Several embodiments of anti-rotation devices for precluding rotation of the valve actuating lifters or tappet bodies caused by the action of the cam lobe on the engaged surface of the lifter. In each embodiment, the anti-rotation function is achieved without adding to the reciprocating masses of the engine.
|
1. A valve lifter arrangement for operating a poppet valve from the rotating cam of a cam shaft comprising an engine body defining a cylindrical bore, a valve tappet having a generally cylindrical body portion supported for reciprocation in said cylindrical bore and a head portion adapted to be operated by the cam, an axially extending cylindrical groove formed in a side of said tappet body and a pin having an axis extending parallel to said cylindrical bore with a larger diameter portion complimentary to said cylindrical groove and received therein and a smaller diameter portion affixed relative to said engine body to permit reciprocation of said valve tappet in said engine body and prevent rotation thereof.
10. A valve lifter arrangement for operating a poppet valve from the rotating cam of a camshaft comprising an engine body defining a cylindrical bore, a valve tappet having a generally cylindrical body portion supported for reciprocation in said cylindrical bore and a head portion adapted to be operated by the cam, interengaging portions comprising a cylindrical projection comprising a cylindrical pin having an axis parallel to the axis of said engine body cylindrical bore detacheably carried by said engine body and a complimentary receiving groove carried by said valve tappet to permit reciprocation of said valve tappet in said engine body and prevent rotation thereof said cylindrical pin being axially restrained in said engine body by a bearing surface of said camshaft.
2. A valve lifter arrangement as set forth in
3. A valve lifter arrangement as set forth in
4. A valve lifter arrangement as set forth in
5. A valve lifter arrangement as set forth in
6. A valve lifter arrangement as set forth in
7. A valve lifter arrangement as set forth in
8. A valve lifter arrangement as set forth in
9. A valve lifter arrangement as set forth in
11. A valve lifter arrangement as set forth in
12. A valve lifter arrangement as set forth in
13. A valve lifter arrangement as set forth in
|
This invention relates to a valve actuating structure for operating poppet valves and more particularly to the rotation prevention structure of a valve lifter for an internal combustion engine.
A wide variety of reciprocating machines such an internal combustion engines employ poppet valves that are operated through camshafts via followers in the form of valve lifters such as thimble tappets. These valve lifters are supported for reciprocation in bores formed in an engine body and are operatively interposed between the cam lobes the valve stems.
Conventionally, the valve lifters or tappets are formed as cylindrical bodies having an upper surface engaged by the cam and which has a shape of the arc of a circle when viewed in the direction of the camshaft axis. In a perpendicular plane, the upper surface has a generally linear configuration. Thus, the top surface of the valve lifter engaged by the cam lobe is in the form of a section of a cylinder. However, because of this construction, there is likelihood that the operation of the lifter by the rotation of the cam can also cause rotary motion of the lifter about its reciprocal axis. This can result in undue wear of the lifter and/or receiving body of the engine, which can be detrimental to optimum performance.
It is, therefore, a principal object to this invention to provide an improved structure that serves the function of preventing rotation of the valve lifter upon operation of the valve and due to rotation of the actuating cam.
It is important when considering the valve timing of an engine to minimize the reciprocating masses. As the reciprocating masses increase, the inertia on the entire system increases resulting in the possibility of valve flow and decrease performance. It is, therefore, a still further object to this invention to provide an improved arrangement for precluding rotation of the valve lifter upon its actuation and which is done in a way so as to avoid any increase in the mass of the valve lifter.
This invention is adapted to be embodied in a valve lifter arrangement for operating a poppet valve from the rotating can of a camshaft. The construction comprises an engine body defining a cylindrical bore. A valve tappet having a generally cylindrical body portion is supported for reciprocation in the cylindrical bore. The valve tappet has a head portion adapted to be operated by the cam. In accordance with the invention interengaging portions carried by the valve tappet and the engine body permit reciprocation of the valve tappet in the engine body but prevent rotation thereof.
Referring now in detail to the drawings and initially primarily to
The cylinder block 13 forms a plurality of cylinder bores 15, which are disposed, in the illustrated embodiment, in an in-line arrangement. Although such an arrangement can be used, the invention can be employed with engines having other cylinder configurations such as V-type or opposed engines, as will become readily apparent to those skilled in the art.
Since the invention deals primarily with the valve actuating mechanism for the engine 11, only those components associated with it are shown in detail in this perspective view. These include pistons 16, only one of which is shown, which reciprocates in the cylinder bores 15 and are connected to drive a crankshaft 17 by means of connecting rods 18 in any well known manner.
In the illustrated embodiment, the engine 11 is of the four valve per cylinder type and each cylinder is provided with a pair of intake valves 19 disposed on one side of a plane containing the cylinder bore axis and a pair of exhaust valves 21 formed on the other side of this plane for each of the cylinder bores 15. The intake and exhaust valves 19 and 21 are of the poppet valve type and are supported for reciprocation in a manner, which will be described later by reference to the remaining figures.
In the illustrated embodiment, the valves 19 and 21 are operated by means of a pair of overhead camshafts consisting of an intake camshaft 22, having intake cam lobes 23, and an exhaust camshaft 24 having exhaust cam lobes 25. The camshafts 22 and 24 are rotatably journalled in a manner, which will be described. Each cam lobe 23 and 25 cooperates with a respective thimble type tappet 26, which is supported for reciprocation in a manner, which will also be described later by reference to the remaining figures.
In the illustrated embodiment, the intake and exhaust camshafts 22 and 24 are driven at one end of the engine 11 by means of a timing drive which, in the illustrated embodiment, comprises a toothed timing belt 27 that cooperates directly with a sprocket 28 that is affixed to the exhaust camshaft 24 and which drives the exhaust camshaft at one-half crankshaft speed from a driving sprocket 29 fixed to this end of the crankshaft 17.
On the other hand, the intake camshaft 22 is driven by a timing sprocket 31, which drives the intake camshaft 22 through a variable valve timing mechanism 32. In this regard, it should be noted that the described valve timing drive is only typical of one of many, which can be utilized in conjunction with the invention. For that reason, a detailed description of the camshaft drive mechanism is not believed to be necessary to permit those skilled in the art to practice the invention. Those skilled in the art can readily apply the invention to any known type of valve drive and valve actuating mechanism that includes cam lobes, which cam lobes operate thimble tappets either directly or through an intermediary method which may be likely to cause rotation of the thimble tappets in their supporting engine structure.
Referring now in detail primarily to
Each of the valves, such as the exhaust valves 21, is of the poppet type and includes a valve head 33 which valves a valve seat 34 formed in an appropriate manner in the respective side of the cylinder head. A stem 35 of the valve 21 is slidably supported in directly in the cylinder head member 12 or in a valve guide 36 which is cast, pressed or otherwise positioned therein.
A keeper retainer assembly 37 is fixed to the upper end of the valve stems 35 and is engaged by one end of a valve return spring such as a coil compression spring 38. The other end of the valve spring 38 is engaged with the cylinder head member 12 in a well known manner so as to urge the respective valve 21 to its closed position.
An adjusting shim 39 is interposed between the tip of the valve stems 35 and an undersurface of the head 41 of the thimble tappet 26. The tapped head 41 is formed at the upper end of a cylindrical body portion 42 and which is reciprocally supported in a bore 43 formed in the cylinder head member 12.
As is typical in this practice, in a plane looking perpendicular to the cylinder bore axis, the tappet head portion 41 is formed with an arcuate curvature 44 that has a radius R (FIG. 2). Viewed in a perpendicular direction (FIG. 4), it will be seen that this curved surface 44 appears as a straight line.
The structure as thus far described may be considered to be conventional and as such, without more, could be subject to the problem of rotation of the thimble tappets 26 in their supporting cylinder head bores 23 which could cause wear of one or both components.
In accordance with the invention, therefore, and in this embodiment, and anti-rotation pin, indicated generally by the reference numeral 45 is provided. This anti-rotation construction pin 45 is, in this embodiment, comprised of a single anti-rotation pin 45 mounted in the cylinder head member 12 between the each of the pairs of tappet bodies associated with both the intake and exhaust valves of each cylinder.
This anti-rotation pin 45 is comprised of a larger diameter headed portion 46 that is engaged in a pair of machined semi-cylindrical recesses 47 formed in each of the adjacent portions of the tappet bodies 26. A smaller diameter portion 48 extends upwardly in the area between the tappet bodies and is engaged at its upper end by a bearing portion 49 of the respective camshaft so as to retain it in the cylinder head 12 in the position shown in
The anti-rotation recesses 47 have an axial length such that the large diameter anti-rotation portion 46 of the pin 45 can traverse the length of the recesses 47 when the valves move between their fully closed positions as shown in FIG. 4 and their fully opened positions as shown in FIG. 5. Thus, this structure, which precludes rotation, is not provided by any added material on the tappet bodies 26 and, in fact, they are provided with a reduced weight of reciprocation because of the formation of the recesses 46 therein. Also, because of the fact that the anti-rotation pins 45 are held in place by the camshaft bearing portion 49 no significant assembly problems are presented.
The cylinder head member 12 is formed with a bore 51 that will clear the smaller diameter portions 48 as well as the headed portions 46 of the pins 45 so as to facilitate assembly.
In this embodiment, rather than relying on the camshaft bearing surface 49 for holding the any-rotation device in position, a screw threaded connection is utilized between the anti-rotation locking pin, indicated generally by the reference numeral 71 in these figures. This locking pin 71 has a socket headed portion 72 which is sized so as to fit within the cylinder head bore 51 and permitted to be screwed into a tapped opening 73 formed in the cylinder head assembly 12. A threaded portion 74 is formed below the socket head 72 for permitting this connection.
The socket head 72 is sized so as to fit into the recesses 46 of the tappet bodies 26. As may be seen in
In all other regards, this embodiment is the same, as that previously described and further description of it is not believed to be necessary to permit those skilled in the art to practice the invention.
In the embodiments as already described, the construction has been employed with four valve per cylinder engines and one anti-rotation pin either 45, 71 has been employed between two paired valves serving a single cylinder. Although this has the advantage of simplicity, it provides some lack of freedom in where the anti-rotation device may be located around the body of the tappet 26.
As may be seen, this embodiment shows the positioning of the anti-rotation pin 71 at a side of the tappet 26 that does not lie on the axis of rotation of the camshaft. Of course, other circumferential locations can be employed as should be readily apparent to those skilled in the art.
Thus, from the foregoing description it should be readily apparent that the described constructions provide a very good and simple arrangement for preventing rotation of the valve actuating tappets or lifters around their reciprocal axis due to the action of the cam lobes against the tappet faces. Of course, the foregoing description is that of preferred embodiments of the invention and various changes and modifications may be made without departing from the spirit and scope of the invention, as defined by the appended claims.
Fujita, Hideo, Uchiyama, Shigenobu
Patent | Priority | Assignee | Title |
8826874, | Dec 22 2010 | Caterpillar Inc. | Anti-rotation roller valve lifter |
9803516, | Mar 04 2016 | Caterpillar Inc. | System and method for preventing rotation of valve lifter |
Patent | Priority | Assignee | Title |
3139076, | |||
4448155, | Jun 03 1982 | Eaton Corporation | Guide for roller cam follower |
5178107, | Nov 21 1991 | Valve lifter | |
5454353, | Feb 02 1993 | INA Walzlager Schaeffler KG | Tappet with anti-rotation device |
5651335, | May 04 1993 | SCHAEFFLER TECHNOLOGIES AG & CO KG | Valve tappet |
6244229, | Sep 04 1998 | Toyota Jidosha Kabushiki Kaisha | Valve lifter for three-dimensional cam and variable valve operating apparatus using the same |
6427652, | Jan 20 2000 | INA Walzlager Schaeffler oHG | Switchable flat or roller tappet |
DE4115670, | |||
GB674732, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 10 2002 | Yamaha Hatsudoki Kabushiki Kaisha | (assignment on the face of the patent) | / | |||
Jul 10 2002 | FUJITA, HIDEO | Yamaha Hatsudoki Kaibushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012866 | /0702 | |
Jul 10 2002 | UCHIYAMA, SHIGENOBU | Yamaha Hatsudoki Kaibushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012866 | /0702 |
Date | Maintenance Fee Events |
Jun 04 2004 | ASPN: Payor Number Assigned. |
Jul 20 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 08 2010 | ASPN: Payor Number Assigned. |
Sep 08 2010 | RMPN: Payer Number De-assigned. |
Oct 03 2011 | REM: Maintenance Fee Reminder Mailed. |
Feb 17 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 17 2007 | 4 years fee payment window open |
Aug 17 2007 | 6 months grace period start (w surcharge) |
Feb 17 2008 | patent expiry (for year 4) |
Feb 17 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 17 2011 | 8 years fee payment window open |
Aug 17 2011 | 6 months grace period start (w surcharge) |
Feb 17 2012 | patent expiry (for year 8) |
Feb 17 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 17 2015 | 12 years fee payment window open |
Aug 17 2015 | 6 months grace period start (w surcharge) |
Feb 17 2016 | patent expiry (for year 12) |
Feb 17 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |