The present invention provides a fluidized bed for dispensing small quantities of powders. The fluidized bed is made using a porous housing to permit injection and removal of fluid through the surrounding walls to improve the operation of the bed particularly for small particles of the group C size, including significantly reducing powder adhesion to the walls. In one aspect of the invention the fluidized bed housing is rotated about its longitudinal axis, which may be oriented at any suitable angle. A system for changing the volume of the bed is described as is a system for incorporating injection nozzles within the bed for constant agitation and prevention of powder adhering to the walls of the housing.
|
82. A fluidized bed for dispensing powders including a housing defining an enclosure for containing particulate matter, said housing including a fluid injection means for injecting a fluid into said enclosure for fluidizing particulate matter contained within said housing for forming a dilute phase alone or a dilute phase and a dense phase of fluidized powder in said housing, and volumetric metering means connected to said housing and in flow communication with said enclosure through an outlet passageway for withdrawing pre-selected amounts of said particulate matter from said housing.
1. A fluidized bed for dispensing powders, comprising:
a) a housing defining an enclosure for containing particulate matter, said housing including a fluid injection means for injecting a fluid into said enclosure for fluidizing particulate matter contained within said housing for forming a dilute phase alone or a dilute phase and a dense phase of fluidized powder in said housing; and b) volumetric metering means connected to said housing and in flow communication with said enclosure through an outlet passageway for withdrawing pre-selected amounts of said particulate matter from said housing.
77. A fluidized bed for dispensing powders, comprising:
a) a housing defining an enclosure for containing particulate matter, said housing including at least one porous wall having a suitable porosity to allow flow of fluid through said porous wall while preventing most of the particulate matter contained within said housing from passing through said porous wall, a fluid injection means for injecting a fluid into said enclosure for fluidizing particulate matter contained within said housing for forming either a dilute phase only or a dilute phase and a dense phase of fluidized powder in said housing; and b) time controlled powder withdrawal means connected to said housing and in flow communication with said enclosure through an outlet passageway for withdrawing particulate matter from said housing for a preselected period of time.
2. The fluidized bed according to
3. The fluidized bed according to
4. The fluidized bed according to
5. The fluidized bed according to
6. The fluidized bed according to
7. The fluidized bed according to
8. The fluidized bed according to
9. The fluidized bed according to
10. The fluidized bed according to
11. The fluidized bed according to
12. The fluidized bed according to
13. The fluidized bed according to
14. The fluidized bed according to
15. The fluidized bed according to
16. The fluidized bed according to
17. The fluidized bed according to
18. The fluidized bed according to
19. The fluidized bed according to
20. The fluidized bed according to
21. The fluidized bed according to
22. The fluidized bed according to
23. The fluidized bed according to
24. The fluidized bed according to
25. The fluidized bed according to
26. The fluidized bed according to
27. The fluidized bed according to
28. The fluidized bed according to
29. The fluidized bed according to
30. The fluidized bed according to
31. The fluidized bed according to
32. The fluidized bed according to
33. The fluidized bed according to
34. The fluidized bed according to
35. The fluidized bed according to
36. The fluidized bed according to
37. The fluidized bed according to
38. The fluidized bed according to
39. The fluidized bed according to
40. The fluidized bed according to
41. The fluidized bed according to
42. The fluidized bed according to
43. The fluidized bed according to
44. The fluidized bed according to
45. The fluidized bed according to
46. The fluidized bed according to
47. The fluidized bed according to
48. The fluidized bed according to
49. The fluidized bed according to
50. The fluidized bed according to
51. The fluidized bed according to
52. The fluidized bed according to
53. The fluidized bed according to
54. The fluidized bed according to
55. The fluidized bed according to
56. The fluidized bed according to
57. The fluidized bed according to
58. The fluidized bed according to
59. The fluidized bed according to
60. The fluidized bed according to
61. The fluidized bed according to
62. The fluidized bed according to
63. The fluidized bed according to
64. The fluidized bed according to
65. The fluidized bed according to
66. The fluidized bed according to
67. The fluidized bed according to
68. The fluidized bed according to
69. The fluidized bed according to
70. The fluidized bed according to
71. The fluidized bed according to
72. The fluidized bed according to
73. The fluidized bed according to
74. The fluidized bed according to
75. The fluidized bed according to
76. The fluidized bed according to
78. The fluidized bed according to
79. The fluidized bed according to
80. The fluidized bed according to
81. The fluidized bed according to
|
The present invention relates to devices for the metering of small quantities of powder from fluidized beds through a volumetric measuring device.
Accurate metering of a given quantity of powder is often required in various processes including chemical engineering and pharmaceutical processes. When the metered quantity is large, this is relatively easily achieved. However, when the required quantity is very small, this becomes very difficult if high accuracy is required at the same time. In addition, if very fine powder is used, strong interparticle forces cause the powder to agglomerate, thus making the precise metering even more difficult.
Pulmonary drug delivery represents a new drug administration method that provides many advantages. It provides direct and fast topical treatments to respiratory and lung diseases. It has less first-pass GI (gastrointestinal) metabolism and can provide targeted delivery to heart and brain. Drugs such as peptides can be systemically delivered using the pulmonary channel. Pulmonary drug delivery also allows the use of drugs with low solubility. Antibiotics and even vaccines can be delivered in this manner. Compared to oral in-take, it provides a fast and much more efficient adsorption. Typically, only a few percent of the medication of the oral in-take is required for pulmonary delivery. Compared to intravenous injection, it provides a painless and safe alternative.
To facilitate pulmonary delivery, drug powders should normally be less than 5 μm so that they become airborne during inhalation. However, powders of such small sizes (typical group C powder in the Geldart classification) have very strong interparticle forces that make them agglomerate and cohesive, and thus very difficult to handle. Since the required dosage for pulmonary delivery is also very small (usually in the order of 1 μg-100 mg), this makes it very difficult to accurately meter such a small quantity and fill them into packages.
To overcome the interparticle forces, current industrial practice applies two different methods; one involves mixing the ultrafine drug powders with large amounts of coarser powder, and the other the suspension of the powder in liquid. The first method uses a large quantity of excipient (filler) particles that are much larger (normally group A or group A-C powders in the Geldart classification). This makes the small-large powder mixture fluidize and flow easily so that they can be handled more easily. It also significantly increases the volume of each dosage so that the dispensing becomes more accurate when the drug powder is packaged into the Dry Powder Inhaler (DPI). However, only a small fraction of the small drug particles can detach effectively from the large excipient particles during inhalation and the rest stay with the large particles and land in the mouth, limiting the efficiency of final delivery to about 10-15%.
The second method involves suspending the ultrafine drug powders into liquids such as hydrocarbon propellants and storing them in Metered Dose Inhalers (MDI). When a metered quantity of the propellant is released from the storage canister, the propellant evaporates and expands quickly to disperse the powdered drug into the patients' mouth. The key problem with this method is that the quick expansion of the propellant causes the drug to impact in the back of the throat and other places in the mouth, reducing the amount being inhaled into the lung to less than 10-15%. This method also needs good breath coordination, since it is difficult to predict the amount of drug inhaled if the patients' inhalation does not coincide with the drug releasing.
Thus both currently practiced methods have significant limitations. It would be ideal if the required small quantity of the fine drug powder could be accurately dispensed alone, without any other chemical or physical constituents. When only the pure drug powder is packaged into the inhaler, the delivery efficiency is expected to increase significantly. However, this tends to be fairly difficult if the quantity to be packaged is extremely small. For example, if each dose contains 0.5 mg or 500 μg of drug powder and the bulk (packed) density of the powder is 0.5 mg/mm3(=500 kg/m3), the total volume of the powder withdrawn for each dose is only 1.0 mm3.
Fluidization occurs when particulate materials of sub-micrometers to several millimeters are suspended by up-flowing gas in a vessel or column to form a gas-solid suspension more commonly referred to as a fluidized bed. The fluidized beds formed with the gas-solid suspension are specifically referred to as gas-solid fluidized beds. The term "fluidized bed" applies because the gas-solid suspension formed by the solid particles and the upflowing gas behaves like a fluid. Although primarily gas is used as fluidizing fluid, liquid can also be used. In some cases, both gas and liquid are used together. Those are called liquid-solid fluidized beds and gas-liquid-solid three-phase fluidized beds.
A gas-solid fluidized bed can operate in several fluidization regimes: particulate, bubbling, slugging and turbulent fluidization regimes (conventional fluidized beds), and fast fluidization and pneumatic transport regimes (high-velocity fluidized beds). In a conventional fluidized bed, there are usually two distinct regions: the upper dilute region (also called the freeboard region) and the bottom dense region which has most of the particles and also contains many more particles per volume than the dilute region. In a high-velocity fluidized bed, almost all particles are carried upwards by the high-velocity upflow gas and almost the entire bed is in a dilute suspension region. There is also a downflow fluidization regime where gas and particles flow co-currently downward in a dilute suspension form.
A typical design of a fluidized bed includes a gas distributor at the bottom of the fluidized bed column, the main function of which is to uniformly distribute the gas into the fluidized bed. The vessel that contains the fluidized bed can have any suitable shape, but those with cylindrical or rectangular cross-sections and oriented on a substantially vertical axis are commonly used. The vertical walls are usually of solid materials to prevent the gas and solids from escaping from the fluidized beds.
Sometimes, it is necessary to have solid feeds and withdrawal ports and/or heat transfer tubes or panels mounted on the wall(s) of a fluidized bed. At the top of the bed, there is usually a plate or similar structure that seals the top of the fluidization column. There is usually at least one exit port through the top plate and/or the side wall not far below the top plate that allow gas and entrained solids to leave the fluidized bed and enter into gas-solid separation devices or other vessels or other process units. Those particles that leave the fluidized bed are entrained out by the gas flow, i.e. by solids entrainment.
Powders may be classified into four groups in gas-solid fluidized systems, according to Geldart's classifications. Groups B and D powders comprise large particles that typically result in large bubbles when fluidized. Group A powders comprise particles that first experience a significant expansion of the powder bed when fluidized before bubbles begin to appear. Group C powders comprise very small particles for which the interparticle forces significantly affect the fluidization behaviour. As the particle size reduces, interparticle forces increase significantly. Those strong interparticle forces cause the fine particles to agglomerate and make them very cohesive. Typical Group C powders comprise particles under 30-45 μm in size, although some very sticky powders larger than these sizes may also belong to Group C powders. Due to strong interparticle forces, Group C powders are either very difficult to fluidize (with channeling and/or very poor fluidization) or mainly fluidize with the large agglomerates as pseudo-particles rather than as individual particles. In either case, fluidization of individual particles cannot be achieved easily so that handling of Group C powders becomes a difficult problem.
Different measures can be taken to assist the fluidization of Group C powders. Those methods are usually referred to as fluidization aids. Fluidization aids include mechanical stirring, mechanical, acoustic or ultrasonic vibration, addition of much larger particles or other objects to provide extra stirring, addition of finer particles to act as "lubricant", pulsation of fluidization gas, etc. Some aids are more effective than others for a given Group C powder, but the effectiveness of almost all aids tends to diminish as the powder becomes finer.
Group C powders also tend to clog up in certain areas of the fluidized bed, such as above the gas distributor, around internals and at exit port(s), and to stick to the internal wall or the ceiling of the bed. Large chunks of powder form in those places and then break from time to time as they grow and become unstable. As those chunks of particles from the ceiling or upper portion of the bed fall back into the fluidized bed, they disturb the flow hydrodynamics inside the bed, causing periodical variation of the bed density and other properties in both the bottom dense phase region and the upper dilute phase region.
Key characteristics of fluidized beds include easy handling of particles, excellent contact between gas and solids, excellent heat and mass transfer between gas and solids and between gas-solid suspensions and the column wall, good gas and solids mixing, etc. These and other useful characteristics have led to the wide application of fluidized beds in process and other industries. The "easy handling of particles" is due to the uniform solids suspension inside the bed and the relatively free movement of the particles within the gas-solids suspension and of the suspension itself.
Several well known problems currently exist with the fluidized beds pertaining to the metering of fine particles, especially Group C particles. Solids entrainment can sometimes cause problems to the maintenance of a uniform suspension, since entrained particles may flow out of the fluidized bed with the gas stream from the top exit. In order to maintain a constant suspension, escaped particles must be separated from the gas stream (by cyclone, bag filter and/or other devices) and returned. Because there is limitation on the separation efficiency, some particles may be lost even with several stages of separation, leading to a reduction of the powder inventory. This presents a serious problem in some cases where it is essential not to lose particles, such as in the case where expensive drug powder is handled. In this case, a filter may be installed inside or just at the exit port to stop the entrained particles from flowing out of the bed in the first place. However, such filters are plugged very quickly that periodical purging is essential. In addition, such filters also produce a high pressure drop that a very large filter area has to be created to allow enough gas to flow through.
The main problem associated with particle loss and with the gradual decrease of solids inventory due to continuous metering out of particles, is the reduction of solids suspension density. Such variations in solids suspension density may reduce the accuracy of powder metering from the fluidized bed. One measure is to continuously add additional particles into the fluidization column. An alternative measure proposed in this invention and discussed hereinafter is to gradually decrease the volume of the fluidized bed by moving one or more side of the column wall inwards.
Another problem with fluidized beds is that local dead zones or defluidization may occur due to the non-uniform gas distribution at the bottom or due to other reasons such as agglomeration of fine or ultrafine (Group C) particles. This can result in non-uniform and unpredictable suspension density, and other undesirable consequences. For greater certainty, particle agglomeration happens when very fine powder, such as the drug powder for pulmonary drug delivery, is fluidized. Such agglomeration causes non-uniform solids suspension and solids flow, greatly reducing the accuracy of powder metering from the fluidized bed.
Yet another problem is that some particles tend to stick on the inner wall or the top plate of the fluidization vessel/column. This is especially true when very fine particles are fluidized. This can lead to unwanted solids accumulation on the wall. Accumulation of particles on the wall reduces the solids holdup (=concentration) in the bed, making it difficult to precisely control the fluidized bed density, as desired in some processes. Those particles stuck on the wall may also fall periodically back to the bed (for example, when the accumulation is too thick), changing suddenly the bed density, that is, the solids concentration in the bed. A rotating fluidized bed can be used to overcome this problem. The concept of rotating fluidized bed with porous walls is known, however such beds are rotated to generate centrifugal force to the particles in the bed and are known as centrifugal fluidized beds. In these devices, the cylindrical wall is porous. The porous wall is used as gas distributor for the fluidizing gas to flow inward in all radial directions into the bed and the gas exits through the axial end(s) of the cylinder. The purpose of rotating the cylindrical (horizontal or vertical) vessel is to create a centrifugal force to hold the particles towards the cylindrical wall so that higher fluidization velocity can be used without producing large bubbles in the bed and/or without having significant solids entrainment. This allows the same bed to be operated at higher gas velocity so that the process capacity is increased. Example references that provide the details of such rotating fluidized beds include R Pfeffer, G I Tardos and E Gal, "The use of a rotating fluidized bed as a high efficiency dust filter", in Fluidization V, eds., K. Ostergaard and A. Sorensen, Eng. Foundation, New York, pages 667-672, 1986; J. Kao, R Pfeffer and G I Tardos, "On partial fluidization in rotating fluidized beds", American Institute of Chemical Engineering Journal, Volume 33, pages 858-861, 1987; Qian G-H, I Bagyi, R Pfeffer, H Shaw and J G Stevens, "A parametric study on a horizontal rotating fluidized bed using slotted and sintered metal cylindrical gas distributors", Powder Technology, Volume 100, pages 190-199, 1998; Qian G-H, I Bagyi, R Pfeffer and H Shaw, "Particle mixing in rotating fluidized beds: inferences about the fluidized state ", American Institute of Chemical Engineering Journal, Volume 45, pages 1401-1410, 1999; and U.S. Pat. No. 6,197,369.
However, the key design concepts and the purpose of such prior art centrifugal fluidized beds are significantly different from the rotating and porous fluidized bed dispenser proposed in this invention.
U.S. Pat. No. 5,826,633 issued to Parks et al. is directed to a powder filling apparatus which uses gravity to assist filling of a metered chamber. The metered chamber is placed below a convergent passageway containing the powder that is being dispensed. While the method and device involves "fluidizing" the powder to overcome inter-particle cohesive forces, they defined fluidizing powder as "the powder is broken down into small agglomerates and/or completely broken down into its constituents or individual particles". In their definition, upflowing gas is not essential to cause the powder to be fluidized. This is significantly different from the conventional definition of fluidization, as followed in this patent application, that powder is fluidized when it is suspended in an upflowing gas (or liquid). As a result, the device is not per se a fluidized bed since in this device all particles fall unassisted by gravity. In conventional fluidized beds particles are suspended by the fluidizing gas and very few, if any, particles can fall unassisted by gravity. Further, some typical components of a fluidized bed such as an air distributor is missing in this device. In addition, other problems as described above in this invention, such as sticking of particles to the inner surface of the convergent chamber is still problematic with this type of device.
U.S. Pat. No. 6,183,169 issued to Zhu et al. is directed to a device for precision dispensing of fine powders. This device includes two fluidized bed chambers communicating with each other and operates by first fluidizing a fine powder in one chamber and then using a pressure differential between the chambers to draw the fluidized particles into the second chamber. A solenoid valve attached to the second chamber is opened for a selected period of time to dispense the powder in the form of gas-solid suspension to a collection area. The two-chamber concept utilized by Zhu et al. in U.S. Pat. No. 6,183,169 is different from the one used in the current invention. It uses a two-stage method to dilute and control the gas-solids suspension and a Venturi mechanism to control the powder flow and to transport the powder from one stage to another, while the current invention only has one stage and does not require a Venturi or anything of such kind to control powder flow. In the device disclosed in Zhu et al. powder withdrawal is from the dilute phase in the second chamber.
Obviously, the key concepts of both U.S. Pat. Nos. 5,826,633 and 6,183,169 are different from the current invention.
In view of the difficulties and complexities with the prior art, it would be advantageous to provide a single fluidized bed which can dispense quantities of fine powder in an accurate and controlled manner which can be used for either batch or continuous processing of the fine powders. It would also be very advantageous to provide a fluidized bed system that significantly reduces solids accumulation on the walls of the fluidized bed, achieves total solids containment in the bed except for targeted particle withdrawal through selected ports, reduces or eliminates dead zones, and/or allows for the addition and removal of gas at various locations in the fluidized bed.
This invention utilizes the uniform solids suspension and easy mobility of particles inside the fluidized bed, from which particles are uniformly withdrawn to a fixed-volume cavity so that a definite quantity of particles can be metered out from the fluidized bed. To ensure consistency and accuracy of such powder metering, it is essential to maintain a constant and consistent gas-solids suspension inside the fluidized bed.
The method disclosed herein involves metering the powder flow from a fluidized bed where the particle suspension has a much lower density than that of packed (bulk) particles so that the withdrawal volume is significantly increased to increase metering accuracy, and where the particles are completely mobile so that a consistent withdrawal can be maintained.
The present invention also discloses rotating the porous fluidized bed to alternately switch the gas distributor, the bed wall and/or the top gas exit plate, so that particles stuck onto the wall can be continuously back purged off the wall when they are rotated to the bottom of the bed where the gas is introduced in the bed.
The current invention proposes the following alternatives to provide further agitation to the powder to enhance uniform fluidization: (1) rotating the fluidized bed, with or without adding large beads in the bed; (2) injecting additional gas into the bed at various locations in the bed through gas nozzles; and (3) using gas nozzles with flexible tube that can move randomly inside the bed.
An object of the present invention is to provide accurate volumetric metering of powder, either by filling a receptacle of given volume or by timing the powder flow at a given volumetric flow-rate, from a fluidized bed. In particular, this invention addresses the problems associated with metering of extremely small quantities (1 μg-100 mg) of ultrafine (<10 μm) powders. To ensure precise metering, the invention provides fluidized bed structures that intend to ensure uniform and relatively constant gas-solids suspension inside the fluidized bed, by minimizing the problems associated with maintaining uniform gas-solids suspension and uniform fluidization. This invention also provides effective means to volumetrically meter and withdraw the required small quantities of powder in a very accurate and controlled manner.
It is a further object of the present invention to provide a fluidized system that may be used for reduction of solids accumulation on the walls, to provide a system that may be used for reduction or elimination of dead zones, and to provide a system that may be used to add and remove gas at various locations (e.g., along the axial direction).
Broadly, the present invention relates to metering a small quantity of powder from a fluidized bed using a volumetric method. It can be just any fluidized bed that can provide a steady gas-solid suspension and the withdrawal can be either from the dense phase or the dilute phase of the bed. An element of some suitable shape that has one or more cavities and that can be easily engaged and disengaged to the said fluidized bed with the cavities exposed to the fluidized bed is used for the metering and withdrawal.
Furthermore, the present invention relates to a fluidized bed structure comprising having a housing defining a fluidized bed chamber, means for introducing primary fluidizing fluid through one or more portion(s) of the surrounding walls into the chamber at one or more side(s) of the chamber and means for permitting the escape of the fluid through one or more portion(s) of the surrounding walls from the chamber at other one or more side(s) of said chamber. At least some of the walls of the chamber have a significant area that is porous, the porous area comprising pores having a size sufficiently small to prevent significant loss of particles from the fluidized bed.
This invention further relates to a powder metering and withdrawal mechanism that is attached to the fluidized bed. This mechanism includes an element of some suitable shape that has one or more small cavities (pockets, holes) and means (withdrawal port) to engage and disengage such element easily to/from the fluidized bed with the cavities exposed to the gas-solid suspension inside the fluidized bed.
In one aspect the present invention provides a fluidized bed for dispensing powders, comprising:
a) a housing defining an enclosure for containing particulate matter, said housing including a fluid injection means for injecting a fluid into said enclosure for fluidizing particulate matter contained within said housing for forming a dilute phase and a dense phase of fluidized powder in said housing; and
b) volumetric metering means connected to said housing and in flow communication with said enclosure through an outlet passageway for withdrawing pre-selected amounts of said particulate matter from said housing.
In another aspect of the invention there is provided a fluidized bed for dispensing powders, comprising:
a) a housing defining an enclosure for containing particulate matter, said housing including at least one porous wall having a suitable porosity to allow flow of fluid through said porous wall while preventing most of the particulate matter contained within said housing from passing through said porous wall, a fluid injection means for injecting a fluid into said enclosure for fluidizing particulate matter contained within said housing for forming either a dilute phase only or a dilute phase and a dense phase of fluidized powder in said housing; and
b) time controlled powder withdrawal means connected to said housing and in flow communication with said enclosure through an outlet passageway for withdrawing particulate matter from said housing for a pre-selected period of time.
Further features, object and advantages will be evident from the following detailed description of the present invention taken in conjunction with the accompanying drawings, in which:
The present invention provides improved fluidized bed devices for delivery of metered amounts of ultrafine particles. The fluidized bed devices disclosed herein provide a more uniform suspension of ultrafine particles in the fluidized bed, giving a more constant bed suspension density which allows a steady stream of particles to be withdrawn from the fluidized bed. When timed (controlled), this steady stream of powder flow can provide a controlled quantity of the powder into given containers such as for drug packaging. Alternatively, if the receptacle volume is fixed, the withdrawal quantity can also be controlled by allowing the receptacle to be completely filled.
It is important to provide a steady supply of gas-solid suspension in the fluidized bed 20 or 60. This can normally be achieved in any fluidized bed, but may be difficult for some fluidized beds especially for those containing cohesive Geldart C powders, since there may be several problems such as solids entrainment, solids attachment on the wall, variable solids inventory due to the above-mentioned two problems, particle agglomeration, channeling, and dead zones. Difficulty also further increases with the decrease of the amount of particles to be withdrawn from the bed. Therefore, certain additional measures preferably should be taken. In particular, the present invention is particularly suited for the dispensing and metering of extremely small quantity (1 μg-100 mg) of fine Geldart group C powders. As discussed above, these powders are very cohesive and tend to form agglomerates which makes it very difficult to fluidize and handle them. The requirement of small quantities of these types of powder in many applications presents another challenge in respect of accuracy of the amounts dispensed. In order to ensure a good and steady gas-solid suspension for Geldart C powder, the above mentioned (six) problems should be properly addressed. Additionally and optionally, the following measures may be taken to help ensure the accurate dispensing and metering of the small quantity of ultrafine cohesive powders. However, the use of the present invention is not limited to addressing the above six issues, but can also provide solutions in other applications such as addition and removal of fluid along a fluidized bed reactor.
Many of the problems referred to above may be overcome using fluidized beds with porous walls that have a porosity sufficiently small to prevent significant loss of particles through the walls.
Porosity of the bottom plates 30, 76 in
In the fluidized bed illustrated in
There are several significant benefits achieved by having the fluidized bed housing rotated. The first advantage is that the top part (main fluid exit) and the bottom part (primary fluidizing fluid inlet) of the cylindrical wall 98 are switched continuously during rotation. At any given time at least part of the cylindrical wall 98 forms both inlet for primary fluidizing fluid to form the bed as indicated by the arrows at the bottom and the primary outlet for fluidizing fluid at the top. In this case, particles that may be adhering to wall 98 are blown away from the wall by the incoming fluid when that part of the wall is rotated into a position adjacent to manifold 104.
Secondly, the relative movement between regions of the fluidized bed and the gas inlet provide a periodic back purge to a greater area of the bed, so that dead zones are effectively reduced or eliminated. Thirdly, the rotation of housing 92 creates additional agitation to the fluidized bed, and thus helps to break up agglomerates and prevent severe channeling of the fluidized bed.
With the prior art rotating fluidized beds, air is forced to leave the bed axially along the horizontal axis of rotation. The rotating fluidized beds disclosed herein are preferably operated at low rates of rotation, for example 60 revolutions per minute (RPM) has been found to be effective, whereas the centrifugal beds of the prior art rotate much faster since they need to use the rotating action to create large pseudo-gravitational forces.
If the fluidized bed is designed so that a significant portion or substantially all the fluidizing gas must leave the bed through the porous walls of the housing, there will be little or no particle loss. Even when there is an exit port provided, the fact some gas leaves the housing through the side and top porous walls will reduce the gas velocity through the outlet port and thereby reduce the chances of particle loss.
Powder withdrawal can be facilitated through one or more withdrawal port at the walls of the fluidized bed, which can be horizontal, vertical or of any other geometry. Fluidized bed 90 in
Fluidizing gas may be selectively injected or removed at selected rates through localized areas of the top plate 74 and surrounding side walls 72 as exemplified by the bidirectional arrows shown in
In another embodiment of the manifold, discrete injector or withdrawal nozzles or pipes may be used (not shown). The nozzles may be mounted to be moveable so that the location of each of the nozzles may be varied if desired.
Referring now to
The end of tube 142 is positioned next to the inside of the withdrawal port 102. Occasionally, particles may accumulate just inside the withdrawal port 102 which can influence the metering speed and accuracy. In this case, this small purge gas can be applied through an end hole facing the powder metering port (not shown in the figure) to blow off the accumulations. Such purging is best done between two consecutive metering/withdrawals or when the new withdrawal units are loaded into the fluidized bed, since purging, if strong enough, may also blow off particles inside the charged cavities and/or create a localized strong gas flow pattern that prevent or reduce the amount of the gas-solid suspension (from) flowing into the withdrawal region. Alternatively, the horizontal tube 142 may be retractable, so that it is retracted away from the withdrawal port but maintains other regions of the fluidized bed aerated.
Adding larger beads (for example, 4-20 mm diameter stainless steel balls and/or 5-20 mm diameter marbles, but beads of larger or smaller diameter and of other materials may be used) to the rotating fluidized bed can provide further additional agitation for breakup of particle agglomerates, prevention of dead zones and channelling.
It will be understood that while the above description has been exemplified with the gas-solid fluidized bed, the same inventive concepts may also be applied to liquid-solid and gas-liquid-solid three-phase fluidized beds. In addition, more than one powder metering/dispensing unit may be attached to the housing so that powder can be dispensed from multiple locations in the housing.
While the blister disks of
Referring again to
Preferably, the blister disks 180 are porous (holes 182 extending right through the disk) so that gas can flow through the disks. This gas flow helps push or suck powder into the cavities 182. Such gas flow not only accelerates the filling, but also provides increased accuracy since the "driving force" is larger and more steady. Such gas flow can be created by a pressure difference, which can be realized by either applying vacuum suction from the back or increasing the pressure inside the fluidized bed, or both. The gas passage in this case may be a straight hole, produced by making two thin disks (front and back) with the same number of holes in each disk and with their centers lined up to each other. Between the two disks, a thin layer of porous material (filter paper, membrane materials etc.) is used, creating a cavity on each side of the disk, but it is only the front side 182 that is used as the blister cell. Preferably, the holes on the support plate 184 are made larger than those of the blister cell to reduce the resistance to air flow.
It will be understood that while the above description has been exemplified with the disk shaped metering unit and with cylindrical cavities, other suitable designs with suitable powder receptacles can also be used to meter and collect the powder from the fluidized bed. For example, a bar strip similar to 194 shown in
Periodic reversal of the airflow direction across the wall of inner cylinder 304 keeps the wall of cylinder 304 clear of significant particle accumulation while still providing enough area for air to leave. Referring to
Referring again to
There are several practical benefits to use the double cylinder housing: the inner cylinder can be made from less strong materials such as the more fragile porous Teflon tubing since it does not rotate relative to the outer cylinder. Also because there is no rotating action between the two cylinders, leaking between the housing 304 and distributor chambers 302 are prevented. Erosion of both cylinders is also minimized since there is no relative rotation of the inner cylinder and only small touching area against the outer cylinder at the air distributor box.
As used herein, the term "comprising" is to be construed as being inclusive and open ended, and not exclusive.
The foregoing description of the preferred embodiments of the invention has been presented to illustrate the principles of the invention and not to limit the invention to the particular embodiment illustrated. It is intended that the scope of the invention be defined by all of the embodiments encompassed within the following claims and their equivalents.
Zhang, Hui, Zhu, Jesse, Wen, Jianzhang, Ma, Ying Liang
Patent | Priority | Assignee | Title |
10065242, | Mar 01 2018 | King Saud University | Adjustable build envelope for powder bed fusion machines |
11027959, | Jun 29 2018 | MATSYS INC. | Fluidized powder valve system |
11406771, | Jan 10 2017 | Boston Scientific Scimed, Inc | Apparatuses and methods for delivering powdered agents |
11433223, | Jul 01 2016 | Boston Scientific Scimed, Inc. | Delivery devices and methods |
11638930, | Mar 30 2020 | HONDA MOTOR CO , LTD | Powder coating device and powder coating method |
11642281, | Oct 02 2018 | Boston Scientific Scimed, Inc | Endoscopic medical device for dispensing materials and method of use |
11701448, | Jan 12 2018 | Boston Scientific Scimed, Inc. | Powder for achieving hemostasis |
11766546, | Jan 31 2018 | Boston Scientific Scimed, Inc. | Apparatuses and methods for delivering powdered agents |
11833539, | Oct 02 2018 | Boston Scientific Scimed, Inc | Fluidization devices and methods of use |
6805175, | Jun 12 2003 | FREESLATE, INC | Powder transfer method and apparatus |
7134459, | Jun 12 2003 | FREESLATE, INC | Methods and apparatus for mixing powdered samples |
7168459, | Apr 12 2002 | Life Technologies Corporation | Feed bags and methods of use |
7489892, | Oct 04 2005 | Ricoh Company, LTD | Particle supply apparatus and imaging apparatus having a gas spouting unit for fluidizing the particles |
7503354, | Jan 14 2003 | Ricoh Company, LTD | Powder filling method, powder filling device, and powder filling nozzle |
7621300, | Apr 20 2001 | Glaxo Group Limited | Metering method for particulate material |
7662217, | Apr 03 2007 | Battelle Energy Alliance, LLC | Soil separator and sampler and method of sampling |
7773918, | Oct 04 2005 | Ricoh Company, Ltd. | Imaging apparatus having particle supply and collection apparatus arranged outside imaging apparatus |
7878430, | Nov 20 2006 | GUANGDONG WESDON-RIVERS POWDER COATING SCIENTIFIC RESEARCH CO , LTD | Method and apparatus for uniformly dispersing additive particles in fine powders |
7905196, | Mar 28 2006 | Brother Kogyo Kabushiki Kaisha | Aerosol generating apparatus, method for generating aerosol and film forming apparatus |
7976872, | Jul 24 2006 | L. PERRIGO COMPANY | Method for distributing a pharmaceutically active compound in an excipient |
8037880, | Apr 07 2006 | NINGBO INHAL PHARMA CO , LTD | Dry powder inhaler |
8104702, | Nov 20 2006 | GUANGDONG WESDON-RIVERS POWDER COATING SCIENTIFIC RESEARCH CO , LTD | Apparatus for uniformly dispersing additive particles in fine powders |
8459310, | Jul 24 2008 | Surmodics, Inc | Systems and methods for filling medical device lumen |
8668928, | Nov 20 2002 | Glaxo Group Limited | Capsule |
8783305, | Oct 10 1997 | Novartis AG | Powder filling apparatus and methods for their use |
9557115, | Oct 28 2010 | GENERAL ELECTRIC TECHNOLOGY GMBH | Orifice plate for controlling solids flow, methods of use thereof and articles comprising the same |
9617087, | Oct 28 2010 | GENERAL ELECTRIC TECHNOLOGY GMBH | Control valve and control valve system for controlling solids flow, methods of manufacture thereof and articles comprising the same |
9889450, | Dec 18 2013 | RTX CORPORATION | Powder classification system and method |
RE42942, | Jul 21 1997 | Novartis AG | Powder filling apparatus and methods for their use |
Patent | Priority | Assignee | Title |
5323930, | Jun 28 1991 | CHAMPAGNE MOEI & CHANDON | Method of dispensing a determined amount of particles suspended in a fluid and device for carrying out this method |
5469994, | Sep 09 1991 | Buhler AG | Apparatus and method for dosing a particulate phase present in a gas/particle flow from a fluidized bed |
5579588, | Sep 09 1991 | Buhler AG | Method for dosing a particulate phase in a gas/particle flow in a fluidized bed |
5826633, | Apr 26 1996 | Novartis Pharma AG | Powder filling systems, apparatus and methods |
5939027, | May 27 1993 | Solvay Polyoletins Europe-Belsium (SA) | Process for discharging a reactor |
6183169, | Aug 13 1998 | The University of Western Ontario | Precision dispensing of ultra-fines via a gas medium |
6197369, | Sep 30 1999 | New Jersey Institute of Technology | Method of particle coating |
EP1099472, | |||
GB986842, | |||
WO29452, | |||
WO128900, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 17 2001 | The University of Western Ontario | (assignment on the face of the patent) | / | |||
Mar 04 2002 | ZHU, JESSE | UNIVERSITY OF WESTERN ONTARIO,THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012664 | /0929 | |
Mar 04 2002 | WEN, JIANZHANG | UNIVERSITY OF WESTERN ONTARIO,THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012664 | /0929 | |
Mar 04 2002 | MA, YING LIANG | UNIVERSITY OF WESTERN ONTARIO,THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012664 | /0929 | |
Mar 04 2002 | ZHANG, HUI | UNIVERSITY OF WESTERN ONTARIO,THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012664 | /0929 |
Date | Maintenance Fee Events |
Aug 02 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 18 2007 | ASPN: Payor Number Assigned. |
Aug 16 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 16 2011 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Sep 11 2015 | REM: Maintenance Fee Reminder Mailed. |
Feb 03 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 03 2007 | 4 years fee payment window open |
Aug 03 2007 | 6 months grace period start (w surcharge) |
Feb 03 2008 | patent expiry (for year 4) |
Feb 03 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 03 2011 | 8 years fee payment window open |
Aug 03 2011 | 6 months grace period start (w surcharge) |
Feb 03 2012 | patent expiry (for year 8) |
Feb 03 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 03 2015 | 12 years fee payment window open |
Aug 03 2015 | 6 months grace period start (w surcharge) |
Feb 03 2016 | patent expiry (for year 12) |
Feb 03 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |