
7932834, | Feb 19 1999 | Halliburton Energy Services. Inc. | Data relay system for instrument and controller attached to a drill string |
8813857, | Feb 17 2011 | BAKER HUGHES HOLDINGS LLC | Annulus mounted potential energy driven setting tool |
8827238, | Dec 04 2008 | Wells Fargo Bank, National Association | Flow control device |
8833469, | Oct 19 2007 | Wells Fargo Bank, National Association | Method of and apparatus for completing a well |
8881798, | Jul 20 2011 | BAKER HUGHES HOLDINGS LLC | Remote manipulation and control of subterranean tools |
9085954, | Oct 19 2007 | Wells Fargo Bank, National Association | Method of and apparatus for completing a well |
9103197, | Mar 07 2008 | Wells Fargo Bank, National Association | Switching device for, and a method of switching, a downhole tool |
9115573, | Nov 12 2004 | Wells Fargo Bank, National Association | Remote actuation of a downhole tool |
9359890, | Oct 19 2007 | Wells Fargo Bank, National Association | Method of and apparatus for completing a well |
9488028, | Feb 17 2011 | BAKER HUGHES HOLDINGS LLC | Annulus mounted potential energy driven setting tool |
9488046, | Aug 21 2009 | Wells Fargo Bank, National Association | Apparatus and method for downhole communication |
9631458, | Mar 07 2008 | Wells Fargo Bank, National Association | Switching device for, and a method of switching, a downhole tool |
9850725, | Apr 15 2015 | BAKER HUGHES, A GE COMPANY, LLC | One trip interventionless liner hanger and packer setting apparatus and method |
Patent | Priority | Assignee | Title |
4216536, | Oct 10 1978 | Exploration Logging, Inc. | Transmitting well logging data |
5373481, | Jan 21 1992 | Sonic vibration telemetering system | |
5414673, | Apr 21 1992 | Sonic measurement while drilling | |
5425002, | Dec 14 1992 | Siemens Aktiengesellschaft | Acoustic pressure pulse generator |
5489354, | May 15 1995 | Auto windshield installation method | |
5675325, | Oct 20 1995 | Japan National Oil Corporation; Mitsubishi Denki Kabushiki Kaisha | Information transmitting apparatus using tube body |
5740126, | Aug 25 1994 | Halliburton Energy Services, Inc. | Turbo siren signal generator for measurement while drilling systems |
5787052, | Jun 07 1995 | Halliburton Energy Services, Inc | Snap action rotary pulser |
5995449, | Oct 20 1995 | Baker Hughes Incorporated | Method and apparatus for improved communication in a wellbore utilizing acoustic signals |
6021095, | Jul 09 1990 | Baker Hughes Inc. | Method and apparatus for remote control of wellbore end devices |
EP552833, | |||
GB2288834, | |||
GB2303722, | |||
GB2321076, | |||
WO9714869, | |||
WO9601819, | |||
WO9616670, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 15 2001 | TUBEL, PAULO S | Baker Hughes Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012497 | /0042 | |
May 15 2001 | GRIFFIN, CLARENCE V | Baker Hughes Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012497 | /0042 | |
Jul 15 2001 | TUBEL, PAULO S | Baker Hughes Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013353 | /0937 | |
Jan 09 2002 | Baker Hughes Incorporated | (assignment on the face of the patent) | / | |||
Sep 19 2002 | BERGERON, CLARK | Baker Hughes Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013353 | /0937 |
Date | Maintenance Fee Events |
Mar 14 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 02 2011 | REM: Maintenance Fee Reminder Mailed. |
Sep 23 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 23 2006 | 4 years fee payment window open |
Mar 23 2007 | 6 months grace period start (w surcharge) |
Sep 23 2007 | patent expiry (for year 4) |
Sep 23 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 23 2010 | 8 years fee payment window open |
Mar 23 2011 | 6 months grace period start (w surcharge) |
Sep 23 2011 | patent expiry (for year 8) |
Sep 23 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 23 2014 | 12 years fee payment window open |
Mar 23 2015 | 6 months grace period start (w surcharge) |
Sep 23 2015 | patent expiry (for year 12) |
Sep 23 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |