A ring or collar surrounding a semiconductor workpiece in a plasma chamber. According to one aspect, the ring has an elevated collar portion having an inner surface oriented at an obtuse angle to the plane of the workpiece, this angle preferably being 135°C. This angular orientation causes ions bombarding the inner surface of the elevated collar to scatter in a direction more parallel to the plane of the workpiece, thereby reducing erosion of any dielectric shield at the perimeter of the workpiece, and ameliorating spatial non-uniformity in the plasma process due to any excess ion density near such perimeter. In a second aspect, the workpiece is surrounded by a dielectric shield, and the shield is covered by a non-dielectric ring which protects the dielectric shield from reaction with, or erosion by, the process gases. In a third aspect, the dielectric shield is thin enough to couple substantial power from the cathode to the plasma, thereby improving spatial uniformity of the plasma process near the perimeter of the workpiece. In a fourth aspect, azimuthal non-uniformities in process performance can be ameliorated by corresponding azimuthal variations in the dimensions of the elevated collar and/or the dielectric shield surrounding the workpiece.
|
17. A workpiece shroud for use in a chamber for plasma-enhanced etching of a workpiece, comprising:
a non-dielectric ring having an uppermost surface; and an annular dielectric shield having an innermost diameter that is greater than the outermost diameter of the non-dielectric ring so that the dielectric shield radially encircles the non-dielectric ring; wherein the dielectric shield has an upper surface that is higher than the uppermost surface of the non-dielectric ring.
1. A workpiece shroud for use in a chamber for plasma-enhanced etching of a workpiece, wherein the chamber includes a cathode electrode having an upper surface facing the workpiece, said shroud comprising:
an annular dielectric shield having an upper surface and a lower surface, wherein a portion of the lower surface is adapted to be positioned on the upper surface of the cathode electrode; and a non-dielectric ring having a lowermost surface positioned on a first annular portion of the upper surface of the dielectric shield.
9. A workpiece shroud for use in a chamber for plasma-enhanced etching of a workpiece, wherein the chamber includes a cathode electrode having an upper surface facing the workpiece and a first annular dielectric shield covering a radially outer portion of said surface of the cathode electrode, said shroud comprising:
a non-dielectric ring having an uppermost surface that is planar and having a lowermost surface adapted to be positioned on the upper surface of the first dielectric shield; and a second annular shield having an upper surface that radially encircles, and is higher than, the uppermost surface of the non-dielectric ring.
2. A shroud according to
the dielectric shield further comprises a second annular portion radially outward of the first annular portion; and the second annular portion is not covered by the non-dielectric ring.
3. A shroud according to
4. A shroud according to
the non-dielectric ring has a planar upper surface; and the dielectric shield includes a radially inward-facing surface in the shape of a transverse segment of a cone; wherein said inward-facing surface of the dielectric shield is oriented at an obtuse angle relative to the flat upper surface of the non-dielectric ring.
5. A shroud according to
10. A shroud according to
11. A shroud according to
said upper surface of the second shield includes a radially inward-facing portion in the shape of a transverse segment of a cone; wherein the inward-facing portion of the upper surface of the second shield is oriented at an obtuse angle relative to the uppermost surface of the non-dielectric ring.
12. A shroud according to
the non-dielectric ring has a radially outer portion and a radially inner portion; and the radially outer portion includes said uppermost surface and is higher than the radially inner portion of the non-dielectric ring.
18. A workpiece shroud according to
said upper surface of the shield has a radially inward-facing portion in the shape of a transverse segment of a cone; and the inward-facing portion of the upper surface of the shield is oriented at an obtuse angle relative to the uppermost surface of the non-dielectric ring.
|
This patent application is a continuation of application Ser. No. 09/665,484 filed Sep. 20, 2000, now U.S. Pat. No. 6,284,093, which is a continuation of application Ser. No. 08/931,864 filed Sep. 16, 1997, now abandoned, which is a continuation-in-part of application Ser. No. 08/758,531 filed Nov. 29, 1996 by Bryan Pu et el. entitled "Apparatus for Improving Wafer and Chuck Edge Protection", now U.S. Pat. No. 5,740,009, and a continuation-in-part of application Ser. No. 08/735,444 filed Jan. 2, 1997 by Hongching Shan et al. entitled "Magnetically-Enhanced Plasma Chamber with Non-Uniform Magnetic Field", now U.S. Pat. No. 6,113,731.
The invention relates generally to an electrode on which a semiconductor workpiece is mounted in a plasma chamber. More specifically, the invention relates to a collar or ring surrounding the workpiece which can improve the spatial uniformity of a semiconductor fabrication process performed in the chamber.
Various semiconductor fabrication processes, such as plasma-assisted etching or chemical vapor deposition, are performed in plasma chambers in which a semiconductor workpiece 20 is mounted on a metal electrode 22 (see FIGS. 1 and 2). When the workpiece 20 is a circular semiconductor wafer, the cathode 22 generally has a circular top surface on which the wafer rests. Generally, a mixture of process reagent gases is supplied to the chamber while a pump maintains a vacuum inside the chamber. An electrical power source excites the process gas mixture to a plasma state. Typically, a radio frequency (RF) power supply 24 is capacitively coupled to the electrode 22 so as to produce on the electrode a negative bias voltage relative to the plasma body. The bias voltage attracts ions to bombard the workpiece so as to promote the desired fabrication process. Because it is negatively biased, the electrode 22 often is called the cathode electrode or cathode.
One objective in designing a plasma process chamber is to maximize the reaction rate of the plasma-enhanced process being performed in the chamber. The process rate will be undesirably reduced to the extent any portion of the ion flux from the plasma to the cathode bombards exposed portions of the cathode rather than the workpiece. Accordingly, to concentrate the RF current flow toward the workpiece 20, it is conventional to cover the side of the cathode 22 with a dielectric side shield 28 which is thick enough to present a high electrical impedance to RF current flow between the plasma and the side of the cathode.
In many conventional plasma chambers, the cathode 22 has a substantially larger diameter than the workpiece. To prevent RF current flow between the plasma and the portion of the cathode outside the perimeter of the workpiece, that portion of the cathode conventionally is covered by a dielectric top shield or collar 30. Like the side shield 28, the top shield 30 must sufficiently thick so that its electrical impedance reduces to a negligible level the RF current flow between the plasma and the portion of the cathode outside the perimeter of the workpiece.
One problem with conventional dielectric shields 28, 30 is that, depending on the process chemistry, exposed surfaces of the top shield 30 may be eroded by some of the chemical species present in the plasma, so that the top shield must be replaced periodically. In chambers lacking a top shield 30, side shield 28 may be exposed to the plasma, so that it will suffer the same erosion problem. Frequent replacement is undesirable because it requires suspending the production line while the chamber is shut down. The erosion of the dielectric shield may be especially severe in processes for etching dielectric layers on semiconductor workpieces, because the etchant species which etch the dielectric layer also may etch the dielectric collar.
Another objective in designing a semiconductor process plasma chamber is achieving spatial uniformity of the fabrication process over the surface of the workpiece. For example, in reactive ion etch processes and chemical vapor deposition processes, the process rate (i.e., the etch rate and deposition rate, respectively) may be slower in the center of the workpiece than at the periphery because the reactive species are more depleted near the center of the workpiece then near the periphery. In other words, such a process suffers from radial non-uniformity.
One conventional method of improving the spatial uniformity in the radial dimension is to surround the perimeter of the workpiece with an elevated cylindrical collar or shroud, sometimes called a focus ring. The elevated collar produces at least three effects, the first two of which typically reduce the process rate near the perimeter of the wafer. One effect of the elevated collar or shroud is that it obstructs reactive process gases outside the collar from travelling toward the wafer, so that the collar increases the depletion of reactive species near the wafer perimeter to more closely match the depletion near the wafer center. Another effect of the elevated collar is that it displaces axially upward the plasma sheath outside the workpiece perimeter, thereby moving the plasma sheath further from the workpiece perimeter, and consequently reducing the reactive species concentration near the perimeter of the workpiece. A third effect is that the elevated collar increases the residence time of reactive species near the perimeter of the wafer, which may either increase or decrease the process rate near the wafer perimeter, depending on the chemistry of the particular process being performed.
The elevated collar or shroud need not be a dielectric material to achieve the effects just described. However, if the elevated collar does contain dielectric material, it can also perform the function described earlier of reducing diversion of ion flux from the plasma to portions of the cathode outside the perimeter of the workpiece. In the conventional design shown in
While conventional elevated collars have been found to improve the spatial uniformity of semiconductor fabrication processes, further improvements in spatial uniformity would be desirable.
One aspect of the invention is especially useful in oxide etch processes and other plasma-assisted semiconductor fabrication processes which are highly reactive with dielectric materials. In this aspect of the invention, a portion of the cathode electrode which otherwise would be exposed to ion bombardment from the plasma is covered by a dielectric shield, and the shield is covered by a protective ring of non-dielectric material. Preferably, the protective ring is composed of a material which is highly non-reactive with, or resistant to erosion by, the process gases.
Such a protective ring will be eroded at a lower rate than the underlying dielectric, thereby allowing it to be replaced less frequently than a conventional dielectric shield. The protective ring also can prevent reactive species released by reaction of the dielectric ring with the process gases from adversely affecting the semiconductor fabrication process.
Alternatively, instead of being non-reactive with the process gases, the protective ring can be composed of a material which reacts with the process gases in such a way as to not adversely affect the performance of the semiconductor fabrication process.
In oxide etch processes for silicon wafers, the dielectric shield preferably is quartz, and the non-reactive protective ring preferably is silicon.
In a second aspect of the invention, the dielectric shield comprises an axially thick outer shield and an axially thin inner shield surrounding the perimeter of the workpiece. The thick outer dielectric shield provides a relatively high RF impedance to reduce ion flux from the plasma to the portion of the cathode covered by the outer shield. The thin inner dielectric shield provides a lower RF impedance which promotes an ion flux from the plasma to the portion of the cathode just outside the perimeter of the workpiece. Consequently, the thin inner dielectric shield extends the plasma sheath beyond the perimeter of the workpiece, thereby reducing any discontinuity in the plasma sheath near the perimeter. Preferably, the axial thickness of the inner dielectric shield is empirically adjusted to optimize the radial uniformity of the plasma process over the workpiece.
In an optional embodiment of such dielectric shield, a non-dielectric collar covers at least a portion of the thin inner shield and extends axially above the surface of the workpiece. Because it extends above the workpiece surface, the non-dielectric collar can function like a conventional elevated collar or focus ring by obstructing reactive process gases from traveling toward the workpiece, so that the collar increases the depletion of reactive species near the workpiece perimeter to more closely match the depletion near the workpiece center. However, unlike conventional designs, this embodiment of the invention permits the thickness of the inner dielectric shield and the height of the non-dielectric collar to be adjusted independently to better optimize the radial uniformity of the plasma process.
In a third aspect of the invention, a non-dielectric ring encircles and electrically contacts the workpiece. Such a non-dielectric ring can improve the spatial uniformity of the semiconductor fabrication process by reducing or avoiding discontinuities in the plasma sheath near the perimeter of the workpiece.
In a fourth aspect of the invention, azimuthal non-uniformities in process performance can be ameliorated by corresponding azimuthal variations in the dimensions of a dielectric shield and/or an elevated collar surrounding the workpiece.
In a fifth aspect of the invention, erosion of the portion of the process kit adjacent the perimeter of the workpiece is minimized by surrounding the workpiece with a collar having an elevated portion oriented at an angle of 110 degrees to 145 degrees relative to the surface of the workpiece.
1. Conventional Plasma Chamber
The vacuum chamber is enclosed by cylindrical side wall 12, circular bottom wall 14, and circular top wall or lid 16. An electrically grounded anode electrode 18 is mounted at the bottom of the lid 16. The anode electrode may be perforated to function as a gas inlet through which process gases enter the chamber. The side wall 12 may be either dielectric or metal. If it is metal, it will function as part of the anode.
The semiconductor wafer or workpiece 20 is mounted on a cathode electrode 22, which, in turn, is mounted in the lower end of the chamber. The workpiece 20 typically is clamped or held against the upper surface of the cathode 22 by a conventional chuck such as a mechanical clamping ring or an electrostatic chuck (not shown). A vacuum pump, not shown, exhausts gases from the chamber through exhaust manifold 23 and maintains the total gas pressure in the chamber at a level low enough to facilitate creation of a plasma, typically in the range of 10 millitorr to 20 torr, with pressures at the lower and higher ends of the range being typical for etching and CVD processes, respectively.
A radio frequency (RF) power supply 24 is connected to the cathode electrode 22 through a series coupling capacitor 26. The RF power supply provides an RF voltage between the cathode electrode and the grounded anode electrode 18 which excites the gases within the chamber into a plasma state. The plasma body has an time-average positive DC potential or voltage relative to the cathode and anode, which accelerates ionized process gas constituents to bombard the cathode and anode electrodes.
To maximize the concentration of reactive species and charged particles at the surface of the wafer 20, and thereby maximize the reaction rate of the plasma-enhanced process being performed in the chamber, as much as possible of the RF current flow between the plasma and the cathode electrode 22 should be concentrated in the area occupied by the wafer 20 on the front surface of the cathode. Therefore, all front and side surfaces of the cathode which are not covered by the wafer are conventionally covered by a thick dielectric.
2. Protective Ring to Prevent Erosion of Dielectric Shield
The dielectric shield or collar 30 and the protective ring 50 together constitute the "process kit" which must be periodically replaced when either of these two components becomes noticeably eroded. The process kit erodes progressively as successive wafers are processed in the chamber. Because the dimensions of the process kit components affect the plasma density and the distribution of process gases near the edge of the wafer, their progressive erosion changes the characteristics of the semiconductor fabrication process performed in the chamber. Therefore, maintaining process consistency and uniformity generally requires replacing these components when they become significantly eroded.
In a conventional dielectric shield 30 which lacks a protective ring (see FIG. 1), the exposed surface 104 of the dielectric just outside the perimeter of the wafer 20 normally is the portion of the dielectric shield which erodes the fastest. The erosion problem diminishes at points progressively outward from the wafer perimeter because the thick dielectric 30 prevents the plasma from extending significantly beyond the perimeter of the wafer, thereby reducing the ion flux which contributes to erosion.
Depending on the chemistry of the processes performed in the plasma chamber, covering the exposed inner surface 104 of the dielectric shield with an erosion-resistant protective ring 50 can dramatically reduce the erosion, and extend the lifetime, of the process kit.
The inner dielectric shield 38 in the
The erosion-resistant ring 50 should be composed of a material which is more resistant to erosion than the dielectric material of the inner shield 38 in the environment of the particular plasma-enhanced process to be performed in the chamber. If the inner dielectric shield 38 is susceptible to erosion by the process gases, then good candidates for materials which are substantially more erosion-resistant are likely to be non-dielectric materials, such as metals or semiconductors.
In plasma-enhanced processes for etching dielectric layers on a workpiece 20, the process gas constituents which etch the dielectric on the workpiece also are likely to etch the dielectric shield 30. For example, the dielectric shield 30, including the thin inner portion 38, preferably is implemented as a single piece of quartz. Quartz is advantageous because it is available with extremely low impurity concentrations, which is important to avoid releasing contaminants into the process chamber. However, if the dielectric layer on the workpiece which is to be etched is silicon dioxide, then it is chemically identical to quartz, so etch process will also erode the quartz shield 30. Accordingly, in a silicon oxide etch chamber, the protective ring 50 is highly advantageous in protecting the process kit from erosion.
In a silicon oxide etch chamber, the protective ring 50 preferably is composed of pure silicon. Silicon is advantageous because it is resistant to erosion by reactive species generally used in oxide etch processes, and because it readily can be obtained in forms having extremely low impurity concentrations to as to avoid the release of contaminants into the chamber. Single crystal silicon is preferred because it can be obtained with the highest purity.
In our tests using a standard process for etching silicon dioxide layers on silicon wafers, the silicon protective ring 50 etches at a rate at least ten times slower than the etch rate of quartz. When the silicon protective ring begins to acquire a noticeably concave surface due to the erosion, the silicon ring can be readily replaced without replacing the dielectric shield 30. Furthermore, the useful life of the silicon ring can be doubled by inverting it after the top surface becomes concave.
Conversely, if the dielectric inner shield 38 is as erosion-resistant as any other readily available material, then the protective ring 50 can be omitted. For example, the protective ring 50 may be unnecessary in chambers used for etching metal or silicon, because a quartz shield has good resistance to erosion by the reactive species typically used in metal etching and silicon etching.
If the protective ring 50 is a non-dielectric material such as silicon, and if the wafer 20 is electrically insulated from the cathode 22 (as would be the case if the wafer is mounted to the cathode by an electrostatic chuck having a dielectric layer 52 between the cathode and the wafer), then it generally will be beneficial to electrically insulate the non-dielectric protective ring 50 from the adjacent surface 54 of the cathode. If the wafer were insulated from the cathode but the non-dielectric ring were not, the non-dielectric ring would be coupled to the cathode through a lower impedance than the wafer, resulting in excessive RF power being coupled to the plasma through the silicon ring instead of through the wafer.
The electrical insulation between the cathode and the non-dielectric protective ring 50 can be a layer of oxide or other dielectric on the surface 54 of the cathode adjacent the protective ring. In the preferred embodiment, the cathode is aluminum, and the oxide layer is provided by anodizing the entire outer surface of the cathode. Alternatively, the non-dielectric protective ring 50 can be mounted on the dielectric shield so as to maintain a gap between the protective ring and the cathode, so that the vacuum gap provides electrical insulation between the ring 50 and the cathode.
3. Protective Ring to Prevent Dielectric Shield from Altering Process Chemistry
The protective ring 50 just described (exemplified by the two embodiments shown in
For example, when a quartz shield 30 is eroded, either by sputtering or by reaction with process gases, it generally releases oxygen. In certain semiconductor fabrication processes, oxygen significantly affects the reaction rate. Specifically, processes for etching hydrocarbons, such as photoresist planarization etching, are accelerated by an increased concentration of oxygen. A similar effect occurs in processes for etching spin-on glass (SOG) dielectric, because SOG typically has a substantial carbon content. For these etch processes, an exposed quartz shield 30 will increase the etch rate near the perimeter of the wafer, thereby degrading spatial uniformity of etch rate.
As another example, the oxygen released by erosion of a quartz shield 30 has a different effect on processes for etching a silicon dioxide layer on a wafer. It is desirable for such etch processes to be as selective as possible against etching any silicon exposed on the wafer. In typical oxide etch processes, oxygen does not promote the etching of silicon dioxide, but it does promote the etching of silicon. Therefore, erosion of the quartz shield 30 typically will degrade the selectivity of the etch process near the perimeter of the wafer.
In both examples, the degradation in spatial uniformity or selectivity near the perimeter of the wafer can be ameliorated by covering the inner portion 38 of the quartz shield 30 with a protective ring 50 composed of a material which will not release chemical species that significantly affect the etch process. As explained earlier, it likely is unnecessary to cover the outer portion of the quartz shield 30 with a protective ring, because the ion flux is declines away from the perimeter of the workpiece, which generally reduces the rate of reaction between the exposed surfaces of the quartz shield and the process gases.
Silicon is a preferred material for protective ring 50 for the same reasons it was described earlier as being effective for extending the lifetime of the process kit, namely, good resistance to erosion by reagents typically used for etching dielectrics and metals, and ready availability with low impurity levels. Silicon has an additional advantage for improving uniformity in etch processes that use fluorine-containing reagents such as CF4 or CHF3. High concentrations of fluorine ions in the plasma generally reduce the selectivity of the etch process. Silicon reacts with and consumes ("scavenges") fluorine ions, so that providing silicon material adjacent the workpiece reduces the fluorine ion concentration adjacent the workpiece. For example, in processes for etching silicon oxide, the presence of a silicon ring 50 is believed to improve the etch selectivity toward photoresist; i.e., it is believed to reduce the photoresist etch rate.
We expect the
Preferably, the protective shield 50 is composed of silicon, which has the further advantage of scavenging fluorine ions as described earlier. In a process for etching silicon oxide using fluorine-containing reagents, the
One potential disadvantage of increasing the exposed surface area of the silicon shield is that its effect on the etching process becomes more significant, which then makes its temperature sensitivity more significant. Within the range of temperatures normally encountered in a plasma etch chamber, increasing the temperature of the silicon shield will increase its reactivity with fluorine. Therefore, in designs in which the silicon shield has a large surface area exposed to the plasma, it may become necessary to regulate the temperature of the silicon shield to ensure good process repeatability.
4. Dielectric Shield with Lower Impedance Portion Near Workpiece
As explained above in the Background of the Invention, the conventional dielectric shield 30 shown in
We have found that the spatial uniformity of the fabrication process over the surface of the wafer 20 often can be further improved by providing an annular area surrounding the wafer through which RF power is coupled from the cathode electrode 22 to the plasma 40. Such RF coupling is accomplished by providing the dielectric shield 30 with an inner portion 38 whose RF impedance is substantially less than that of the surrounding portion of the dielectric shield. RF power coupled between the cathode electrode 22 and the plasma through the relatively low impedance of the inner dielectric shield 38 causes the plasma sheath 42 to extend radially beyond the perimeter of the workpiece 20. This minimizes any discontinuity of the plasma sheath near the perimeter of the workpiece, thereby enhancing the radial uniformity of the plasma-assisted semiconductor fabrication process being performed on the workpiece.
The remainder of the dielectric shield 30 surrounding the inner portion 38 has a substantially higher electrical impedance to minimize coupling of RF power to regions too far from the workpiece to significantly contribute to the fabrication process being performed on the workpiece. RF power coupling outside the perimeter of the workpiece can be minimized by increasing the thickness (i.e., axial height) of the elevated collar 30 and by fabricating it of a dielectric material having a lower dielectric constant. Quartz is a suitable dielectric material for the elevated collar 30 because it is readily available with very low impurity levels to as to minimize the release of contaminants into the chamber.
The electrical impedance of the inner dielectric shield 38 can be made less than that of the remaining outer portion of the dielectric shield 30 by making the inner shield 38 substantially thinner in the axial dimension, as illustrated in FIG. 3. In the preferred embodiment, the dielectric shield 30 is a single piece of quartz fabricated in the illustrated shape which is thinner at the inner portion 38. Alternatively, the electrical impedance of the inner dielectric shield 38 can be reduced by fabricating it of a material having a higher dielectric constant than the remaining outer portion of the shield 30.
In practice, the electrical impedances of the inner and outer portions of the dielectric shield 30 will vary with RF frequency. The impedances we refer to in this patent specification are those at the frequency of the RF power source 24 connected to the cathode 22, this frequency being 13.56 MHz in the preferred embodiment.
We believe the dimensional parameters of the process kit which most strongly affect the spatial uniformity of the etch rate are the axial thickness or depth D of the thin, inner dielectric shield 38, the radial width W of the thin, inner dielectric shield 38, the height H above the wafer of the elevated portion 30 of the process kit, and the spacing S between the elevated portion and the wafer perimeter. (The reference letters D, W, H, and S appear only in
The RF power capacitively coupled between the cathode electrode 22 and the plasma 40 through the inner dielectric shield 38 is inversely proportional to the electrical impedance of the inner dielectric shield. Such impedance is proportional to the radial width W divided by the depth D of the thin, inner dielectric shield 38, and is inversely proportional to the dielectric constant of the material of the inner dielectric shield. The coupling of RF power produces a corresponding increase in charged particle concentration in the plasma pre-sheath and sheath 42 above the inner dielectric shield 38, which produces a corresponding increase in ion flux toward the inner dielectric shield.
It may be desirable to experiment with dielectric shields and protective rings having different dimensions and shapes to determine which design provides the best combination of spatial uniformity and throughput for a particular semiconductor fabrication process. As mentioned at the beginning of this section, RF power coupled from the cathode to the plasma outside the area occupied by the wafer diminishes the concentration of ions and reactive species at the wafer surface. Therefore, whatever improvement in spatial uniformity is achieved by increasing the coupling of RF power through the thin, inner dielectric shield 38 should be balanced against the resulting decrease in the average rate (i.e., throughput) of the process being performed on the wafer.
For example,
We measured the etch rate and etch rate uniformity of a standard silicon dioxide etch process to compare the designs of
The effect of the height H of the elevated portion 30 of the process kit is more complex. In most configurations, the predominant effect of the elevated portion is the "shadow" effect or "depletion" effect wherein the elevated portion 30 obstructs reactive process gases outside the collar from travelling toward the wafer. Consequently, the depletion effect increases the depletion of reactive species near the wafer perimeter to more closely match the depletion near the wafer center. Generally, increasing the depletion of active species near the wafer perimeter decreases the process rate near the perimeter. Secondly, the elevated portion produces a "confinement" or "residence time" effect in which it increases the residence time of reactive species near the perimeter of the wafer, which may either increase or decrease the process rate near the wafer perimeter, depending on the chemistry of the particular process being performed. Thirdly, the elevated portion of the shield produces a "focusing" effect which increases the ion flux near the perimeter of the wafer because ions 34 accelerated downward from the plasma sheath collide with inwardly facing surface 32 of the elevated portion and ricochet 36 toward the wafer (see FIG. 3). The focusing effect is strongly dependent on the angle between the wafer surface and the face 32 of the elevated portion which faces the wafer, where a 135°C angle (45°C from vertical) would be expected to produce the greatest deflection of ions toward the center of the wafer. A fourth effect of the elevated collar is to displace axially upward the plasma sheath outside the workpiece perimeter, thereby moving the plasma sheath further from the workpiece perimeter, and consequently reducing the reactive species concentration near the perimeter of the workpiece.
The preceding paragraph discussed the effect of the height H on process rate. The "depletion" effect and the "residence time" effect additionally affect other process performance parameters such as selectivity in an etch process or film quality in a deposition process. The present invention provides more options for optimizing these performance parameters by allowing the RF coupling beyond the workpiece perimeter to be adjusted independently of the height of the elevated collar 30 (the "depletion" and "residence time" effects being controlled by the latter).
The depletion effect, residence time effect, focusing effect, and plasma displacement effect all tend to be more pronounced as the height H is increased. All of these effects also are affected by the radial spacing S between the inward face 32 of the elevated portion and the perimeter of the wafer. The focusing effect is expected to be maximized at a certain spacing S (which must be empirically determined), whereas the other three effects progressively decrease with increasing spacing S.
By substituting a different elevated non-dielectric ring 58 having a different radial width, the spacing S can be altered independently of the width W of the inner dielectric 38, thereby providing an additional design parameter for optimizing the spatial uniformity of the semiconductor fabrication process.
The second non-dielectric ring 58 shown in
Another factor affecting the desired impedance of the dielectric inner shield 38 is whether the chamber uses an electrostatic chuck 52 (see
Because the electrical impedance of the illustrated silicon protective ring 50 is much less than that of the inner dielectric shield 38, we expect the axial depth D (i.e., thickness) of the protective ring to have no substantial effect on the coupling of RF power between the cathode electrode and the plasma, and hence no substantial effect on the ion flux distribution over the wafer. In practice, the silicon ring should be thick enough to prevent accidental breakage when it is installed by maintenance personnel. Also, a thicker silicon protective ring can withstand more erosion before it should be replaced.
We compared the conventional dielectric shield 30 of
The tests were performed using a process for etching a layer of silicon dioxide from a 200 mm diameter silicon wafer 20 in the magnetically-enhanced plasma chamber depicted in
In comparison with the conventional design of
5. Non-Dielectric Ring Electrically Contacting Wafer
In the
In the designs of both
To maximize the continuity of the plasma sheath above the edge of the wafer 20, the non-dielectric ring 50 or 60 preferably should be composed of the same material as the wafer substrate. Specifically, if the workpiece 20 is a silicon wafer, the non-dielectric ring preferably is silicon.
In the designs of
To prevent the elastic ring 66, 68 from moving out of position when the wafer 20 is removed, the stationary lower portion 66 of the elastic ring preferably should fit snugly between the dielectric shield 30 and the cathode electrode 20.
Since the silicon ring 50 or 60 should be free to move up and down, there will be some gap between the silicon ring and the dielectric shield 30. This gap preferably should be small enough to prevent the plasma from penetrating the gap and reaching the spring 68, the edge of the electrostatic chuck 52, and the underside of the wafer 20. It is sufficient for the gap to be less than the width of the plasma sheath, which, as is well known, is a function of chamber pressure and other factors.
In the absence of a downward clamping force on the wafer 20, the spring or elastomer 68 pushes the silicon ring 60 upward to elevate it above the top surface of the electrostatic check 52. Therefore, when a wafer 20 is first carried into the chamber and deposited on the electrostatic chuck 52, the wafer will rest on the elevated silicon ring 60 rather than on the electrostatic chuck. If the resulting gap between the wafer bottom surface and the chuck top surface is too great, the chuck will not be able to produce sufficient electrostatic force on the wafer to overcome the spring force of the elastomer 68 so as to clamp the wafer against the top surface of the chuck. To prevent this problem, the elastomer 68 should have a limited upward extension so as to elevate the silicon ring 60 and the wafer 20 only a slight amount before the electrostatic chuck is turned on. The maximum permissible elevation of the un-chucked wafer will be greater if the elastomer has a weaker spring coefficient or if the electrostatic chuck is stronger. We estimate that the elevation of the un-chucked wafer in our prototype was about 0.003 to 0.010 inch (0.08 to 0.25 mm) above the electrostatic chuck 52. However, it is difficult to measure the wafer's elevation while a vacuum is present in the chamber.
Conversely, if the wafer is chucked to the cathode electrode by a mechanical clamp rather than by an electrostatic chuck, there is no need to limit the amount by which the elastomer elevates the silicon ring.
If the wafer 20 is electrically insulated from the cathode, as would be the case if the wafer is mounted to the cathode by an electrostatic chuck having a dielectric layer 52, then it is important to electrically insulate the silicon ring 50 or 60 from the cathode. The latter insulation may be afforded by anodizing the surface of the cathode if the cathode is aluminum. If the wafer were insulated from the cathode but the silicon ring were not, the silicon ring could be coupled to the cathode through a lower impedance than the wafer, resulting in excessive RF power being diverted through the silicon ring instead of the wafer.
We performed tests comparing the embodiments of FIG. 3 and
One distinctive feature of the
To further reduce any discontinuity in the plasma sheath, the outer portion 64 of the silicon ring has a progressively diminishing, tapered thickness as it overlaps the inner portion 32 of the dielectric elevated collar 30, thereby providing a gradual transition in electrical characteristics from the silicon ring to the elevated collar.
In our tests, these features of the
6. Azimuthal Variation in Dimensions of Collar or Dielectric Shield
The spatial uniformity of a plasma-enhanced semiconductor fabrication process may be impaired by asymmetries or non-uniformities in the shape or mechanical layout of components of the process chamber. More specifically, if the workpiece is a circular semiconductor wafer, the process will have azimuthal non-uniformities if the process chamber components are not cylindrically symmetrical relative to the axis of the wafer. In one aspect of our invention, these azimuthal non-uniformities can be offset by corresponding azimuthal variations in the dimensions of an elevated collar and/or a dielectric shield which surrounds the workpiece.
The reason for rotating the magnetic field is to maximize the azimuthal symmetry of the etch process performed on the wafer. However, azimuthal asymmetries remain because, as stated in the aforementioned Qian et al. patent, the time-averaged magnetic field near the axis of each electromagnet (i.e., at azimuths of 0°C, 90°C, 180°C, and 270°C) is less than the time-averaged magnetic field near the locations 76 closest to the edges of adjacent electromagnet coils (i.e., at azimuths of 45°C, 135°C, 225°C, and 315°C). Consequently, the process rate near the perimeter of the wafer is lower at azimuths which are multiples of 90°C than at azimuths which are odd multiples of 45°C.
An additional azimuthal asymmetry in the chamber shown in
In our invention, such azimuthal non-uniformities in process performance can be ameliorated by surrounding the semiconductor wafer or workpiece 20 by an elevated shroud or collar 30a and/or a dielectric inner shield 38 whose shape varies with azimuth so as to offset the azimuthal non-uniformities in process performance due to chamber asymmetries. Specifically, the dielectric inner shield 38 may vary in thickness or inner diameter as a function of azimuth, or the elevated collar 30a may vary in height or in inner diameter as a function of azimuth.
For example,
We compared the just-described wavy collar 30a with a conventional collar 30 having a uniform height. All tests were performed in an MERIE chamber similar to that shown in
With the conventional collar 30, the spatial non-uniformity was caused largely by the etch rate being lower at azimuths which are multiples of 90°C, where the magnetic field is weakest. The wavy collar 30a improved the spatial uniformity of etch rate in our tests because its height is greatest at azimuths which are multiples of 90°C, thereby increasing the etch rate in those regions where the magnetic field is weakest. We believe the increase in etch rate where the wavy collar 30a is highest is caused by a "focus effect" in which the inner surface 32 of the elevated collar scatters charged particles 36 toward the wafer 20, as illustrated in FIG. 3. Also, we believe the increase in etch rate at the highest portions 81 of the wavy collar can be maximized if the inner surface 32 forms approximately a 135°C angle with the plane of the workpiece, as shown in FIG. 3 and as described more fully below.
In some semiconductor fabrication processes, increasing the height of the collar can have the opposite effect of that observed in the silicon dioxide etch process just described. Specifically, increasing the collar height can reduce the process rate by two mechanisms: by obstructing the migration of process gas constituents to the workpiece from regions outside the inner diameter of the collar (the "shadow" or "depletion" effect), and by pushing the plasma axially upward, away from the workpiece. Furthermore, increasing the collar height increases the "residence time" effect which, as discussed previously, can either increase or decrease the process rate, depending on the process. Therefore, when applying the wavy ring to a new process, it may be prudent to measure the process rate (e.g., etch rate or deposition rate, depending on the process) at a number of points around the perimeter of the workpiece to determine whether the process rate increases or decreases adjacent the high portions 81 (or low portions 82) of the wavy ring.
In a process, such as the tested silicon dioxide etch process, in which the focus effect predominates over the confinement effect, we believe the confinement effect may predominate if the collar height is increased further. Specifically, we expect that increasing the collar height beyond a certain point may decrease the process rate due to the confinement effect more than it increases the process rate due to the focus effect. Accordingly, we believe that a solution to the previously described process rate enhancement near the slit 78 would be to make the elevated collar especially high adjacent the slit, so that the high collar will block the migration of reagents between the slit and the workpiece.
An alternative to providing azimuthal variation in the height of the elevated collar is to provide azimuthal variation in the inner diameter of the elevated portion of the collar, that is, to vary the gap between the perimeter of the workpiece 20 and the inner surface 32 of the elevated portion of the collar. Decreasing the inner diameter (i.e., decreasing the gap) generally would change the process rate in the same way as increasing the height of the collar.
Yet another method for offsetting azimuthal variations in the process rate is to provide corresponding azimuthal variations in the axial thickness D or radial width W of the dielectric inner shield 38 which surrounds the perimeter of the workpiece. At azimuths where the chamber non-uniformities or asymmetries would tend to decrease the reaction rate, the dielectric inner shield 38 should be thinner or wider so as to couple more RF power from the cathode electrode 22 to the plasma. Conversely, at azimuths where the chamber non-uniformities or asymmetries would tend to increase the reaction rate, the dielectric inner shield 38 should be thicker or narrower so as to couple less RF power from the cathode electrode 22 to the plasma. The increased RF power coupling through the thinner portions the dielectric inner shield 38 increases the plasma density at those azimuths, and consequently increases the reaction rate at those azimuths. Therefore, azimuthal non-uniformities in the process rate or other process performance parameters can be corrected by fabricating the dielectric inner shield 38 so as to produce offsetting azimuthal variations.
For example, the exemplary process chamber shown in
Unlike the elevated collar 30a, the dielectric inner shield 38 need not extend above the plane of the semiconductor workpiece. In fact, it may be advantageous for the dielectric shield to be entirely below the plane of the workpiece to minimize contamination of the workpiece by material which unavoidably deposits on the dielectric shield as a byproduct of the process being performed in the chamber. If the dielectric shield is below the plane of the workpiece, any particles of deposited material which flake off or detach from the dielectric shield will not fall onto the workpiece.
7. Optimal Angle of Dielectric Collar Inner Surface
As stated in the Background of the Invention, a problem with conventional process kits is that they are rapidly eroded by bombardment of ions from the plasma sheath, therefore requiring frequent replacement to maintain consistent process performance. The erosion typically is fastest at the portion of the process kit closest to the perimeter of the wafer. One reason the erosion is fastest there is that ions (depicted by arrow 106 in
The erosion of exposed surfaces of the process kit near the perimeter of the wafer can be greatly reduced by orienting the exposed inwardly facing surface 32 of the elevated collar or shroud 30 at an angle relative to the central axis of the wafer as shown in
Advantageously, the just described angular orientation will reduce the erosion of the portion of the process kit closest to the edge of the workpiece 20. For example, the portion of the process kit which will enjoy reduced erosion will be the non-dielectric ring 50 in the embodiments of
Although a 135°C angle relative to the surface of the wafer would appear to be ideal because it maximizes the horizontal scattering of charged particles, there may be practical reasons to choose a somewhat different angle in order to optimize spatial uniformity of the plasma-enhanced process. Specifically, a more vertical angle (i.e., closer to 90°C) may be desirable when the gap between the wafer perimeter and the inner surface 32 of the shroud is very small.
As illustrated in FIG. 5 and
8. Other
All references in the specification and claims to directions such as "upper", "lower", "above", and "below" are intended merely to indicate the locations of components relative to each other, and not to indicate the orientation of the components relative to the direction of gravity. The direction of the earth's gravity is irrelevant to this invention. For example, the illustrated designs can be inverted for face down processing of semiconductor wafers, in which case directions described in this patent specification and claims as "upper" and "lower" would actually be "down" and "up", respectively, relative to the direction of the earth's gravity.
When we state that a first component "encircles" or "surrounds" the perimeter of a second component--such as the outer portion of the dielectric shield encircling the perimeter of the protective ring, or the outer portion of the protective ring encircling the perimeter of the workpiece--we do not mean to imply that the two components are coplanar. For example, we describe the outer portion of the protective ring 50 as encircling the perimeter of the wafer 20 in
One way to define "encircling" or "surrounding" more precisely is that the first component includes an outer portion whose radial position is outside or beyond the perimeter of the second component. Another way to define "encircling" or "surrounding" more precisely is that, when the second component lies substantially in a two-dimensional surface, the projection of the outer portion of the first component onto the surface surrounds the projection of the perimeter of the second component onto that surface. Yet another definition of "encircling" or "surrounding" is that, when the second component has an axis of symmetry, the projection of the outer portion of the first component onto a surface perpendicular to said axis of symmetry surrounds the projection of the perimeter of the second component onto that surface. All of these definitions should be equivalent in the most common situation in which the workpiece is essentially flat. If the workpiece is not flat, then the most appropriate definition will depend on the geometry of the workpiece.
We use the term "ring" to describe an object which encircles an axis, but the ring need not have circular symmetry.
Wang, James, Shan, Hongching, Ke, Kuang-Han, Welch, Michael D., Fong, Henry, Pu, Bryan Y., Li, Zongyu
Patent | Priority | Assignee | Title |
11049760, | Mar 04 2016 | Applied Materials, Inc | Universal process kit |
6944006, | Apr 03 2003 | Applied Materials, Inc | Guard for electrostatic chuck |
7658816, | Sep 05 2003 | Tokyo Electron Limited | Focus ring and plasma processing apparatus |
7749398, | Sep 29 2006 | Tokyo Electron Limited | Selective-redeposition sources for calibrating a plasma process |
7776748, | Sep 29 2006 | Tokyo Electron Limited | Selective-redeposition structures for calibrating a plasma process |
7850174, | Jan 07 2003 | Tokyo Electron Limited | Plasma processing apparatus and focus ring |
7882800, | Dec 13 2001 | Tokyo Electron Limited | Ring mechanism, and plasma processing device using the ring mechanism |
7942969, | May 30 2007 | Applied Materials, Inc. | Substrate cleaning chamber and components |
7981262, | Jan 29 2007 | Applied Materials, Inc | Process kit for substrate processing chamber |
8114247, | Jan 07 2003 | Tokyo Electron Limited | Plasma processing apparatus and focus ring |
8382942, | Mar 21 2003 | Tokyo Electron Limited | Method and apparatus for reducing substrate backside deposition during processing |
8617672, | Jul 13 2005 | Applied Materials, Inc | Localized surface annealing of components for substrate processing chambers |
8740206, | Jan 27 2010 | Applied Materials, Inc | Life enhancement of ring assembly in semiconductor manufacturing chambers |
8834963, | Jan 11 2013 | International Business Machines Corporation | Method for applying material to a surface |
8869741, | Dec 19 2008 | Lam Research Corporation | Methods and apparatus for dual confinement and ultra-high pressure in an adjustable gap plasma chamber |
8980045, | May 30 2007 | Applied Materials, Inc. | Substrate cleaning chamber and components |
9299539, | Aug 21 2009 | Lam Research Corporation | Method and apparatus for measuring wafer bias potential |
9481608, | Jul 13 2005 | Applied Materials, Inc. | Surface annealing of components for substrate processing chambers |
9527107, | Jan 11 2013 | International Business Machines Corporation | Method and apparatus to apply material to a surface |
9548186, | Dec 19 2008 | Lam Research Corporation | Methods and apparatus for dual confinement and ultra-high pressure in an adjustable gap plasma chamber |
9960019, | Jan 27 2010 | Applied Materials, Inc. | Life enhancement of ring assembly in semiconductor manufacturing chambers |
Patent | Priority | Assignee | Title |
4767641, | Mar 04 1986 | Leybold Aktiengesellschaft | Plasma treatment apparatus |
4948458, | Aug 14 1989 | Lam Research Corporation | Method and apparatus for producing magnetically-coupled planar plasma |
5074456, | Sep 18 1990 | Lam Research Corporation | Composite electrode for plasma processes |
5213658, | Oct 26 1990 | Mitsubishi Denki Kabushiki Kaisha | Plasma processing method |
5225024, | May 08 1989 | Applied Materials, Inc. | Magnetically enhanced plasma reactor system for semiconductor processing |
5271788, | Jul 23 1991 | Tokyo Electron Limited; Kabushiki Kaisha Toshiba | Plasma processing apparatus |
5275683, | Oct 24 1991 | Tokyo Electron Limited | Mount for supporting substrates and plasma processing apparatus using the same |
5292399, | Apr 19 1990 | Applied Materials, Inc. | Plasma etching apparatus with conductive means for inhibiting arcing |
5298465, | Aug 16 1990 | Applied Materials, Inc. | Plasma etching system |
5304248, | Dec 05 1990 | Applied Materials, Inc. | Passive shield for CVD wafer processing which provides frontside edge exclusion and prevents backside depositions |
5330607, | Oct 23 1990 | AIXTRON, INC | Sacrificial metal etchback system |
5411624, | Jul 23 1991 | Tokyo Electron Limited | Magnetron plasma processing apparatus |
5423918, | Sep 21 1993 | Applied Materials, Inc | Method for reducing particulate contamination during plasma processing of semiconductor devices |
5474649, | Mar 08 1994 | Applied Materials, Inc | Plasma processing apparatus employing a textured focus ring |
5484486, | May 02 1994 | Applied Materials, Inc | Quick release process kit |
5486975, | Jan 31 1994 | Applied Materials, Inc | Corrosion resistant electrostatic chuck |
5529657, | Oct 04 1993 | Tokyo Electron Limited | Plasma processing apparatus |
5552124, | Jun 22 1994 | Applied Materials, Inc. | Stationary focus ring for plasma reactor |
5556500, | Mar 03 1994 | Tokyo Electron Limited; Kabushiki Kaisha Toshiba | Plasma etching apparatus |
5556501, | Oct 03 1989 | Applied Materials, Inc. | Silicon scavenger in an inductively coupled RF plasma reactor |
5573596, | Jan 28 1994 | Applied Materials, Inc.; Applied Materials, Inc | Arc suppression in a plasma processing system |
5673922, | Mar 13 1995 | Applied Materials, Inc | Apparatus for centering substrates on support members |
5685914, | Apr 05 1994 | Applied Materials, Inc | Focus ring for semiconductor wafer processing in a plasma reactor |
5740009, | Nov 29 1996 | Applied Materials, Inc. | Apparatus for improving wafer and chuck edge protection |
5763020, | Oct 17 1994 | United Microelectronics Corporation | Process for evenly depositing ions using a tilting and rotating platform |
5888414, | Jun 27 1991 | Applied Materials, Inc. | Plasma reactor and processes using RF inductive coupling and scavenger temperature control |
5891348, | Jan 26 1996 | Applied Materials, Inc | Process gas focusing apparatus and method |
5922133, | Sep 12 1997 | Applied Materials, Inc. | Multiple edge deposition exclusion rings |
5942042, | May 23 1997 | Applied Materials | Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system |
5990017, | Jun 27 1991 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
6024826, | Jun 27 1991 | Applied Materials, Inc | Plasma reactor with heated source of a polymer-hardening precursor material |
6036877, | Jun 27 1991 | Applied Materials, Inc | Plasma reactor with heated source of a polymer-hardening precursor material |
6039836, | Dec 19 1997 | Lam Research Corporation | Focus rings |
6074488, | Sep 16 1997 | Applied Materials, Inc | Plasma chamber support having an electrically coupled collar ring |
6074512, | Jun 27 1991 | Applied Materials, Inc | Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners |
6284093, | Nov 29 1996 | Applied Materials, Inc. | Shield or ring surrounding semiconductor workpiece in plasma chamber |
EP665575, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 04 2001 | Applied Materials, Inc | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 21 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 21 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 28 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 10 2007 | 4 years fee payment window open |
Aug 10 2007 | 6 months grace period start (w surcharge) |
Feb 10 2008 | patent expiry (for year 4) |
Feb 10 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 10 2011 | 8 years fee payment window open |
Aug 10 2011 | 6 months grace period start (w surcharge) |
Feb 10 2012 | patent expiry (for year 8) |
Feb 10 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 10 2015 | 12 years fee payment window open |
Aug 10 2015 | 6 months grace period start (w surcharge) |
Feb 10 2016 | patent expiry (for year 12) |
Feb 10 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |