An optical network element uses steerable mirrors in an optical switch to couple optical inputs and optical outputs. An optical switch has at least one array of the steerable mirrors, which can be oriented so as to reflect an optical signal between an input and an output. A shorter optical path between the input and the output reduces optical losses because optical losses in an optical switch using mirrors are directly proportional to the total length of the optical path. Reducing the optical path depends upon the switching tilt angle used in steering the mirrors. But tilting the micro-mirrors near their critical tilt angle or repeatedly across large tilt angles will degrade reliability or control. However, the total optical path can be shortened and the reliability of steerable mirrors can be maintained or increased if at least some of the micro-mirrors in an array are offset angled.
|
1. An optical switch comprising:
a plurality of optical inputs; a plurality of optical outputs; an optical switching mechanism for selectively coupling input optical signals from the plurality of optical inputs to the plurality of optical outputs, the optical switching mechanism including an array of at least two steerable mirrors, wherein at least one of the steerable mirrors has an offset angle greater than zero degrees, and said array of mirrors is a nonplanar array and said offset angle comprises a geometric offset angle.
8. An optical switch comprising:
a plurality of optical inputs; a plurality of optical outputs; an optical switching mechanism for selectively coupling input optical signals from the plurality of optical inputs to the plurality of optical outputs, the optical switching mechanism including an array of at least two steerable mirrors on a substrate; and control electrodes on the substrate for steering the mirrors, wherein static DC potentials are applied to the control electrodes of a mirror and subsequent control signals for steering the micro-mirror are superimposed on the static DC potential.
7. A method of switching optical signals, comprising the acts of:
receiving optical signals via a plurality of inputs; inputting the received optical signals into an optical switch; switching the received optical signals within the optical switch using at least two mirror arrays; and outputting the received optical signals from the optical switch to output optical fibers, wherein at least one of the mirrors in the arrays has an offset angle greater than zero prior to inputting the received optical signals wherein the offset angle comprises an electrical offset angle and the electrical offset angle is achieved by applying static DC potentials to control electrodes of a mirror and subsequent control signals for steering the mirror are superimposed on the static DC potential.
2. The optical switch according to
3. The optical switch according to
4. The optical switch according to
5. The optical switch according to
6. The optical switch according to
9. The optical switch according to
10. The optical switch according to
|
1. Field of the Invention
The present invention relates to an optical fiber based communications network, and more particularly to an optical switch arrangement that provides reduced optical losses and reliable switching.
2. Discussion of the Related Art
In recent years, Internet usage and other computer communications modes have become widespread. Moreover, audio and video applications that are becoming increasingly popular require large amounts of information (bandwidth) to be transferred. As a result, demands on the bandwidth supported by communications systems have skyrocketed. Optical communication systems have become increasingly important to fulfill such needs.
Such optical communications systems are capable of rapidly transferring large volumes of information by converting electrical signals into light signals and transmitting the light through optical fibers. The optical fibers form a network of optical paths between different geographic locations (e.g., different metropolitan areas). To route the information between the different locations, the information is switched between different optical paths. Conventionally, the information is switched by converting the optical signals into electrical signals, switching the electrical signals, reconverting the electrical signals to optical signals and re-transmitting the optical signals onto the desired optical path.
With advances in optical communications technology, optical switches (such as micro-mirror switches) are being developed to provide large switching fabrics that operate in the optical domain and can switch more information faster than electrical switches. A common problem of micro-mirror switches, as well as other optical switches, is achieving efficient coupling between the inputted and outputted optical signals with the switch fabric.
Input and output coupling may be achieved by aligning an optical fiber and a collimating lens at both the inputs and the outputs to be focused on an array or arrays of mirrors. For example, large port count cross-connect micro-mirror switches might have a considerable optical path between a given input and output (more than 10 cm but in most cases less than 50 cm). In order to reduce losses between inputs and outputs, the optical path between inputs and outputs should be reduced to maintain sufficiently narrow beam widths for the optical widths of all the optical elements. However, as the distance between inputs and outputs decreases, the range of angles over which the micro-mirrors have to move in order to switch inputs to outputs increases. Micro-mirrors typically should not be repeatedly tilted to or near an angle that causes damage to the micro-mirrors or switching reliability may suffer.
Moreover, applications involving long distance optical paths at high bit rates (>Gbs) require the use of optical fibers requiring having tight fabrication tolerances to avoid optical loss if strict angular tolerances (within 0.01 degrees) are not achieved. In addition, such optical fibers have a small core diameter and a small numerical aperture. The small numerical aperture implies that the cone of light that can be accepted by the optical fiber is narrow. Hence, for reasons such as these, through-put is easily decreased if the light is not properly focused or if the light is diminished in intensity, thereby potentially causing signal loss or signal deterioration.
To successfully operate optical switches using mirrors, the mirrors must be precisely aligned and the distance between mirrors reflecting a beam to connect optical links should be minimized. If the angular position of the mirrors are off and/or if the mirrors are too far apart, some or all of the light from the input will not reach the selected output. There remains a need in the art for an optical switch having a compact and reliable arrangement of steerable mirrors.
Accordingly, the present invention is directed to an optical switch that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
An objective of the present invention is to provide precise optical switching having reliable angular responsiveness by minimizing a mirror's range of movement near a critical tilt angle of the mirror.
Another objective of the present invention is to maintain precision optical switching by preventing a mirror from tilting to an angle that is near the mirror's critical tilt angle.
Another objective of the present invention is to reduce optical losses by shortening the distance between the inputs and the outputs of an optical switch.
Another objective of the present invention is to provide both reliable and precise control in optical switching using mirrors.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, an optically switched network element comprises a plurality of optical inputs; a plurality of optical outputs; an optical switching mechanism for selectively coupling input optical signals from the plurality of optical inputs to said plurality of optical outputs, said optical switching mechanism including an array of at least two steerable mirrors, wherein at least one of the steerable mirrors has an offset angle.
In another aspect, a method of switching optical signals by inputting the received optical signals into an optical switch; switching the received optical signals within the optical switch using at least two mirror arrays; and outputting the received optical signals from the optical switch to output optical fibers, wherein at least one of the mirrors in the arrays having an offset angle greater than zero prior to inputting the received optical signals.
Another aspect is an optical switch having a plurality of inputs emitting input beams within an optical switch; a plurality of outputs receiving output beams emitted from the optical switch; and an optical switching mechanism for selectively coupling input beams from the plurality of inputs to the plurality of outputs as output beams, the optical switching mechanism comprising at least two arrays of steerable mirrors, wherein at least one of the steerable mirrors has an offset angle greater than zero degrees.
Another aspect is an optical switch having a plurality of optical inputs; a plurality of optical outputs; an optical switching mechanism for selectively coupling input optical signals from the plurality of optical inputs to the plurality of optical outputs, the optical switching mechanism including an array of at least two steerable mirrors on a substrate; and control electrodes on the substrate for steering the mirrors, and static DC potentials are applied to the control electrodes of a mirror and subsequent control signals for steering the mirror are superimposed on the static DC potential.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The present invention is particularly useful in optical switches for optical telecommunications network systems that carry optical communications signals, such as wavelength division multiplexed (WDM) signals, over optical fibers.
In general, the optical network elements 2 communicate information signals to other optical network elements through the optical links 3. The optical network elements 2 may include optical cross-connects, add-drop multiplexers, or other switching equipment to allow the signals carried on the optical links 3 to be transmitted through the network elements 2, as necessary, from source to destination. In addition, and not shown in
The optical switch 10 switches optical signals from a plurality of input optical fibers 20-1 to 20-j (collectively "input optical fibers 20") to selected output fibers 25-1 to 25-j (collectively "output optical fibers 25"). The input optical fibers 20 and output optical fibers 25 may be arranged in any way, for example a k x j/k rectangular array, such as a square array. The present invention is not limited by the types of optical signals carried by the input optical fibers 20 and output optical fibers 25. Each optical input fiber 20 may carry WDM signals, a single wavelength optical signal that was demultiplexed from a WDM signal by a wavelength division demultiplexer, or other types of optical signals, such as CATV signals. Similarly, each optical output fiber 25 may carry WDM signals, single wavelength optical signal to be multiplexed with other optical signals by a wavelength division multiplexer, or other types of optical signals. The optical signals typically carry information and may have wavelengths of about 1300-1500 nm, for example. While
The input optical fibers 20 carry optical signals that are supplied, respectively, to a lens arrangement 30. The lens arrangement 30 may include a plurality of micro-lenses 32 arranged in an array. The micro-lenses 32 are preferably arranged so that each input optical fiber 20 is aligned with a micro-lens 32. Alternatively, microlenses 32 may be integrated with the ends of the input optical fibers 20. In this way, optical signals emitted from an input fiber 20 will pass through one of the micro-lenses 32. The micro-lenses 32 direct optical beams from the input optical fibers 20 to a first arrangement of mirrors 100-1, which will be described in greater detail below.
Although the preferred embodiments of the invention uses steerable micro-mirrors, objectives of the invention can be achieved using other types of mirrors and/or arrays of mirrors. The first mirror arrangement 100-1 includes a plurality of steerable micro-mirrors 122. The micro-mirrors 122 may be arranged in a planar array or nonplanar array. Each input optical fiber 30 corresponds to one micro-lens 32 of the first lens arrangement 30 and one micro-mirror 122 of the first micro-mirror arrangement 100-1. Using the micro-mirrors 122 and responsive to control signals, the first micro-mirror array 100-1 couples the optical beams from the lens array 30 to selected movable micro-mirrors 122 of a second array of micro-mirrors 100-2. The second micro-mirror array 100-2 includes micro-mirrors 122 that may be arranged on a planar or nonplanar substrate. The second micro-mirror array 100-2 need not match the first micro-mirror array 100-1 in terms of being a planar array, a nonplanar array, the number of mirrors, the shape of the mirrors or the size of the mirrors.
Each micro-mirror 122 of the first array 100-1 is preferably movable to permit an input beam to be reflected by the micro-mirror 122 to any micro-mirror 122 of the second array 100-2. The micro-mirrors 122 of the second array 100-2, also responsive to control signals, receives and couples the optical beams through a second lens array 35 to output fibers 25. The second lens array 35 includes micro-lenses 32, which may be arranged in an array, aligned with output optical fibers 25. Alternatively, microlenses 32 may be integrated with the ends of the output optical fibers 25. Micro-lenses 32 direct the optical beams into output optical fibers 25. Accordingly, optical signals carried on input optical fibers 20 may be selectively coupled to output optical fibers 25. The micro-mirror arrays 100-1 and 100-2 can be controlled to redirect or switch the coupling of optical signals. For example, as shown in
While
As shown in
The micro-mirror arrangement 100 may be formed using MEMS technology. The arrangement 100 includes a planar substrate 150, which may be formed, for example, of single crystalline silicon on which a plurality of micro-mirrors 122 are formed in an array. More particularly, the planar substrate 150 includes a plurality of micro-mirrors 122 and corresponding mirror mounts 124 for mounting the micro-mirrors 122. The micro-mirrors 122 may be formed with a gold coating, for example, to provide a reflective surface. Each micro-mirror 122 and corresponding mirror mount 124 form a movable micro-mirror unit 120.
In particular, the mirror mount 124 includes a mounting arm 125 coupled to the remainder of the planar substrate 110 by pivot arms 126-1, 126-2 and coupled to the micro-mirror 122 by pivot arms 127-1, 127-2. Pivot arms 126-1 and 126-2 enable the mounting arm 125, and thus the micro-mirror 122, to pivot with respect to the planar substrate 300 about a first axis 126. Pivot arms 127-1 and 127-2 enable the micro-mirror 122 to pivot with respect to the mounting arm 125 about a second axis 127, which is orthogonal to the first axis 126. The pivot arms can be silicon serpentine springs as well as other elastic devices. The pivoting action is caused by electrostatic or electromagnetic forces on the mirror 122 from electrodes on the substrate. As shown in
As shown in
An appropriate static DC potential to each of the control electrodes of a micro-mirror can tilt the micro-mirror to a predetermined tilt angle position. The static DC potential can be applied by a controller that specifically controls the predetermined tilt angle, as well as, the height of the micro-mirrors. Subsequent control signals for steering the micro-mirror can then be superimposed on the static DC potential for steering the mirror from the predetermined tilt angle position. However, a single controller with logic circuits can be used that initially directs the mirror with a predetermined tilt angle and/or height. From the predetermined tilt angle, the single controller adjusts the mirror with the appropriate DC biases for moving the micro-mirror and maintaining the a certain height if required.
The single gimbal mechanism, which has two sets of pivot arms as shown in
The switching tilt angle θ of a micro-mirror system is the largest angle that any single micro-mirror moves from an initial position in which no electrical control signals are applied to the mirror. The switching tilt angle θ of a micro-mirror system generally should not be greater than the critical tilt angle of any micro-mirror in the system. The reliability of a micro-mirror system may be improved with every degree that the switching tilt angle θ of a micro-mirror system is reduced below the critical tilt angle of the micro-mirrors in the system. Another reliability, as well as, precision enhancement is to limit the overall amount of micro-mirror travel Ω in terms of the angle that micro-mirror travels while switching. Of course, the angle of the overall amount of mirror travel Ω is no greater than twice the switching tilt angle θ.
For explanation purposes,
As shown in
Any subsequent signals applied to the electrodes 1701-170d to control the electrical offset angled Φe micro-mirror at position B in the first array 100-1 for switching purposes are superimposed on the static DC bias already applied to the control electrodes 170a-170d. As result of the electrical offset angle Φex, the micro-mirror at position B of the first array 100-1 will have an angle of micro-mirror travel Ωex no greater than θx/ 2. Therefore, there is less overall movement of the micro-mirrors in terms of the angle subtended by the micro-mirror when the micro-mirror moves from an electrical offset angle Φe that initially aims a micro-mirror toward the center of the other micro-mirror array in which it interacts.
Micro-mirrors having smaller angles of micro-mirror travel Ω, as result of an electrical offset angle Φe, allow for the micro-mirrors to be moved more precisely and reduces the need for dampening. Although
As per the discussion with regard to
Another embodiment of the invention for reducing optical losses and mirror travel in an optical switch is shown in FIG. 9. The micro-mirrors 122 of nonplanar arrays 101-1 and 101-2 are geometric offset angled Φxg by forming both of the micro-mirror arrays in a nonplanar manner so as to aim the micro-mirrors of one array more toward the center of the other array. As shown in the embodiment of
Assuming that each micro-mirror 122 of a first geometric offset angled array 101-1 is capable of directing an input beam to any micro-mirror 122 of a second geometric offset angled array 101-2,
Given that all micro-mirrors on both arrays have to interact with one another, the effective switching angle δ of the system is equivalent to the micro-mirror's switching tilt angle θx plus the geometric offset angle Φxg as shown in
Therefore, by using a geometric offset angle Φg, an optical switch using micro-mirrors can have an increased effective switching tilt angle δ that is greater than the switching tilt angle θ used in the micro-mirrors arrays. An increased switching tilt angle θ can allow for shorter distances between arrays and can also allow for a further reduction of the switching tilt angle θ of the system below the critical tilt angle of the micro-mirrors to increase the reliability of the optical switching system. Furthermore, the geometric offset angle Φg may provide a reduction in the amount of micro-mirror travel Ω in terms of the angle that micro-mirror travels for switching, which further enhances the precision of control and reduces the need for dampening.
The geometric offset angle embodiment shown in
As shown in the plan view of another embodiment of the invention in
The arrays with a geometric offset angle can be formed, for example, on a single substrate, on bonded substrates or on several substrates attached to a mount. For example, each segment 101a and 101b of the array shown in
Although the optical switching system shown in
As shown in
Another exemplary embodiment of the invention, as shown in
As shown in
The increased switching tilt angle θ and increased height capability of a double gimbal movement mechanism increases the flexibility of using an electrical offset angle in a micro-mirror arrays to reduce the distance L, as discussed with regard to FIG. 6.
In particular, the array 106 in
It will be apparent to those skilled in the art that various modifications and variations can be made in the optical switch of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Brener, Igal, Bonadeo, Nicolas H.
Patent | Priority | Assignee | Title |
11163152, | Aug 02 2017 | United States of America as represented by the Secretary of the Air Force; GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE | MEMS electrothermal actuator for large angle beamsteering |
11535511, | Aug 02 2017 | United States of America as represented by the Secretary of the Air Force | Post-processing techniques on mems foundry fabricated devices for large angle beamsteering |
6914710, | May 24 2000 | COSTELLA KIRSCH V, LP | Multi-axis micro-electro-mechanical actuator |
6950570, | Aug 13 2002 | Lumentum Technology UK Limited | Integrated fiber, sensor and lens arrays for optical networks |
6970616, | Mar 18 2001 | Cisco Technology, Inc | Optical cross-connect assembly |
7054519, | Mar 10 2003 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Reconfigurable optical add drop multiplexers with integrated power equalization |
7058253, | Aug 13 2002 | LUMENTUM OPTICS INC | Integrated fiber, sensor and lens arrays and their applications for optical networks |
7197225, | May 06 2003 | Rosemount Inc. | Variable optical attenuator |
7450812, | May 06 2003 | Rosemount Inc.; Rosemount Inc | Compensated variable optical attenuator |
7642628, | Jan 11 2005 | Rosemount Inc. | MEMS packaging with improved reaction to temperature changes |
8023580, | Dec 05 1997 | REMBRANDT WIRELESS TECHNOLOGIES, LP | System and method of communication using at least two modulation methods |
8457228, | Dec 05 1997 | REMBRANDT WIRELESS TECHNOLOGIES, LP | System and method of communication using at least two modulation methods |
9432172, | Dec 05 1997 | REMBRANDT WIRELESS TECHNOLOGIES, LP | System and method of communication using at least two modulation methods |
9664896, | Mar 13 2014 | GOOGLE LLC | Pre-tilted MEMS mirrors |
Patent | Priority | Assignee | Title |
6374007, | Apr 14 2000 | C Speed Corporation | Double hermetic package for fiber optic cross connect |
6411751, | Oct 08 1999 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | System and method for training an optical cross-connect comprising steerable switching elements |
6466711, | Jun 05 1998 | Lumentum Operations LLC | Planar array optical switch and method |
6483962, | May 24 2000 | Optical cross connect switching array system with optical feedback | |
20020164112, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 09 2001 | BONADEO, NICOLAS | Tellium, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011450 | /0831 | |
Jan 09 2001 | BRENER, IGAL | Tellium, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011450 | /0831 | |
Jan 11 2001 | Tellium, Inc. | (assignment on the face of the patent) | / | |||
Nov 13 2003 | Tellium, INC | ZHONE TECHNOLOGIES, INC | MERGER SEE DOCUMENT FOR DETAILS | 017262 | /0486 | |
Jun 09 2006 | ZHONE TECHNOLOGIES, INC | Rembrandt IP Management, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018015 | /0826 | |
Jun 09 2006 | Paradyne Corporation | Rembrandt IP Management, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018015 | /0826 | |
Aug 09 2006 | ZHONE TECHNOLOGIES, INC | Rembrandt Communications, LP | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 018015 FRAME 0826 ASSIGNOR S HEREBY CONFIRMS THE CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE FROM REMBRANDT IP MANAGEMENT, LLC TO REMBRANDT COMMUNICATIONS, LP | 018160 | /0082 | |
Aug 09 2006 | Paradyne Corporation | Rembrandt Communications, LP | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 018015 FRAME 0826 ASSIGNOR S HEREBY CONFIRMS THE CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE FROM REMBRANDT IP MANAGEMENT, LLC TO REMBRANDT COMMUNICATIONS, LP | 018160 | /0082 | |
Aug 09 2006 | Rembrandt IP Management, LLC | Rembrandt Communications, LP | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 018015 FRAME 0826 ASSIGNOR S HEREBY CONFIRMS THE CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE FROM REMBRANDT IP MANAGEMENT, LLC TO REMBRANDT COMMUNICATIONS, LP | 018160 | /0082 |
Date | Maintenance Fee Events |
Nov 28 2005 | ASPN: Payor Number Assigned. |
Mar 08 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 14 2007 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
May 09 2011 | REM: Maintenance Fee Reminder Mailed. |
Sep 30 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 30 2006 | 4 years fee payment window open |
Mar 30 2007 | 6 months grace period start (w surcharge) |
Sep 30 2007 | patent expiry (for year 4) |
Sep 30 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 30 2010 | 8 years fee payment window open |
Mar 30 2011 | 6 months grace period start (w surcharge) |
Sep 30 2011 | patent expiry (for year 8) |
Sep 30 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 30 2014 | 12 years fee payment window open |
Mar 30 2015 | 6 months grace period start (w surcharge) |
Sep 30 2015 | patent expiry (for year 12) |
Sep 30 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |