A method of fabricating an optical module includes attaching a lens to a platform of the optical module such that the lens remains in precise alignment with a light source (e.g., a laser diode) and a target optical fiber even after the lens is attached or fixed to the platform. The optical module includes a micro-lens assembly, comprising a bridge and a micro-lens holder holding a micro-lens. The micro-lens holder is initially to the light source to substantially optimize coupling of light into the input aperture of the optical fiber. Next, the bridge is inserted beneath the micro-lens holder on the platform. Subsequently, the bridge is fixedly attached to the platform. The micro-lens holder is realigned to the light source to substantially optimize coupling of light into the input aperture of the optical fiber and then the micro-lens holder is fixedly attached to the bridge.
|
1. A method of fabricating an optical module including a light source producing light, an optical fiber having an input aperture aligned to receive the light, a micro-lens assembly comprising a bridge and a micro-lens holder holding a micro-lens, and a platform, the method comprising:
holding the optical fiber in place at a desired location with respect to the light source; initially aligning the micro-lens to the light source to substantially optimize coupling of light into the input aperture of the optical fiber; inserting the bridge beneath the micro-lens holder on the platform; fixing the bridge to the platform; realigning the micro-lens to the light source to substantially optimize coupling of light into the input aperture of the optical fiber; and fixing the micro-lens holder to the bridge.
2. The method of
3. The method of
4. The method of
measuring light emerging from an output of the optical fiber; and moving the micro-lens holder until a substantially optimal coupling of light into the input aperture of the optical fiber exists.
5. The method of
grasping the micro-lens holder with a mechanical arm; measuring light emerging from an output of the optical fiber; providing a feedback signal to control movement of the mechanical arm based upon the measured light; moving the mechanical arm in response to the feedback signal until a substantially optimal coupling of light into the input aperture of the optical fiber exists.
6. The method of
measuring light emerging from an output of the optical fiber; and moving the optical fiber until a substantially optimal coupling of light into the input aperture exists.
7. The method of
grasping the micro-lens holder with a mechanical arm; measuring light emerging from an output of the optical fiber. providing a feedback signal to control movement of the mechanical arm based upon the measured light; moving the mechanical arm in response to the feedback signal until a substantially optimal coupling of light into the input aperture exists.
8. The method of
9. The method of
|
1) Field of the Invention
This invention pertains to the field of optical modules, and more particularly, to a method of fixing a lens in an optical module.
2) Description of the Related Art
A critical characteristic of the optical module 100 is the alignment of the light output of the optical module 100 and the input aperture 112 of the optical fiber 110. Especially in the case of a single mode fiber, it is critically important that the light output of the laser diode 130 be precisely aligned with the input aperture 112 of the optical fiber 110.
In the optical module 100, a lens 140 (sometimes referred to as a micro-lens) focuses the light out of the laser diode 130 onto the input aperture of the optical fiber 110. It is important that the micro-lens 140 be located in precise alignment with the laser diode 130 the optical fiber 110. The optical module 100 also includes an optical isolator 180 for preventing light coming back out of the input aperture 112 of the target optical fiber 110 from going back into the laser diode 130.
However, in the prior art, when attaching the micro-lens 140 to the platform 120, the micro-lens 140 is subject to significant misalignment with respect to the laser diode 130 and the optical fiber 110.
Accordingly, it would be advantageous to provide an improved method of fabricating an optical module. In particular, it would be advantageous to provide such a method including an improved method of fixedly attaching a lens to a platform of the optical module such that the lens remains in precise alignment with a light source (e.g., a laser diode) and a target optical fiber even after it is attached or fixed to the platform. Other and further objects and advantages will appear hereinafter.
The present invention comprises a method for fabricating an optical module, including a method of fixedly attaching a lens to a platform of the optical module such that the lens remains in precise alignment with a light source (e.g., a laser diode) and a target optical fiber even after it is attached to the platform.
In one aspect of the invention, a method is provided for fabricating an optical module including a light source producing light, an optical fiber having an input aperture aligned to receive the light, a ferrule fit around an exterior of the optical fiber, a micro-lens assembly comprising a bridge and a micro-lens holder holding a micro-lens, and a platform. The method comprises holding the optical fiber in place at a desired location with respect to the laser diode; initially aligning the micro-lens to the laser diode to substantially optimize coupling of light into the input aperture of the optical fiber; inserting the bridge beneath the micro-lens holder on the platform; fixing the bridge to the platform; realigning the micro-lens to the laser diode to substantially optimize coupling of light into the input aperture of the optical fiber; and fixing the micro-lens holder to the bridge.
Beneficially, as shown in
Beneficially, the optical module 200 also includes an optical isolator 280 for preventing light coming back out of the input aperture 212 of the target optical fiber 210 from going back into the laser diode 230. In that case, beneficially, the bridge 276 is made of a non-ferrous material, such as nickel, so as not to affect the optical isolator 280.
For the optical module 200, it is necessary to properly align the micro-lens 275 between the laser diode 230 and the input aperture 212 of the target optical fiber 210. Alignment of the isolator 280, however, is not required, as its precise position is not critical.
In a first step 410, a target optical fiber 210 is placed into a desired location with respect to the laser diode 230 above the platform 220. At this time, the lens holder assembly 270 is not placed on the platform 220. Also, at this point, the target optical fiber 210 is not fixed to the platform 220, but instead it is just held in place, for example by a mechanical arm, while the micro-lens 275 is aligned in the following steps.
In a next step 420, the micro-lens 275, together with the micro-lens holder 274, is aligned in relation to the laser diode 230 and the target optical fiber 210 to focus the light from the laser diode 230 onto the aperture 212 of the target optical fiber 210. At that time, the bridge 276 is physically detached from the micro-lens holder 274. In this step, an alignment tool 1000 may be used to position the lens micro-holder 274 with respect to the laser diode 230 and the platform 220. Beneficially, a feedback system is used to control the alignment tool 1000. To align the micro-lens 275 with respect to the laser diode 230 and target optical fiber 210 for substantially optimal light coupling, an output end of the target optical fiber 210 is connected to a measurement apparatus for measuring an intensity of light emerging from the optical fiber 210. Based on the measured light intensity, the measurement apparatus produces a feedback signal that is used to control the alignment tool 1000 to achieve a substantially optimal (e.g., a substantial maximum) coupling of light from the laser diode 230 into the input aperture 212 of the target optical fiber 210. The alignment tool 1000 continues to move the micro-lens holder 274 until a substantially optimal light coupling into the target optical fiber 210 is achieved.
After the micro-lens 275 is aligned to focus the light from the laser diode 230 onto the aperture 212 of the target optical fiber 210, then in a step 430, the bridge 276 is inserted beneath the micro-lens holder 274 in place on the platform 220.
Then, in a step 440, the bridge 276 is fixedly attached to the platform 220, preferably by welding it to the platform 220 by means of a first set of welds 310, as shown in FIG. 3.
Next, in a step 450, the position of the micro-lens holder 274 is again adjusted to realign the micro-lens 275 to more precisely focus the light from the laser diode 230 onto the aperture 212 of the target optical fiber 210 to again achieve a substantially optimal (e.g., a substantial maximum) coupling of light from the laser diode 230 into the input aperture 212 of the target optical fiber 210. As in the step 420, beneficially a feedback arrangement is employed to determine the optimal position of the micro-lens holder 474 and the micro-lens 275.
Next, in a step 460, the micro-lens holder 274 is moved vertically with respect to the bridge 276 by a predetermined amount to account for a settling of the micro-lens holder 274 that will occur after cooling of the welds produced during a subsequent welding step 470. In a preferred embodiment, the cooling of the welds will produce a negative vertical displacement of the optical fiber 210 of 10-12 μm with respect to the bridge 276. Accordingly, before the welding step 360, the optical fiber 210 is moved vertically with respect to the optical platform 220 by 10-12 μm, beneficially 11 μm.
Then, in a step 470, the micro-lens holder 274 is fixedly attached to the bridge 276, preferably by means of a second set of welds 320, as shown in FIG. 3.
Next, in a step 480, the optical module is baked for an extended period of time at an elevated temperature in order to relieve stresses associated with the welding process so that the components will settle before a final step 490.
Finally, in a step 490, the target optical fiber 210 is fixedly attached to the platform 220 in alignment with the laser diode 230 and the micro-lens 275.
As disclosed above, a method is provided for fixedly attaching a lens to a platform of an optical module such that the lens remains precisely aligned with a laser diode and a target optical fiber even after the lens is attached to the platform.
While preferred embodiments are disclosed herein, many variations are possible which remain within the concept and scope of the invention. Such variations would become clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and scope of the appended claims.
Hsu, Chia-Fu, Janosik, Zbigniew, Roff, Robert Wallace
Patent | Priority | Assignee | Title |
10016258, | Mar 15 2013 | Ultradent Products, INC | Cheek and lip expansion device and method |
10307049, | Sep 26 2007 | Ultradent Products, Inc. | Methods, devices, systems, assemblies, and kits for tissue retraction in an oral cavity |
7163343, | Feb 10 2004 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Optical module aligned after assembly |
7626705, | Mar 30 2007 | Mitutoyo Corporation | Chromatic sensor lens configuration |
7736382, | Sep 09 2005 | NERVESENSE LTD | Apparatus for optical stimulation of nerves and other animal tissue |
7791712, | Mar 27 2007 | Mitutoyo Corporation | Chromatic confocal sensor fiber interface |
7883536, | Jan 19 2007 | NERVESENSE LTD | Hybrid optical-electrical probes |
7988688, | Sep 21 2006 | NERVESENSE LTD | Miniature apparatus and method for optical stimulation of nerves and other animal tissue |
8012189, | Jan 11 2007 | NUROTONE MEDICAL LTD | Method and vestibular implant using optical stimulation of nerves |
8134691, | Mar 18 2010 | Mitutoyo Corporation | Lens configuration for a thermally compensated chromatic confocal point sensor |
8160696, | Oct 03 2008 | NERVESENSE LTD | Nerve stimulator and method using simultaneous electrical and optical signals |
8212997, | Feb 23 2011 | Mitutoyo Corporation | Chromatic confocal point sensor optical pen with extended measuring range |
8317848, | Jan 11 2007 | Lockheed Martin Corporation | Vestibular implant and method for optical stimulation of nerves |
8357187, | Jan 19 2007 | Lockheed Martin Corporation | Hybrid optical-electrical probes for stimulation of nerve or other animal tissue |
8475506, | Aug 13 2007 | Lockheed Martin Corporation | VCSEL array stimulator apparatus and method for light stimulation of bodily tissues |
8498699, | Oct 03 2008 | NERVESENSE LTD | Method and nerve stimulator using simultaneous electrical and optical signals |
8506613, | Sep 21 2006 | NERVESENSE LTD | Miniature method and apparatus for optical stimulation of nerves and other animal tissue |
8551150, | Jan 11 2007 | NUROTONE MEDICAL LTD | Method and system for optical stimulation of nerves |
8632577, | Jan 19 2007 | NERVESENSE LTD | Hybrid optical-electrical probes for stimulation of nerve or other animal tissue |
8652187, | May 28 2010 | NUROTONE MEDICAL LTD | Cuff apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves |
8709078, | Aug 03 2011 | NUROTONE MEDICAL LTD | Ocular implant with substantially constant retinal spacing for transmission of nerve-stimulation light |
8744570, | Jan 23 2009 | NUROTONE MEDICAL LTD | Optical stimulation of the brainstem and/or midbrain, including auditory areas |
8747447, | Jul 22 2011 | NUROTONE MEDICAL LTD | Cochlear implant and method enabling enhanced music perception |
8792978, | May 28 2010 | NUROTONE MEDICAL LTD | Laser-based nerve stimulators for, E.G., hearing restoration in cochlear prostheses and method |
8834545, | Jul 22 2011 | NUROTONE MEDICAL LTD | Optical-stimulation cochlear implant with electrode(s) at the apical end for electrical stimulation of apical spiral ganglion cells of the cochlea |
8840654, | Jul 22 2011 | NUROTONE MEDICAL LTD | Cochlear implant using optical stimulation with encoded information designed to limit heating effects |
8864806, | May 28 2010 | NUROTONE MEDICAL LTD | Optical bundle apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves |
8894697, | Jul 22 2011 | NUROTONE MEDICAL LTD | Optical pulse-width modulation used in an optical-stimulation cochlear implant |
8929973, | Dec 04 2006 | NERVESENSE LTD | Apparatus and method for characterizing optical sources used with human and animal tissues |
8945197, | Jul 22 2011 | NUROTONE MEDICAL LTD | Sight-restoring visual prosthetic and method using infrared nerve-stimulation light |
8956396, | Aug 03 2011 | NUROTONE MEDICAL LTD | Eye-tracking visual prosthetic and method |
8968376, | May 28 2010 | NUROTONE MEDICAL LTD | Nerve-penetrating apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves |
8985119, | Sep 09 2005 | NERVESENSE LTD | Method and apparatus for optical stimulation of nerves and other animal tissue |
8996131, | Sep 24 2010 | NERVESENSE LTD | Apparatus and method for managing chronic pain with infrared light sources and heat |
8998914, | Jul 22 2011 | NUROTONE MEDICAL LTD | Optimized stimulation rate of an optically stimulating cochlear implant |
9011508, | Jul 22 2011 | NUROTONE MEDICAL LTD | Broad wavelength profile to homogenize the absorption profile in optical stimulation of nerves |
9011509, | Jul 22 2011 | NUROTONE MEDICAL LTD | Individually optimized performance of optically stimulating cochlear implants |
9061135, | Sep 15 2011 | NERVESENSE LTD | Apparatus and method for managing chronic pain with infrared and low-level light sources |
9387054, | Sep 26 2007 | Ultradent Products, Inc. | Methods, devices, systems, assemblies, and kits for tissue retraction in an oral cavity |
9901332, | Mar 15 2013 | Ultradent Products, INC | Cheek retractor device and method |
D737964, | Mar 14 2014 | Ultradent Products, INC | Cheek retractor device |
D761958, | Mar 14 2014 | Ultradent Products, Inc. | Cheek retractor device |
D763444, | Mar 14 2014 | Ultradent Products, Inc. | Cheek retractor device |
D792590, | Jul 21 2015 | Ultradent Products, Inc.; Ultradent Products, INC | Cheek retractor device |
D820445, | Mar 14 2014 | Ultradent Products, Inc. | Cheek retractor device |
D914214, | Jun 03 2019 | Ultradent Products, Inc. | Dental retraction device |
D964566, | Jun 03 2019 | Ultradent Products, Inc. | Dental retraction device |
Patent | Priority | Assignee | Title |
5195155, | May 24 1989 | OpNext Japan, Inc | Optical coupling apparatus and manufacturing method of the same, and lens holder |
5930429, | Jul 01 1997 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Micro-photonics module integrated on a single substrate |
6207950, | Jan 11 1999 | Intel Corporation | Optical electronic assembly having a flexure for maintaining alignment between optical elements |
6522486, | Jan 25 2000 | FURUKAWA ELECTRIC CO , LTD , THE | Optical communication device and method of fixing optical module |
20030026548, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 20 2002 | JANOSIK, ZBIGNIEW | Princeton Lightwave, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012716 | /0261 | |
Mar 20 2002 | ROFF, ROBERT WALLACE | Princeton Lightwave, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012716 | /0261 | |
Mar 20 2002 | HSU, CHIA-FU | Princeton Lightwave, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012716 | /0261 | |
Mar 25 2002 | Princeton Lightwave, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 20 2007 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Sep 26 2011 | REM: Maintenance Fee Reminder Mailed. |
Feb 10 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 10 2007 | 4 years fee payment window open |
Aug 10 2007 | 6 months grace period start (w surcharge) |
Feb 10 2008 | patent expiry (for year 4) |
Feb 10 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 10 2011 | 8 years fee payment window open |
Aug 10 2011 | 6 months grace period start (w surcharge) |
Feb 10 2012 | patent expiry (for year 8) |
Feb 10 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 10 2015 | 12 years fee payment window open |
Aug 10 2015 | 6 months grace period start (w surcharge) |
Feb 10 2016 | patent expiry (for year 12) |
Feb 10 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |