The present invention relates to a device for outcoupling of light in an external cavity laser, which external cavity laser comprises at least one light source, at least one wavelength selective feedback element, at least one polarization selective beam-splitting optical element, and at least one Faraday-rotator element.
|
1. A light outcoupling device for outcoupling of light in an external cavity laser having an external cavity extending between at least one light source and at least one wavelength selective feedback element, the light outcoupling device comprising:
at least one polarization selective beam-splitting optical element, and at feast one Faraday-rotator element optically coupled to said polarization selective beam-splitting optical element, said polarization selective beam-splitting optical element being functionally arranged to fully transmit a linearly polarized light propagating in a first direction, and wherein the wavelength selective feedback element has a polarization function and is optically coupled to the polarization beam-splitting optical element such that the linearly polarized light incident thereon provides the selective feedback with substantially optimum efficiency, and is at least partly outcoupled from the external cavity by the polarization selective beam-splitting optical element when the linearly polarized light is propagating in a second direction.
9. Method for outcoupling of light in an external cavity laser having an external cavity extending between at least one light source and at feast one wavelength selective feedback element, said method comprising:
utilizing at least one polarization selective beam-splitting optical element and at least one Faraday-rotator element as outcoupling elements, arranging the external cavity laser and the outcoupling elements such that linearly polarized light is fully transmitted through the polarization selective beam-splitting optical element when propagating in a first direction, and is incident on the wavelength selective feedback element when propagating in a second direction and with a polarization such that said wavelength selective feedback element has substantially optimum efficiency, wherein the linearly polarized light is at least partly outcoupled from the external cavity by the polarization selective beam-splitting optical element when propagating in a second direction, and wherein the Faraday-rotator element is positioned between the beam-splitting optical element and the wavelength selective feedback element.
11. A method for outcoupling of light in an external cavity laser, having an external cavity extending between at least one light source element and at least one wavelength selective feedback element, comprising:
generating light of linear polarization in said light source and emitting said light in a diverging beam, collimating said diverging beam in a light-converging optical element to an linearly polarized light beam, fully transmitting said linearly polarized light beam through a polarization selective beam-splitting optical element in a first direction, rotating the plane of polarization of said light beam in an angle α+m·180°C, wherein 0°C≦α≦360°C and m is an integer 0, 1, 2, 3, . . . , redirecting said light beam with the rotated plane of polarization, rotating the plane of polarization of said redirected light beam so that the angle of the light polarization becomes an angle 2α from a preferred angle α of transmission through said polarization selective beam-splitting optical element, partly transmitting and partly outcoupling said redirected light beam when propagating through said polarization selective beam-splitting optical element in a second direction.
2. The device according to
7. The device according to
8. The device according to
12. The method of
|
This application claims priority on provisional Application No. 60/251,509 filed on Dec. 7, 2000, the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a device and a method for efficient outcoupling of optical power in an external cavity laser, such that the outcoupled light contains a reduced fraction of spontaneous emission compared with traditional devices and methods.
2. Background Information
An external cavity laser is a type of laser, which is often used when it is desirable to be able to vary the wavelength of the light emitted from the laser. An example of an external cavity laser is shown in
If, but not only if, the light emitting and/or amplifying element 100 is a semiconductor laser die, said light emitting and/or amplifying element includes an optical waveguide 106. The optical waveguide 106 is narrower than the optical beam 181 and at least one converging optical element 110 is used for collimating the diverging beam 180 and focusing the collimated beam 189. If a first reflecting external element 170 is used, at least one converging optical element 160 is used for collimating the diverging beam 191 and focusing the collimated beam 193.
All interfaces, except for the first and second reflecting elements, should be arranged such that said interfaces do not reflect the light in the direction of the cavity optical axis 199. Alternatively, said interfaces can be coated for anti-reflection. If, but not only if, the light emitting and/or amplifying element 100 is a semiconductor laser die, the facet 104, facing the direction of the second reflecting element, is often coated for anti-reflection.
The optical power can be coupled out of the cavity, to the output beam or optical fiber, in several ways. For example, if a diffraction grating is used in a Littman or Littrow configuration, the light not diffracted but reflected from the diffraction grating, can be used as output optical power 184. If the first reflecting element is a partly reflecting facet 102 of the light emitting and/or amplifying element 100, the power 191 transmitted through the facet 102 can be used as the external cavity laser output. These, but not limited to these, examples of outcoupling methods will be referred to as traditional outcoupling methods.
The coherent emission from the external cavity laser is typically spectrally very narrow. However, the light emitting and/or amplifying element 100 also generates a broad spectrum of spontaneous emission. For a traditional external cavity laser emitting a total of, for example, 1 mW optical power into a single mode fiber, approximately 10 μW of the power is spontaneous emission. This power ratio of 20 dB is insufficient for many applications, for example, when the laser is used for characterization of optical filters. A laser source emitting a smaller fraction of spontaneous emission would be very attractive.
A method and device for reducing the fraction of spontaneous emission in the optical output from external cavity lasers has been demonstrated by Edgar Leckel et al. [Ref. 1]. The demonstrated device was used in a Littman external cavity laser as shown in
The optical power in the spectrally filtered beam 226 can be no more than equal to the optical power in the beam 224 that is not spectrally filtered. Therefore, no more than ½ of the optical power outcoupled by the beam-splitter can be used as a low spontaneous emission light source.
In U.S. Pat. No. 5,406,571 is a tunable laser oscillator is disclosed, which comprises a laser medium, an optical resonator, a wavelength selective element for adjusting the wavelength of a laser beam, and optical means for broadening the radiation in the resonator. The laser beam is decoupled from the resonator by means of an optical element after having passed the broadening means and prior to passing again through the laser medium. The laser beam is decoupled from the resonator such that its direction is independent of the beam wavelength.
The laser beam generated in an optical amplifying medium is divided into two beams by means of a prism. One of the beams comprises a reflection from the prism's first surface. No reduction of the spontaneous emission is obtained in this beam. The other beam consists of diffracted beam inside the prism. Thus, the beam is broadened and illuminates a larger area of the wavelength-detecting element. The beam is diffracted so that it propagates in same beam path but in opposed direction. The light is finally decoupled out of the laser cavity by means of the first prism. The first prism is realized in two geometries and a number of cavity configurations. However, the object of laser according to this document is:
to achieve high spectral purity, i.e. low spontaneous emission, for one of the beams decoupled from the cavity,
that high spectral purity at one of the decoupled beams is achieved without any major structural changes in the structural changes in the laser cavity,
that the direction of the decoupled spectrally pure beam is independent of the wavelength as well as the position of the wavelength selective element.
Moreover, this document does not mention or gives any hint of using a Faraday rotator.
However, a retardation plate is mentioned, which is a completely different element.
The present invention can couple part of a light beam propagating from a wavelength selective element, towards a light emitting and/or amplifying element, out of an optical cavity, without any outcoupling of the beam propagating from the light emitting and amplifying element towards the diffraction grating.
The present invention can solve problems of the prior art by arranging the initially mentioned elements and adding polarization selectivity to the beam-splitting optical element, and the introduction of a Faraday-rotator element. A polarization selective beam-splitting optical element is an element that essentially fully transmits, without deflection, incident light of one polarization and essentially fully deflects the light of the orthogonal polarization.
The external cavity laser and outcoupling device elements can be arranged such that linearly polarized light is essentially fully transmitted through the polarization selective beam-splitting optical element when propagating in a first direction, and is incident on the wavelength selective feedback element with a polarization such that said selective feedback element has essentially optimum efficiency, and is at least partly outcoupled from the cavity by the polarization selective beam-splitting optical element when propagating in a second direction. The light emitting and/or amplifying element is a semiconductor laser die and includes a narrow waveguide. It is also possible to use light converging elements. The device may also comprise a first reflecting element. In one embodiment, the wavelength selective feedback element redirects the light towards a retroreflector. A light beam path from said at least one light emitting and/or amplifying element to said feedback element is substantially L-shaped.
The invention also relates to a method for outcoupling of light in an external cavity laser, which external cavity laser comprises at least one light emitting and/or amplifying element, at least one wavelength selective feedback element. Thus, the method can include the steps of utilizing at least one polarization selective beam-splitting optical element, and at least one Faraday-rotator element, arranging said external cavity laser and outcoupling elements such that linearly polarized light is essentially fully transmitted through the polarization selective beam-splitting optical element when propagating in a first direction, and is incident on the wavelength selective feedback element with a polarization such that said selective feedback element has essentially optimum efficiency, and is at least partly outcoupled from the cavity by the polarization selective beam-splitting optical element when propagating in a second direction.
The invention also relates to a method for outcoupling of light in an external cavity laser, which external cavity laser comprises at least one light emitting and/or amplifying element, at least one wavelength selective feedback element. The method can include the steps of generating light of essentially linear polarization in said light emitting and/or amplifying element and emitting said light in a diverging beam, collimating said diverging beam in a light converging optical element to an essentially linearly polarized light beam, essentially fully transmitting said essentially linearly polarized light beam through a polarization selective beam-splitting optical element in a first direction, rotating the plane of polarization of said light beam in an angle α+m180°C, wherein m is an integer 0,1, 2, 3, etc, redirecting said light beam with rotated plane of polarization, rotating the plane of polarization of said redirected light beam so that the angle of the light polarization becomes an angle 2α from a preferred angle of transmission through said polarization selective beam-splitting optical element, partly transmitting and partly outcoupling said redirected light beam when propagating through said polarization selective beam-splitting optical element in a second direction. Moreover, the fraction of light transmitted and outcoupled in the polarization selective beam-splitting optical element, when propagating in the second direction, is essentially cos2(2α) and essentially sin2(2α), respectively. The method can include the further step of selecting an appropriate angle a for determining the fraction of light coupled out of the cavity.
In the following sections, the invention will be described in more detail with reference to the attached drawings, in which:
For the reference signs in FIG. 1 through
A first embodiment of the present invention is shown in FIG. 3. The components from the prior art are, but are not limited to, a light emitting and/or amplifying element 300, a light converging optical element 310, and a wavelength selective feedback element 340. The light emitting and/or amplifying element 300 can be a semiconductor laser die. The light converging optical element 310 can be a lens of refractive or diffractive type. The new elements are a polarization selective beam-splitting optical element 320 and a Faraday-rotator 330. The polarization selective beam-splitting optical element 320 can be a cube polarizer. If the light emitting and/or amplifying element 300 is a semiconductor laser die, it can have one or both end facets 302, 304, coated for low reflection or anti-reflection. In order to lower or remove the requirements for the anti-reflection coating, the waveguide 306 can be tilted from the facet normal, at one or both ends of the semiconductor laser die. This is described in Ref. 2 and Ref. 3, respectively. Also, in order to lower or remove the requirements for anti-reflection, the waveguide can end some distance from the facet normal, at one or both ends of the semiconductor laser die, as described in Ref. 4.
The typical wavelength selective feedback elements, and often also light emitting and/or amplifying elements, have polarization dependent efficiency. Therefore, external cavity lasers often emit light of linear polarization. In the present invention, the optical elements should be arranged along the cavity optical axis 499 relative each other, as shown in FIG. 4. For the optical elements, the polarization plane of the incident or emitted light, resulting in the highest efficiency for the desired function, will be referred to as the element preferred plane of polarization.
In
In the first embodiment of the present invention shown in
The light 383 is redirected by the diffraction grating 340. When the light 387 is transmitted through the Faraday-rotator 330 it is rotated essentially an angle α. Due to the nature of the Faraday-rotator 330, the direction of polarization rotation is such that the angle of the light polarization is now essentially an angle 2α from the preferred angle of transmission through the polarization selective beam-splitting optical element 320. When the light 388 is propagating through the polarization selective beam-splitting optical element 320, the light is partially deflected 326 and coupled out of the cavity. The light 389 transmitted straight through the polarization selective beam-splitting optical element 320 is focused by the light converging optical element 310 and coupled into the waveguide 306 of the semiconductor laser die 300. The polarization of the light 390 has essentially the preferred direction for amplification in the semiconductor laser die 300. The light is amplified when propagating in the waveguide 306 and is, at least partly, reflected in the facet 302.
A selected fraction of the light 388, propagating from the diffraction grating 340 towards the semiconductor laser die 300, is coupled out of the cavity. Neglecting other losses, the fraction of light transmitted straight through 389 and outcoupled 326 in the polarization selective beam-splitting optical element 320 is essentially cos2(2α) and essentially sin2(2α), respectively. Thus, the fraction of light 326 coupled out of the cavity can be chosen by selecting an appropriate angle α. Eight values for α between 0 and 360°C will result in the same fraction of light 326 coupled out of the cavity. Therefore, the angle α can also be selected such that the geometry of the elements is convenient for the mechanical design of the laser. If the optical components are aligned correctly, essentially no part of the light 381 propagating from the semiconductor laser die 300 towards the diffraction grating 340 is coupled out from the cavity.
In this section, the present invention is explained by means of five exemplary preferred embodiments, including a review of the first embodiment explained in FIG. 3 and FIG. 4.
The L-shaped Littrow external cavity configuration explained in the fifth embodiment of the invention, could also be used for a cavity with external feedback elements at both ends. Also, L-shaped cavities could be used in corresponding Littman configurations.
Berg, Tomas, Lock, Tomas, Hagberg, Mats, Kleman, Bengt
Patent | Priority | Assignee | Title |
7542491, | Jan 09 2007 | Panasonic Corporation | Wavelength converter and two-dimensional image display device |
Patent | Priority | Assignee | Title |
4299490, | Dec 07 1978 | McDonnell Douglas Corporation | Phase nulling optical gyro |
4963003, | Feb 22 1988 | FUJIFILM Corporation | Laser optical system |
5406571, | Jan 18 1993 | Lambda Physik AG | Optical decoupling arrangement for laser beam |
5477309, | Mar 09 1992 | Nikon Corporation | Alignment apparatus |
5682239, | Sep 19 1994 | Canon Kabushiki Kaisha | Apparatus for detecting positional deviation of diffraction gratings on a substrate by utilizing optical heterodyne interference of light beams incident on the gratings from first and second light emitters |
5696782, | May 19 1995 | IMRA America, Inc | High power fiber chirped pulse amplification systems based on cladding pumped rare-earth doped fibers |
5892597, | Aug 29 1991 | Fujitsu Limited | Holographic recording apparatus and holographic optical element |
6091755, | Nov 21 1997 | Lumentum Operations LLC | Optically amplifying semiconductor diodes with curved waveguides for external cavities |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 07 2001 | Radians Innova AB | (assignment on the face of the patent) | / | |||
Feb 05 2002 | HAGBERG, MATS | Radians Innova AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012675 | /0076 | |
Feb 05 2002 | HAGBERG, MATS | Radians Innova AB | RE-RECORD TO CORRECT THE THIRD ASSIGNOR ON REEL 012675 FRAME 0076 ASSIGNOR HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE INTEREST | 012951 | /0524 | |
Feb 06 2002 | BERG, TOMAS | Radians Innova AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012675 | /0076 | |
Feb 06 2002 | BENGT, KLEMAN | Radians Innova AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012675 | /0076 | |
Feb 06 2002 | LOCK, TOMAS | Radians Innova AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012675 | /0076 | |
Feb 06 2002 | BERG, TOMAS | Radians Innova AB | RE-RECORD TO CORRECT THE THIRD ASSIGNOR ON REEL 012675 FRAME 0076 ASSIGNOR HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE INTEREST | 012951 | /0524 | |
Feb 06 2002 | KLEMAN, BENGT | Radians Innova AB | RE-RECORD TO CORRECT THE THIRD ASSIGNOR ON REEL 012675 FRAME 0076 ASSIGNOR HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE INTEREST | 012951 | /0524 | |
Feb 06 2002 | LOCK, TOMAS | Radians Innova AB | RE-RECORD TO CORRECT THE THIRD ASSIGNOR ON REEL 012675 FRAME 0076 ASSIGNOR HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE INTEREST | 012951 | /0524 |
Date | Maintenance Fee Events |
Aug 07 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 05 2008 | ASPN: Payor Number Assigned. |
Aug 17 2009 | ASPN: Payor Number Assigned. |
Aug 17 2009 | RMPN: Payer Number De-assigned. |
Aug 10 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 10 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 10 2007 | 4 years fee payment window open |
Aug 10 2007 | 6 months grace period start (w surcharge) |
Feb 10 2008 | patent expiry (for year 4) |
Feb 10 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 10 2011 | 8 years fee payment window open |
Aug 10 2011 | 6 months grace period start (w surcharge) |
Feb 10 2012 | patent expiry (for year 8) |
Feb 10 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 10 2015 | 12 years fee payment window open |
Aug 10 2015 | 6 months grace period start (w surcharge) |
Feb 10 2016 | patent expiry (for year 12) |
Feb 10 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |