A fluid circulator made up of an admission orifice, a pump body and a delivery orifice, the pump body having two rigid walls defining therebetween a circulation space for fluid circulation from the admission to the delivery orifice. A deformable membrane is maintained under tension in the circulation space parallel to the circulation direction and has one edge located near the admission orifice for coupling to a motor generating a periodic excitation force, the circulation space having a cross section perpendicular to the circulation direction which has a size measured along the periodic force direction progressively decreasing from the admission to the delivery orifice.
|
1. A membrane fluid circulator comprising an internal hydraulic circuit made up in succession of an admission orifice, a pump body and a delivery orifice, the pump body having two rigid walls defining there between a pumping chamber for the fluid extending from said admission orifice to said delivery orifice with a deformable membrane located in said pumping chamber and having two external surfaces facing respectively said walls, at least one of said membrane surfaces and at least one of said walls defining in said pumping chamber a circulation space for the fluid, said deformable membrane being maintained under a tension parallel to the fluid circulation direction from said admission orifice to said delivery orifice, said membrane having one edge located near said admission orifice and provided with means for coupling to motor means for generating a periodic excitation force substantially normal to the external faces of said membrane, said circulation space having a cross section perpendicular to the circulation fluid direction which has a size measured along the periodic force direction progressively decreasing from said admission orifice to said delivery orifice.
2. A circulator according to
3. A circulator according to
4. A circulator according to
5. A circulator according to
6. A circulator according to
|
This is a continuation in part of application Ser. No. 09/745,405 filed on Dec. 26, 2000 which is a continuation application of application Ser. No. 09/117,982 filed Aug. 11, 1998, now abandoned.
The present invention relates to a vibrating membrane fluid circulator.
Numerous types of pump are known both in industrial and in biomedical fields. The following can be mentioned:
reciprocating positive displacement pumps whose main elements are pistons or membranes associated with admission and delivery valves. Their main drawback lies in the cyclical aspect of their motion and in the presence of the valves;
so-called "peristaltic" positive displacement pumps in which continuously moving wheels deform and compress a flexible tubular pump body. The compression can be damaging for certain liquids to be pumped that include sensitive elements (e.g. blood);
"impeller" pumps such as centrifugal pumps based on a vaned rotor or a vortex. Their drawback lies in the high speed of rotation which generates shear in the fluid streams, friction, and cavitation, all of which phenomena can be damaging to fragile fluids; and
axial turbine pumps in which fragile fluids suffer likewise from the same drawbacks as in the preceding pumps.
Also known is a vibrating-membrane fluid propulsion device, as described in document FR-A-2 650 862. That device provides a technical solution which is not always suitable for obtaining the hydraulic performance required by most industrial and biomedical applications,
The vibrating membrane fluid circulator of the invention proposes solutions whereby the fields of application of the circulator are enlarged, the hydraulic performance thereof is improved, the circulator is more compact, and finally the pump body can he for a single use only, which is advantageous in the biomedical field.
To this end, the fluid circulator of the invention comprises an internal hydraulic circuit made up in succession of an admission orifice, a pump body and a delivery orifice, the pump body having two rigid walls defining therebetween a pumping chamber for the fluid extending from said admission orifice to said delivery orifice with a deformable membrane located in said pumping chamber and having two external surfaces facing respectively said walls, at least one of said membrane surfaces and at least one said walls defining in said pumping chamber a circulation space for the fluid, said deformable membrane being maintained under a tension parallel to the fluid circulation direction from said admission orifice to said delivery orifice, said membrane having one edge located near said admission orifice and provided with means for coupling to a motor member generating a periodic excitation force substantially normal to the external faces of said membrane, said circulation space having a cross section perpendicular to the fluid circulation direction the size of which measured in the periodic force direction being progressively decreasing from said admission orifice to said delivery orifice.
Means to keep the membrane under tension enable it to constitute a medium for waves travelling from the edge of the membrane subjected to the excitation force towards its opposite edge. Displacement of these waves is accompanied by forced damping due to the shape of the rigid walls, which results in a reduction of the width (thickness) of the cross section of the circulation space along the circulation direction, so that mechanical energy is transferred from the membrane to the fluid, with this appearing in the form of a pressure gradient and of a fluid flow. The characteristics of the pressure gradient and of the fluid flow are related to the dimensions of the pump body, to the dimensions of the membrane, to the shape and the spacing of the rigid walls, to the mechanical characteristics and the tension state of the membrane, and to the parameters of the excitation applied thereto.
The periodic excitation of the membrane is implemented at frequencies which are associated with the mechanical characteristics of the membrane and with its tension state. The excitation frequency should be kept down to low values of the order of 40 Hz to 80 Hz so as to avoid localized pressure effects and shear effects between fluid streams.
In one embodiment of the invention, said pumping chamber is a flat tubular chamber and the membrane is a flat membrane tapered towards the edge thereof located near said delivery orifice.
In another embodiment of the invention, said pumping chamber is an annular tubular chamber and the membrane is shaped as a sleeve with a larger thickness at its edge near said admission orifice than at its edge near said delivery orifice.
Other characteristics and advantages appear from the description given below of various embodiments of the invention.
Reference is made to the accompanying drawings, in which:
The device of the invention shown in
The damping causes energy to be transferred from the membrane 9 to the fluid, with this being in the form of a pressure gradient and a flow of fluid.
Overall the circulator constitutes an energy transducer, successively transferring energy from the excitation motor to the membrane and then from the membrane to the fluid. The energy delivered by the exciter depends on various parameters such as the excitation force, the excitation frequency, and the amplitude of excitation which is itself associated with the excitation frequency and the force. It is thus possible to modulate the energy delivered by the exciter by acting on the various parameters that have an effect on the energy delivered to the membrane.
The mechanical energy in the membrane 9 must essentially behave as a flow of mechanical energy propagating by means of the membrane from the excitation edge 11 where energy is transferred from the exciter to the membrane, towards the other edge of the membrane. This energy comprises a kinetic energy fraction and a deformation energy fraction, and there are physical limits on such operation. The transfer of energy from the membrane to the fluid takes place progressively along the length of the membrane with the waves simultaneously propagating and being damped.
The hydraulic energy of the fluid is expressed as the hydraulic power delivered by the circulator, i.e. the product of the flow rate multiplied by the pressure gradient, with the relationship between flow rate and pressure depending mainly on the dimensions of the pump body and of the membrane, and on the spacing and the shape of the rigid walls 5 and 6, this also taking into account the internal headlosses of the system.
A variant of the device is shown in
The membrane 9 shown
A permanent magnet 32 is secured the thicker edge 11 of the membrane in front of a pole piece 33. The poles of the magnet are spaced from each other in a direction perpendicular to the membrane and the pole piece 33 has poles 33a, 33b and 33c which can change depending on the direction of the current in a coil 34. The pole piece and the coil constitute a variable magnetic field generator which moves the magnet 32 up and down generating waves in the membrane 9. The magnet or the securing structure thereof with the membrane may be guided in guide means not shown provided on the pump body 2. These guide means cooperate with fixation means 31 to put and maintain the membrane under longitudinal tension with a possible adjustment thereof.
In
FIG. 6 and
In each embodiment of the invention, the membrane excitation means are constituted by an electromagnetic motor whose feed circuit for receiving excitation alternating current includes a power amplifier circuit and a circuit for generating an excitation signal so as to provide the possibilities of modulating amplitude, of programming, of storage, and of generating complex excitation signals, enabling the circulator of the invention to comply with numerous applications.
Patent | Priority | Assignee | Title |
10166319, | Apr 11 2016 | CorWave SA | Implantable pump system having a coaxial ventricular cannula |
10188779, | Nov 29 2017 | CorWave SA | Implantable pump system having an undulating membrane with improved hydraulic performance |
10398821, | Apr 11 2016 | CorWave SA | Implantable pump system having an undulating membrane |
10799625, | Mar 15 2019 | CorWave SA | Systems and methods for controlling an implantable blood pump |
10933181, | Mar 31 2017 | CorWave SA | Implantable pump system having a rectangular membrane |
11097091, | Apr 11 2016 | CorWave SA | Implantable pump system having a coaxial ventricular cannula |
11191946, | Mar 06 2020 | CorWave SA | Implantable blood pumps comprising a linear bearing |
11298522, | Apr 11 2016 | CorWave SA | Implantable pump system having an undulating membrane |
11305053, | May 25 2012 | JOHNSON & JOHNSON SURGICAL VISION, INC | Surgical handpiece having directional fluid control capabilities |
11446480, | Nov 29 2017 | CorWave SA | Implantable pump system having an undulating membrane with improved hydraulic performance |
11512689, | Nov 10 2017 | AMS R&D SAS | Undulating-membrane fluid circulator |
11623077, | Mar 31 2017 | CorWave SA | Implantable pump system having a rectangular membrane |
11712554, | Apr 11 2016 | CorWave SA | Implantable pump system having a coaxial ventricular cannula |
7397164, | Aug 06 2004 | Apple Inc | Substantially noiseless cooling device for electronic devices |
7841843, | Oct 07 2003 | Samsung Electronics Co., Ltd. | Valveless micro air delivery device |
7889877, | Jun 30 2003 | SOUND SOLUTIONS INTERNATIONAL CO , LTD | Device for generating a medium stream |
8814543, | Jan 27 2010 | ECP ENTWICKLUNGSGESELLSCHAFT MBH | Conveying device for a fluid using an oscillating body arrangement |
9410542, | Dec 22 2009 | Nanyang Technological University | Ultrasonic fluid pressure generator |
9968720, | Apr 11 2016 | CorWave SA | Implantable pump system having an undulating membrane |
ER2093, | |||
ER6547, |
Patent | Priority | Assignee | Title |
3107630, | |||
3620651, | |||
3743446, | |||
3765175, | |||
4063826, | May 20 1975 | Flexible, oscillating blade liquid pump | |
4384830, | Mar 22 1979 | Methods of and/or apparatus for displacing fluids | |
4488854, | Apr 12 1982 | Constrained wave pump | |
4498851, | May 07 1979 | Piezo Electric Products, Inc. | Solid state blower |
4648807, | May 14 1987 | The Garrett Corporation | Compact piezoelectric fluidic air supply pump |
4939405, | Dec 28 1987 | NITTO KOHKI CO , LTD | Piezo-electric vibrator pump |
5525041, | Jul 14 1994 | ACME WIDGETS RESEARCH & DEVELOPMENT LLC; SONIC PUMP CORP, LLC | Momemtum transfer pump |
DE3621766, | |||
EP412856, | |||
SU244126, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 15 2013 | SAM AMSTAR | AMS R&D SAS | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031951 | /0946 |
Date | Maintenance Fee Events |
Jun 07 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 08 2010 | ASPN: Payor Number Assigned. |
Jun 03 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 05 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 09 2006 | 4 years fee payment window open |
Jun 09 2007 | 6 months grace period start (w surcharge) |
Dec 09 2007 | patent expiry (for year 4) |
Dec 09 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 09 2010 | 8 years fee payment window open |
Jun 09 2011 | 6 months grace period start (w surcharge) |
Dec 09 2011 | patent expiry (for year 8) |
Dec 09 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 09 2014 | 12 years fee payment window open |
Jun 09 2015 | 6 months grace period start (w surcharge) |
Dec 09 2015 | patent expiry (for year 12) |
Dec 09 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |