The present invention provides amino acid sequences of peptides that are encoded by genes within the human genome, the phosphatase peptides of the present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the phosphatase peptides, and methods of identifying modulators of the phosphatase peptides.

Patent
   6692949
Priority
Mar 20 2001
Filed
Feb 24 2003
Issued
Feb 17 2004
Expiry
Mar 20 2021
Assg.orig
Entity
Large
2
0
EXPIRED
2. An isolated polypeptide having an amino acid sequence comprising SEQ ID NO:2.
1. An isolated polypeptide having an amino acid sequence consisting SEQ ID NO:2.
3. A composition comprising the polypeptide of claim 1 and a carrier.
4. A composition comprising the polypeptide of claim 2 and a carrier.

The present application is a divisional of U.S. application Ser. No. 09/811,469 filed on Mar. 20, 2001 and issued on Apr. 22, 2003 as U.S. Pat. No. 6,551,809.

The present invention is in the field of phosphatase proteins that are related to the dual specificity phosphatase subfamily, recombinant DNA molecules and protein production. The present invention specifically provides a novel phosphatase splice form and nucleic acid molecules encoding the novel splice form, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.

Phosphatase proteins, particularly members of the dual specificity phosphatase subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of phosphatase proteins. The present invention advances the state of the art by providing a previously unidentified human phosphatase proteins that have homology to members of the dual specificity phosphatase subfamily.

Protein Phosphatase

Cellular signal transduction is a fundamental mechanism whereby external stimuli that regulate diverse cellular processes are relayed to the interior of cells. The biochemical pathways through which signals are transmitted within cells comprise a circuitry of directly or functionally connected interactive proteins. One of the key biochemical mechanisms of signal transduction involves the reversible phosphorylation of certain residues on proteins. The phosphorylation state of a protein may affect its conformation and/or enzymic activity as well as its cellular location. The phosphorylation state of a protein is modified through the reciprocal actions of protein phosphatases (PKs) and protein phosphatases (PPs) at various specific amino acid residues.

Protein phosphorylation is the ubiquitous strategy used to control the activities of eukaryotic cells. It is estimated that 10% of the proteins active in a typical mammalian cell are phosphorylated. The high-energy phosphate that confers activation and is transferred from adenosine triphosphate molecules to protein-by-protein phosphatases is subsequently removed from the protein-by-protein phosphatases. In this way, the phosphatases control most cellular signaling events that regulate cell growth and differentiation, cell-to-cell contacts, the cell cycle, and oncogenesis.

The protein phosphorylation/dephosphorylation cycle is one of the major regulatory mechanisms employed by eukaryotic cells to control cellular activities. It is estimated that more than 10% of the active proteins in a typical mammalian cell are phosphorylated. During protein phosphorylation/dephosphorylation, phosphate groups are transferred from adenosine triphosphate molecules to protein-by-protein phosphatases and are removed from the protein-by-protein phosphatases.

Protein phosphatases function in cellular signaling events that regulate cell growth and differentiation, cell-to-cell contacts, the cell cycle, and oncogenesis. Three protein phosphatase families have been identified as evolutionarily distinct. These include the serine/threonine phosphatases, the protein tyrosine phosphatases, and the acid/alkaline phosphatases (Carbonneau H. and Tonks N. K. (1992) Annu. Rev. Cell Biol. 8:463-93).

The serine/threonine phosphatases are either cytosolic or associated with a receptor. On the basis of their sensitivity to two thermostable proteins, inhibitors 1 and 2, and their divalent cation requirements, the serine/threonine phosphatases can be separated into four distinct groups, PP-I, PP-IIA, PP-IIB, and PP-IIC.

PP-I dephosphorylates many of the proteins phosphorylated by cylic AMP-dependent protein phosphatase and is therefore an important regulator of many cyclic AMP mediated, hormone responses in cells. PP-IIA has broad specificity for control of cell cycle, growth and proliferation, and DNA replication and is the main phosphatase responsible for reversing the phosphorylations of serine/threonine phosphatases. PP-IIB, or calcineurin (Cn), is a Ca+2-activated phosphatase; it is involved in the regulation of such diverse cellular functions as ion channel regulation, neuronal transmission, gene transcription, muscle glycogen metabolism, and lymphocyte activation.

PP-IIC is a Mg++-dependent phosphatase which participates in a wide variety of functions including regulating cyclic AMP-activated protein-phosphatase activity, Ca++-dependent signal transduction, tRNA splicing, and signal transmission related to heat shock responses. PP-IIC is a monomeric protein with a molecular mass of about 40-45 kDa. One α and several β isoforms of PP-IIC have been identified (Wenk, J. et al. (1992) FEBS Lett. 297: 135-138; Terasawa, T. et al. (1993) Arch. Biochem. Biophys. 307: 342-349; and Kato, S. et al. (1995) Arch. Biochem. Biophys. 318: 387-393).

The levels of protein phosphorylation required for normal cell growth and differentiation at any time are achieved through the coordinated action of PKs and PPS. Depending on the cellular context, these two types of enzymes may either antagonize or cooperate with each other during signal transduction. An imbalance between these enzymes may impair normal cell functions leading to metabolic disorders and cellular transformation.

For example, insulin binding to the insulin receptor, which is a PTK, triggers a variety of metabolic and growth promoting effects such as glucose transport, biosynthesis of glycogen and fats, DNA synthesis, cell division and differentiation. Diabetes mellitus, which is characterized by insufficient or a lack of insulin signal transduction, can be caused by any abnormality at any step along the insulin signaling pathway. (Olefsky, 1988, in "Cecil Textbook of Medicine," 18th Ed., 2:1360-81).

It is also well known, for example, that the overexpression of PTKs, such as HER2, can play a decisive role in the development of cancer (Slamon et al., 1987, Science 235:77-82) and that antibodies capable of blocking the activity of this enzyme can abrogate tumor growth (Drebin et al., 1988, Oncogene 2:387-394). Blocking the signal transduction capability of tyrosine phosphatases such as Flk-1 and the PDGF receptor have been shown to block tumor growth in animal models (Millauer et al., 1994, Nature 367:577; Ueno et al., Science, 252:844-848).

Relatively less is known with respect to the direct role of phosphatases in signal transduction; PPs may play a role in human diseases. For example, ectopic expression of RPTPα produces a transformed phenotype in embryonic fibroblasts (Zheng et al., Nature 359:336-339), and overexpression of RPTPα in embryonal carcinoma cells causes the cells to differentiate into a cell type with neuronal phenotype (den Hertog et al., EMBO J 12:3789-3798). The gene for human RPTPγ has been localized to chromosome 3p21 which is a segment frequently altered in renal and small lung carcinoma. Mutations may occur in the extracellular segment of RPTPγ which renders a RPTP that no longer respond to external signals (LaForgia et al., Wary et al., 1993, Cancer Res 52:478-482). Mutations in the gene encoding PTP1C (also known as HCP, SHP) are the cause of the moth-eaten phenotype in mice that suffer severe immunodeficiency, and systemic autoimmune disease accompanied by hyperproliferation of macrophages (Schultz et al., 1993, Cell 73:1445-1454). PTP1D (also known as Syp or PTP2C) has been shown to bind through SH2 domains to sites of phosphorylation in PDGFR, EGFR and insulin receptor substrate 1 (IRS-1). Reducing the activity of PTP1D by microinjection of anti-PTP1D antibody has been shown to block insulin or EGF-induced mitogenesis (Xiao et al., 1994, J Biol Chem 269:21244-21248).

Myotubularin Dual Specificity Phosphatases

The novel human protein provided by the present invention is an alternative splice form of a known gene (referred to in Genbank as "hypothetical protein FLJ20313"; mRNA: gi8923296, protein sequences: gi11433679 and gi8923297). The alternative splice form of the present invention differs from the art-known protein at both the 5' and 3' ends.

The human protein, and encoding gene, of the present invention is related to dual specificity phosphatases (DSPs) in general, and myotubularin DSPs specifically. Mutations in myotubularin DSP genes are known to cause X-linked myotubular myopathy, which is a severe congenital muscle disorder (Laporte et al., Hum Mol Genet October 1998;7(11):1703-12). Furthermore, is has been suggested that myotubularin DSP genes are good candidates for other genetic diseases (Laporte et al., Hum Mol Genet October 1998;7(11):1703-12).

Other than containing an active tyrosine phosphatase consensus site, myotubularin shares limited homology with other phosphatases. Myotubularin acts on both phosphotyrosine and phosphoserine, and has been shown to hydrolyze a synthetic analog of tyrosine phosphatase in a reaction that can be inhibited by orthovanadate. The myotubularin DSP family is strongly conserved throughout evolution and is the largest known DSP family (Laporte et al., Hum Mol Genet October 1998;7(11):1703-12).

The discovery of a new human protein phosphatase and the polynucleotides encoding it satisfies a need in the art by providing new compositions that are useful in the diagnosis, prevention and treatment of biological processes associated with abnormal or unwanted protein phosphorylation.

The present invention is based in part on the identification of amino acid sequences of a novel human phosphatase splice form that is related to the dual specificity phosphatase subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate phosphatase activity in cells and tissues that express the phosphatase. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver.

FIGS. 1(A-C) provides the nucleotide sequence of a cDNA molecule that encodes the phosphatase protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver.

FIGS. 2(A-H) provides the predicted amino acid sequence of the phosphatase of the present invention. (SEQ ID NO:2) In addition, structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIGS. 3(A-QQ) provides genomic sequences that span the gene encoding the phosphatase protein of the present invention. (SEQ ID NO:3) As illustrated in FIG. 3, the chromosome map position has been determined to be on chromosome 15 and SNPs were identified at 96 different nucleotide positions. Specific uses of the inventions can readily be determined based on the molecular sequence and accompanying chromosome map and SNP information provided in FIGS. 3(A-QQ).

General Description

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or sequence homology to protein/peptide/domains identified and characterized within the art as being a phosphatase protein or part of a phosphatase protein and are related to the dual specificity phosphatase subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of a novel human phosphatase splice form that is related to the dual specificity phosphatase subfamily, nucleic acid sequences in the form of transcript sequences, cDNA sequences and/or genomic sequences that encode this phosphatase splice form, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the phosphatase of the present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology and/or structural relatedness to known phosphatase proteins of the dual specificity phosphatase subfamily and the expression pattern observed. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. The art has clearly established the commercial importance of members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known dual specificity phosphatase family or subfamily of phosphatase proteins.

Specific Embodiments

Peptide Molecules

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the phosphatase family of proteins and are related to the dual specificity phosphatase subfamily (protein sequences are provided in FIG. 2, transcript/cDNA sequences are provided in FIG. 1 and genomic sequences are provided in FIG. 3). The peptide sequences provided in FIG. 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in FIG. 3, will be referred herein as the phosphatase peptides of the present invention, phosphatase peptides, or peptides/proteins of the present invention.

The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the phosphatase peptides disclosed in the FIG. 2, (encoded by the nucleic acid molecule shown in FIG. 1, transcript/cDNA or FIG. 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the phosphatase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

The isolated phosphatase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. For example, a nucleic acid molecule encoding the phosphatase peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in FIG. 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

The present invention further provides proteins that comprise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein comprises an amino acid sequence when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the phosphatase peptides of the present invention are the naturally occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.

The phosphatase peptides of the present invention can be attached to heterologous sequences to form chimeric or fusion proteins. Such chimeric and fusion proteins comprise a phosphatase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the phosphatase peptide. "Operatively linked" indicates that the phosphatase peptide and the heterologous protein are fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the phosphatase peptide.

In some uses, the fusion protein does not affect the activity of the phosphatase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant phosphatase peptide. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A phosphatase peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the phosphatase peptide.

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the phosphatase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol. Biol. 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)). When utilizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides of the present invention can readily be identified as having complete sequence identity to one of the phosphatase peptides of the present invention as well as being encoded by the same genetic locus as the phosphatase peptide provided herein. The gene encoding the novel phosphatase protein of the present invention is located on a genome component that has been mapped to human chromosome 15 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

Allelic variants of a phosphatase peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the phosphatase peptide as well as being encoded by the same genetic locus as the phosphatase peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in FIG. 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel phosphatase protein of the present invention is located on a genome component that has been mapped to human chromosome 15 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of the proteins) have significant homology when the amino acid sequences are typically at least about 70-80%, 80-90%, and more typically at least about 90-95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a phosphatase peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphatase protein of the present invention. SNPs were identified at 96 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. Some of these SNPs may also affect control/regulatory elements.

Paralogs of a phosphatase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the phosphatase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a phosphatase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a phosphatase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the phosphatase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a phosphatase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

Non-naturally occurring variants of the phosphatase peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the phosphatase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a phosphatase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., Science 247:1306-1310 (1990).

Variant phosphatase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to dephosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. FIG. 2 provides the result of protein analysis and can be used to identify critical domains/regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081-1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as phosphatase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992); de Vos et al. Science 255:306-312 (1992)).

The present invention further provides fragments of the phosphatase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid-residues from a phosphatase peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the phosphatase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the phosphatase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.

Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in phosphatase peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in FIG. 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as Proteins--Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

Accordingly, the phosphatase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature phosphatase peptide is fused with another compound, such as a compound to increase the half-life of the phosphatase peptide, or in which the additional amino acids are fused to the mature phosphatase peptide, such as a leader or secretory sequence or a sequence for purification of the mature phosphatase peptide or a pro-protein sequence.

Protein/Peptide Uses

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a phosphatase-effector protein interaction or phosphatase-ligand interaction), the protein can be used to identify the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, phosphatases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the phosphatase. Experimental data as provided in FIG. 1 indicates that the phosphatase proteins of the present invention are expressed in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, and fetal liver/spleen, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in the liver. A large percentage of pharmaceutical agents are being developed that modulate the activity of phosphatase proteins, particularly members of the dual specificity phosphatase subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in FIG. 1. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. Such uses can readily be determined using the information provided herein, that which is known in the art, and routine experimentation.

The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to phosphatases that are related to members of the dual specificity phosphatase subfamily. Such assays involve any of the known phosphatase functions or activities or properties useful for diagnosis and treatment of phosphatase-related conditions that are specific for the subfamily of phosphatases that the one of the present invention belongs to, particularly in cells and tissues that express the phosphatase. Experimental data as provided in FIG. 1 indicates that the phosphatase proteins of the present invention are expressed in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, and fetal liver/spleen, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in the liver.

The proteins of the present invention are also useful in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally express the phosphatase, as a biopsy or expanded in cell culture. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the phosphatase protein.

The polypeptides can be used to identify compounds that modulate phosphatase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the phosphatase. Both the phosphatases of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the phosphatase. These compounds can be further screened against a functional phosphatase to determine the effect of the compound on the phosphatase activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the phosphatase to a desired degree.

Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the phosphatase protein and a molecule that normally interacts with the phosphatase protein, e.g. a substrate or a component of the signal pathway that the phosphatase protein normally interacts (for example, another phosphatase). Such assays typically include the steps of combining the phosphatase protein with a candidate compound under conditions that allow the phosphatase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the phosphatase protein and the target, such as any of the associated effects of signal transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82-84 (1991); Houghten et al., Nature 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')2, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant phosphatases or appropriate fragments containing mutations that affect phosphatase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) phosphatase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate phosphatase activity. Thus, the dephosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the phosphatase protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the phosphatase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the phosphatase can be assayed. Experimental data as provided in FIG. 1 indicates that the phosphatase proteins of the present invention are expressed in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, and fetal liver/spleen, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in the liver.

Binding and/or activating compounds can also be screened by using chimeric phosphatase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate then that which is recognized by the native phosphatase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the phosphatase is derived.

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the phosphatase (e.g. binding partners and/or ligands). Thus, a compound is exposed to a phosphatase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble phosphatase polypeptide is also added to the mixture. If the test compound interacts with the soluble phosphatase polypeptide, it decreases the amount of complex formed or activity from the phosphatase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the phosphatase. Thus, the soluble polypeptide that competes with the target phosphatase region is designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the phosphatase protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35S-labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of phosphatase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a phosphatase-binding protein and a candidate compound are incubated in the phosphatase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the phosphatase protein target molecule, or which are reactive with phosphatase protein and compete with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Agents that modulate one of the phosphatases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.

Modulators of phosphatase protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the kinase pathway, by treating cells or tissues that express the phosphatase. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. These methods of treatment include the steps of administering a modulator of phosphatase activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

In yet another aspect of the invention, the phosphatase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with the phosphatase and are involved in phosphatase activity. Such phosphatase-binding proteins are also likely to be involved in the propagation of signals by the phosphatase proteins or phosphatase targets as, for example, downstream elements of a kinase-mediated signaling pathway. Alternatively, such phosphatase-binding proteins are likely to be phosphatase inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a phosphatase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a phosphatase-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the phosphatase protein.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a phosphatase-modulating agent, an antisense phosphatase nucleic acid molecule, a phosphatase-specific antibody, or a phosphatase-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

The phosphatase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. The method involves contacting a biological sample with a compound capable of interacting with the phosphatase protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered phosphatase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 23(10-11):983-985 (1996)), and Linder, M. W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may lead to allelic protein variants of the phosphatase protein in which one or more of the phosphatase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are more or less active in substrate binding, and phosphatase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. Accordingly, methods for treatment include the use of the phosphatase protein or fragments.

Antibodies

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')2, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).

In-general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in FIG. 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the phosphatase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or phosphatase/binding partner interaction. FIG. 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.

Antibody Uses

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in FIG. 1 indicates that the phosphatase proteins of the present invention are expressed in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, and fetal liver/spleen, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in the liver. Further, such antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the phosphatase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See FIG. 2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.

Nucleic Acid Molecules

The present invention further provides isolated nucleic acid molecules that encode a phosphatase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the phosphatase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a fashion, the nucleic acid molecule can be only the nucleotide sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In FIGS. 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (FIG. 3) and cDNA/transcript sequences (FIG. 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' non-coding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in FIGS. 1 and 3 or can readily be identified using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the phosphatase peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre- pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (anti-sense strand).

The invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the phosphatase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

The present invention further provides non-coding fragments of the nucleic acid molecules provided in FIGS. 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify gene-modulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in FIG. 3.

A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel phosphatase protein of the present invention is located on a genome component that has been mapped to human chromosome 15 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphatase protein of the present invention. SNPs were identified at 96 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. Some of these SNPs may also affect control/regulatory elements.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6×sodium chloride/sodium citrate (SSC) at about 45 C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.

Nucleic Acid Molecule Uses

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in FIG. 3, SNPs were identified at 96 different nucleotide positions.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule and are useful to synthesize antisense molecules of desired length and sequence.

The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel phosphatase protein of the present invention is located on a genome component that has been mapped to human chromosome 15 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

The nucleic acid, molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in FIG. 1 indicates that the phosphatase proteins of the present invention are expressed in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, and fetal liver/spleen, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in the liver. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in phosphatase protein expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a phosphatase protein, such as by measuring a level of a phosphatase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a phosphatase gene has been mutated. Experimental data as provided in FIG. 1 indicates that the phosphatase proteins of the present invention are expressed in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, and fetal liver/spleen, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in the liver.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate phosphatase nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the phosphatase gene, particularly biological and pathological processes that are mediated by the phosphatase in cells and tissues that express it. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver. The method typically includes assaying the ability of the compound to modulate the expression of the phosphatase nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired phosphatase nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the phosphatase nucleic acid or recombinant cells genetically engineered to express specific nucleic acid sequences.

The assay for phosphatase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the phosphatase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

Thus, modulators of phosphatase gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of phosphatase mRNA in the presence of the candidate compound is compared to the level of expression of phosphatase mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate phosphatase nucleic acid expression in cells and tissues that express the phosphatase. Experimental data as provided in FIG. 1 indicates that the phosphatase proteins of the present invention are expressed in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, and fetal liver/spleen, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in the liver. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.

Alternatively, a modulator for phosphatase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the phosphatase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in FIG. 1 indicates expression in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, fetal liver/spleen, and liver.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the phosphatase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in phosphatase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in phosphatase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the phosphatase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the phosphatase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a phosphatase protein.

Individuals carrying mutations in the phosphatase gene can be detected at the nucleic acid level by a variety of techniques. FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphatase protein of the present invention. SNPs were identified at 96 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. Some of these SNPs may also affect control/regulatory elements. The gene encoding the novel phosphatase protein of the present invention is located on a genome component that has been mapped to human chromosome 15 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., Science 241:1077-1080 (1988); and Nakazawa et al., PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., Nucleic Acids Res. 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a phosphatase gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant phosphatase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., Adv. Chromatogr. 36:127-162 (1996); and Griffin et al., Appl. Biochem. Biotechnol. 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers et al., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Saleeba et al., Meth. Enzymol. 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the nucleic acid molecules can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the phosphatase gene in an individual in order to select an appropriate compound or dosage regimen for treatment. FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphatase protein of the present invention. SNPs were identified at 96 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. Some of these SNPs may also affect control/regulatory elements.

Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control phosphatase gene expression in cells, tissues, and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene involved in transcription, preventing transcription and hence production of phosphatase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into phosphatase protein.

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of phosphatase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired phosphatase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the phosphatase protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in phosphatase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired phosphatase protein to treat the individual.

The invention also encompasses kits for detecting the presence of a phosphatase nucleic acid in a biological sample. Experimental data as provided in FIG. 1 indicates that the phosphatase proteins of the present invention are expressed in humans in B-cell Burkitt's lymphoma, lymph germinal center B-cells, fetal lung, neural tissue, breast invasive ductal carcinoma, parathyroid tumor, carcinoid lung tissue, and fetal liver/spleen, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in the liver. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting phosphatase nucleic acid in a biological sample; means for determining the amount of phosphatase nucleic acid in the sample; and means for comparing the amount of phosphatase nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect phosphatase protein mRNA or DNA.

Nucleic Acid Arrays

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in FIGS. 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.

The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.

In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support.

In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application W095/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.

In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large-scale correlation studies on the sequences, expression patterns, mutations, variants, or polymorphisms among samples.

Using such arrays, the present invention provides methods to identify the expression of the phosphatase proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the phosphatase gene of the present invention. FIG. 3 provides information on SNPs that have been found in the gene encoding the phosphatase protein of the present invention. SNPs were identified at 96 different nucleotide positions. Changes in the amino acid sequence caused by these SNPs can readily be determined using the universal genetic code and the protein sequence provided in FIG. 2 as a reference. Some of these SNPs may also affect control/regulatory elements.

Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified phosphatase gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.

Vectors/Host Cells

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself. It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ, the lac, TRP, and TAC promoters from E. coli, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal; episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or-exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, E. coli, Streptomyces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterophosphatase. Typical fusion expression vectors include pGEX (Smith et al., Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., Gene 69:301-315 (1988)) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990)119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids Res. 20:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepSec1 (Baldari, et al., EMBO J. 6:229-234 (1987)), pMFa (Kuijan et al., Cell 30:933-943(1982)), pJRY88 (Schultz et al., Gene 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf9 cells) include the pAc series (Smith et al., Mol. Cell Biol. 3:2156-2165 (1983)) and the pVL series (Lucklow et al., Virology 170:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. Nature 329:840(1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187-195 (1987)).

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as phosphatases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with phosphatases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

Uses of Vectors and Host Cells

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a phosphatase protein or peptide that can be further purified to produce desired amounts of phosphatase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

Host cells are also useful for conducting cell-based assays involving the phosphatase protein or phosphatase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native phosphatase protein is useful for assaying compounds that stimulate or inhibit phosphatase protein function.

Host cells are also useful for identifying phosphatase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant phosphatase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native phosphatase protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a phosphatase protein and identifying and evaluating modulators of phosphatase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the phosphatase protein nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the phosphatase protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. PNAS 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al. Science 251:1351-1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter Go phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo, and that could effect substrate binding, kinase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo phosphatase protein function, including substrate interaction, the effect of specific mutant phosphatase proteins on phosphatase protein function and substrate interaction, and the effect of chimeric phosphatase proteins. It is also possible to assess the effect of null mutations, that is mutations that substantially or completely eliminate one or more phosphatase protein functions.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

# SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 11
<210> SEQ ID NO 1
<211> LENGTH: 4458
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
gagagcttta cgcccggagg cgtcggcgct gccactggcc cgcgacggga ac
#ggggcgaa 60
aaggcggcgg caccatgttc tccctcaagc cgcccaaacc caccttcagg tc
#ctacctcc 120
tgccaccgcc ccagactgac gataagatca attcggaacc gaagattaaa aa
#actggagc 180
cagtcctttt gccaggagaa attgtcgtaa atgaagtcaa ttttgtgaga aa
#atgcattg 240
caacagacac aagccagtac gatttgtggg gaaagctgat atgcagtaac tt
#caaaatct 300
cctttattac agatgaccca atgccattac agaaattcca ttacagaaac ct
#tcttcttg 360
gtgaacacga tgtcccttta acatgtattg aacaaattgt cacagtaaac ga
#ccacaaga 420
ggaagcagaa agtcctaggc cccaaccaga aactgaaatt taatccaaca ga
#gttaatta 480
tttattgtaa agatttcaga attgtcagat ttcgctttga tgaatcaggt cc
#cgaaagtg 540
ctaaaaaggt atgccttgca atagctcatt attcccagcc aacagacctc ca
#gctactct 600
ttgcatttga atatgttggg aaaaaatacc acaattcagc aaacaaaatt aa
#tggaattc 660
cctcaggaga tggaggagga ggaggaggag gaggtaatgg agctggtggt gg
#cagcagcc 720
agaaaactcc actctttgaa acttactcgg attgggacag agaaatcaag ag
#gacaggtg 780
cttccgggtg gagagtttgt tctattaacg agggttacat gatatccact tg
#ccttccag 840
aatacattgt agtgccaagt tctttagcag accaagatct aaagatcttt tc
#ccattctt 900
ttgttgggag aaggatgcca ctctggtgct ggagccactc taacggcagt gc
#tcttgtgc 960
gaatggccct catcaaagac gtgctgcagc agaggaagat tgaccagagg at
#ttgtaatg 1020
caataactaa aagtcaccca cagagaagtg atgtttacaa atcagatttg ga
#taagacct 1080
tgcctaatat tcaagaagta caggcagcat ttgtaaaact gaagcagcta tg
#cgttaatg 1140
agccttttga agaaactgaa gagaaatggt tatcttcact ggaaaatact cg
#atggttag 1200
aatatgtaag ggcattcctt aagcattcag cagaacttgt atacatgcta ga
#aagcaaac 1260
atctctctgt agtcctacaa gaggaggaag gaagagactt gagctgttgt gt
#agcttctc 1320
ttgttcaagt gatgctggat ccctatttta ggacaattac tggatttcag ag
#tctgatac 1380
agaaggagtg ggtcatggca ggatatcagt ttctagacag atgcaaccat ct
#aaagagat 1440
cagagaaaga gtctccttta tttttgctat tcttggatgc cacctggcag ct
#gttagaac 1500
aatatcctgc agcttttgag ttctccgaaa cctacctggc agtgttgtat ga
#cagcaccc 1560
ggatctcact gtttggcacc ttcctgttca actcccctca ccagcgagtg aa
#gcaaagca 1620
cggaatttgc tataagcaaa aacatccaat tgggtgatga gaagggctta aa
#attcccct 1680
ctgtttggga ctggtctctc cagtttacag caaaggatcg cacccttttc ca
#taacccct 1740
tctacattgg aaagagcaca ccttgtatac agaatggctc cgtgaagtct tt
#taaacgga 1800
caaagaaaag ctacagctcc acactaagag gaatgccgtc tgccttaaag aa
#tggaatca 1860
tcagtgacca agaattactt ccaaggagaa attcattgat attaaaacca aa
#gccagatc 1920
cagctcagca aaccgacagc cagaacagtg atacggagca gtattttaga ga
#atggtttt 1980
ccaaacccgc caacctgcac ggtgttattc tgccacgtgt ctctggaaca ca
#cataaaac 2040
tgtggaaact gtgctacttc cgctgggttc ccgaggccca gatcagcctg gg
#tggctcca 2100
tcacagcctt tcacaagctc tccctcctgg ctgatgaagt cgacgtactg ag
#caggatgc 2160
tgcggcaaca gcgcagtggc cccctggagg cctgctatgg ggagctgggc ca
#gagcagga 2220
tgtacttcaa cgccagcggc cctcaccaca ccgacacctc ggggacaccg ga
#gtttctct 2280
cctcctcatt tccattttct cctgtaggga atctgtgcag acgaagcatt tt
#aggaacac 2340
cattaagcaa atttttaagt ggggccaaaa tatggttgtc tactgagaca tt
#agcaaatg 2400
aagactaaaa tagggtgttt tctgaacatt ttgagggaag ctgtcaactt tt
#ttcctctg 2460
aattaacatt gctaacctag gcgtttgaat ctctaataac tttatatgta ag
#aataatag 2520
ttggaatttg cactaatatt taaaaacatg ttgaatcatg cttctttcac ac
#ttatttta 2580
agagagatgt aaattttgtt cctgtcctct ttctgtcatt acaggtctgg ct
#cttgtaac 2640
cgtgatcaaa ctgttcatgt tgtctgctac atttttgtct ccatccattt tt
#cctaccac 2700
ctcctgaagg ctatctgata gtcagtcaca ttagcagccc caggcagcag ac
#aacaggaa 2760
agttaggaaa tttgtgtttc gtgtcatttt taggagcatc tgataaaacc tc
#cagcaggt 2820
tttaggaagt attcatgtat ttttctggtt actttctgtc atctctaatt ga
#actcacct 2880
gatgaaggtt cagtgttctg gggccagaat ttatgatttt agatcacctt ct
#ttggaacc 2940
ttagatcact gtgttttgaa atcatgagtt tgcttttaac ttcatagggt ca
#actttaaa 3000
atgatatgca ctgttaattt taaagcattt gctgcagata attaaactta ga
#agtgcctt 3060
tgactttagg atacaaatat tacagaagaa aatataattt cactttttaa aa
#ttggggtg 3120
ggaaaatccc attgcatatt tgaaataggc ttttcatact aagcttcata gc
#caggagtc 3180
cccagagtct tgttcctctg aaagccactg gggagtggcc tctggggtgc tg
#attccaca 3240
gaggtgtatg ctgtagacag gagagtgcca tctatgccaa aactcgccct ca
#aaaacaaa 3300
caaggcttgc tgggaggcgt gctgggcttg gccatcagta tttccagtgt gg
#taaactat 3360
tgctggcact tccccctgga aataactaat gaggttacga gttgggcacc tg
#cacagatg 3420
tccttctctc atagttccta atgcttagga atagaggaga aataaaaaaa tg
#gattctct 3480
caaaacactg ccatttgaat agcgacagaa gtgctccccc agcccccaac tt
#tggacagc 3540
aaagttgagg agaatgagca gacacagttg tttgcttgat ctgaatctct ct
#aaagtaaa 3600
gtatttccaa actgtgtgac aagagcctac ctaccactgt agcggtcaaa gc
#tgaagctt 3660
cttacagcag tgaaacgggg caccacctcc cccacactcc tcattccccg ct
#taaaacat 3720
ggatactttc aaatttgact gtttcttaaa ctgccatcct aagatatgga aa
#atttttat 3780
agtaaagtgt ctagttagct tatttccttt tctaaaacaa gtgttttcaa ga
#taactgta 3840
ttttaccttt atatgtactg aatagctgtt tctttttgaa ttatttgcct tt
#taaaattt 3900
gataatgtct ctggatataa caggacagga gttcttaaaa aatatcttaa ga
#aattcact 3960
ttatgggtaa acccaaggtt tttgccaact tgttgcctag aaaataaggg ct
#agtttcag 4020
tttatacaaa tagaattatt aaacatttta cagtccttga ttagaaacca ga
#cccaatct 4080
ccttataaca ccacagcgta tcctgccatt gacagtgtaa tcacaattct cc
#ctttttca 4140
tttagctgct tttttattat tactaaatgt tttggattga gcatttttcc ct
#ctgtaatt 4200
ttcttccttc acgtttattt tattttaact cttgtagtat tttattgttg tt
#aatttaca 4260
agtttaaaaa tattaggtac tattaataat ggttaaaaat agaaaaatgc at
#atttttgt 4320
atgataatca aatgtaaaat acttttattt ttgctggaca gttgttatat ca
#tgattatt 4380
gtgctacagt ttattgtgca taatatgaaa aacaactatg acagccttca gt
#cgggccag 4440
ggtgaagctg cttatacc
#
#
#4458
<210> SEQ ID NO 2
<211> LENGTH: 777
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 2
Met Phe Ser Leu Lys Pro Pro Lys Pro Thr Ph
#e Arg Ser Tyr Leu Leu
1 5
# 10
# 15
Pro Pro Pro Gln Thr Asp Asp Lys Ile Asn Se
#r Glu Pro Lys Ile Lys
20
# 25
# 30
Lys Leu Glu Pro Val Leu Leu Pro Gly Glu Il
#e Val Val Asn Glu Val
35
# 40
# 45
Asn Phe Val Arg Lys Cys Ile Ala Thr Asp Th
#r Ser Gln Tyr Asp Leu
50
# 55
# 60
Trp Gly Lys Leu Ile Cys Ser Asn Phe Lys Il
#e Ser Phe Ile Thr Asp
65
#70
#75
#80
Asp Pro Met Pro Leu Gln Lys Phe His Tyr Ar
#g Asn Leu Leu Leu Gly
85
# 90
# 95
Glu His Asp Val Pro Leu Thr Cys Ile Glu Gl
#n Ile Val Thr Val Asn
100
# 105
# 110
Asp His Lys Arg Lys Gln Lys Val Leu Gly Pr
#o Asn Gln Lys Leu Lys
115
# 120
# 125
Phe Asn Pro Thr Glu Leu Ile Ile Tyr Cys Ly
#s Asp Phe Arg Ile Val
130
# 135
# 140
Arg Phe Arg Phe Asp Glu Ser Gly Pro Glu Se
#r Ala Lys Lys Val Cys
145 1
#50 1
#55 1
#60
Leu Ala Ile Ala His Tyr Ser Gln Pro Thr As
#p Leu Gln Leu Leu Phe
165
# 170
# 175
Ala Phe Glu Tyr Val Gly Lys Lys Tyr His As
#n Ser Ala Asn Lys Ile
180
# 185
# 190
Asn Gly Ile Pro Ser Gly Asp Gly Gly Gly Gl
#y Gly Gly Gly Gly Asn
195
# 200
# 205
Gly Ala Gly Gly Gly Ser Ser Gln Lys Thr Pr
#o Leu Phe Glu Thr Tyr
210
# 215
# 220
Ser Asp Trp Asp Arg Glu Ile Lys Arg Thr Gl
#y Ala Ser Gly Trp Arg
225 2
#30 2
#35 2
#40
Val Cys Ser Ile Asn Glu Gly Tyr Met Ile Se
#r Thr Cys Leu Pro Glu
245
# 250
# 255
Tyr Ile Val Val Pro Ser Ser Leu Ala Asp Gl
#n Asp Leu Lys Ile Phe
260
# 265
# 270
Ser His Ser Phe Val Gly Arg Arg Met Pro Le
#u Trp Cys Trp Ser His
275
# 280
# 285
Ser Asn Gly Ser Ala Leu Val Arg Met Ala Le
#u Ile Lys Asp Val Leu
290
# 295
# 300
Gln Gln Arg Lys Ile Asp Gln Arg Ile Cys As
#n Ala Ile Thr Lys Ser
305 3
#10 3
#15 3
#20
His Pro Gln Arg Ser Asp Val Tyr Lys Ser As
#p Leu Asp Lys Thr Leu
325
# 330
# 335
Pro Asn Ile Gln Glu Val Gln Ala Ala Phe Va
#l Lys Leu Lys Gln Leu
340
# 345
# 350
Cys Val Asn Glu Pro Phe Glu Glu Thr Glu Gl
#u Lys Trp Leu Ser Ser
355
# 360
# 365
Leu Glu Asn Thr Arg Trp Leu Glu Tyr Val Ar
#g Ala Phe Leu Lys His
370
# 375
# 380
Ser Ala Glu Leu Val Tyr Met Leu Glu Ser Ly
#s His Leu Ser Val Val
385 3
#90 3
#95 4
#00
Leu Gln Glu Glu Glu Gly Arg Asp Leu Ser Cy
#s Cys Val Ala Ser Leu
405
# 410
# 415
Val Gln Val Met Leu Asp Pro Tyr Phe Arg Th
#r Ile Thr Gly Phe Gln
420
# 425
# 430
Ser Leu Ile Gln Lys Glu Trp Val Met Ala Gl
#y Tyr Gln Phe Leu Asp
435
# 440
# 445
Arg Cys Asn His Leu Lys Arg Ser Glu Lys Gl
#u Ser Pro Leu Phe Leu
450
# 455
# 460
Leu Phe Leu Asp Ala Thr Trp Gln Leu Leu Gl
#u Gln Tyr Pro Ala Ala
465 4
#70 4
#75 4
#80
Phe Glu Phe Ser Glu Thr Tyr Leu Ala Val Le
#u Tyr Asp Ser Thr Arg
485
# 490
# 495
Ile Ser Leu Phe Gly Thr Phe Leu Phe Asn Se
#r Pro His Gln Arg Val
500
# 505
# 510
Lys Gln Ser Thr Glu Phe Ala Ile Ser Lys As
#n Ile Gln Leu Gly Asp
515
# 520
# 525
Glu Lys Gly Leu Lys Phe Pro Ser Val Trp As
#p Trp Ser Leu Gln Phe
530
# 535
# 540
Thr Ala Lys Asp Arg Thr Leu Phe His Asn Pr
#o Phe Tyr Ile Gly Lys
545 5
#50 5
#55 5
#60
Ser Thr Pro Cys Ile Gln Asn Gly Ser Val Ly
#s Ser Phe Lys Arg Thr
565
# 570
# 575
Lys Lys Ser Tyr Ser Ser Thr Leu Arg Gly Me
#t Pro Ser Ala Leu Lys
580
# 585
# 590
Asn Gly Ile Ile Ser Asp Gln Glu Leu Leu Pr
#o Arg Arg Asn Ser Leu
595
# 600
# 605
Ile Leu Lys Pro Lys Pro Asp Pro Ala Gln Gl
#n Thr Asp Ser Gln Asn
610
# 615
# 620
Ser Asp Thr Glu Gln Tyr Phe Arg Glu Trp Ph
#e Ser Lys Pro Ala Asn
625 6
#30 6
#35 6
#40
Leu His Gly Val Ile Leu Pro Arg Val Ser Gl
#y Thr His Ile Lys Leu
645
# 650
# 655
Trp Lys Leu Cys Tyr Phe Arg Trp Val Pro Gl
#u Ala Gln Ile Ser Leu
660
# 665
# 670
Gly Gly Ser Ile Thr Ala Phe His Lys Leu Se
#r Leu Leu Ala Asp Glu
675
# 680
# 685
Val Asp Val Leu Ser Arg Met Leu Arg Gln Gl
#n Arg Ser Gly Pro Leu
690
# 695
# 700
Glu Ala Cys Tyr Gly Glu Leu Gly Gln Ser Ar
#g Met Tyr Phe Asn Ala
705 7
#10 7
#15 7
#20
Ser Gly Pro His His Thr Asp Thr Ser Gly Th
#r Pro Glu Phe Leu Ser
725
# 730
# 735
Ser Ser Phe Pro Phe Ser Pro Val Gly Asn Le
#u Cys Arg Arg Ser Ile
740
# 745
# 750
Leu Gly Thr Pro Leu Ser Lys Phe Leu Ser Gl
#y Ala Lys Ile Trp Leu
755
# 760
# 765
Ser Thr Glu Thr Leu Ala Asn Glu Asp
770
# 775
<210> SEQ ID NO 3
<211> LENGTH: 83450
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)...(83450)
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 3
aaaaacagaa aaatgggtga agcaggacaa aacagtgaca ttagagccaa aa
#gcaggggg 60
taggcaataa caccaaacat acagcgtagt caagggcatc agggtctgag aa
#gaggttat 120
aaaactagtt ctacggactg aattgtgttc ctccaaaatg ctaatgttga aa
#ccctaacc 180
cctggtatgg ctacatttgg agattttagg aggtaattaa agttaaataa gg
#tagtaaga 240
gtggggctct aatctgatag gattagcgtc cttacaagaa gagacatcaa ga
#gatcccag 300
agagcatgtt atataccctc cccgcactgt gtgaggacat ggtgagatgg ca
#gccatctg 360
caaatccggc agagagccct cacctgtctg cctgccacaa gttaggcaga tc
#cctacctt 420
gccaacacct ggatcttgga cttcctatac tccagaattg tgagaaatta at
#gtctgctc 480
tttaagccat caacctgtgg tattttgtta tggcagcctg agcagactaa ta
#caaccaga 540
tatttgggaa atgccataaa atttagtgtt aagacaataa taaatgctgg aa
#atagagtt 600
tttccacttt tcagttgtat ggtcacatat tagaattgca gatcctaaga aa
#acctgtac 660
agaaaaaccc aaatcacaga gtcatttaag tgtaaagaaa aagccaatta tt
#gcttaaag 720
agtatttgta gaaaatatcc gttgaatata gaggaataac agcatattca ta
#aaaatttt 780
ttaaaaagtg tgcacgacag tgattttaac acttctaatc caatggaact aa
#cattttaa 840
agtacaatta tggccaggca cggtgcctca tgcccatagt cccggctact tg
#agaggcta 900
aggcacgtgg atcacttgag cccaggaggt ggaggcagca gtgagccctg at
#catgccac 960
tgcacttcag cccaggtgat ggtgtgagac cctgactcta aaaaatacaa tt
#atggttac 1020
ggttcttggg cagagtggaa ttcaaacagg ttaacctgaa agatcagtag gg
#ttctaaat 1080
ccaggataaa ttattttcag aaaaagaata actttttgaa tctttattta aa
#ttgttaaa 1140
tgttcctgtg agtaacactc atcagcgtga ttgtgactgg tatggctgca tg
#gaagcttc 1200
cctgtggcat taatcataaa atgctggatt ggggtttgat tcttcaaggt at
#aagaagga 1260
cctagtctca agtaatagat tcaccaaaat gtaacaccac tagccccctc cc
#accaaaat 1320
ctgctccagt cagaattacc gtaagagctc agaagtgacc tgtgcttggc gg
#caccggcc 1380
cactttccca gtgccggttc ctcgcatcct gggcgcagac ggggtgaccg cc
#tgacccct 1440
ggacccgagt cacctttccc tgccctgagc tcctccttga gagcttcaaa ac
#aatgctcg 1500
cccaggccgg agggcgaagt cggcccatgt gtaagtcaag ggaactgtcc ca
#ggactgca 1560
gcccggccag aagacgcccc gcgccgccgt cccaggcagc caccgctgcc gc
#catggccc 1620
ccgcaggccg ccgtaggccc ccgcgggccg cctgacccct gcgggccgcc gt
#agaaggac 1680
cctccagagg ccgcgctctt gagatggccg tcgggctccg ctccccgcgg gg
#ccccggct 1740
gagggcccgc cagcgggcac ctggcgccac cgctgcgttc cggcactagc ac
#gggacacg 1800
gtcagggagc ggcgggccgc ggccttgcgc gcgccgtctc tcggggcggg gc
#accgggcc 1860
ccttccgggg atgggccccg gcgcccgcgt cggcctggct gtgcccggcc cc
#tccccgct 1920
cgggcgggcg ctgcgccgta tccccgcccg tcagtccgcc cggctcggct gg
#ccgcagaa 1980
agggcctggg cggccgcact gagagcttta cgcccggagg cgtcggcgct gc
#cactggcc 2040
cgcgacggga acggggcgaa aaggcggcgg caccatgttc tccctcaagc cg
#cccaaacc 2100
caccttcagg tcctacctcc tgccaccgcc ccaggtaaac aacccctccc cg
#cgagcgcc 2160
cgactctcct ctgcgcttcc gtggagcctc caggccgacc cccgggaact gg
#aggacccc 2220
aggaggctgc gcgcgtctcc ctgcccacag cagcgcggct gcctgattcc cg
#gcgccgcg 2280
aaatgcgcct tctcgggagc ccccactggc tcggcgaaaa cttgtaaaac tc
#ttctgcag 2340
ccattctctg cccgaagttc tgtcgtccgt agttttgcgg agtgttgagg cc
#caggggag 2400
ccttgggagc tggggttttc tttagtttcc aacccatcga ccctccctcc ta
#tgaccgcc 2460
agcatgattg cagcgcttgg ggtcactggt cgaggcggtt acccgtctgt ca
#taaatgtg 2520
aacacctgga agcgacactg gcagtttaaa cattttttat tattaggctt cc
#aagtcgat 2580
aatgagcaga tcttaaaaac agctcagtta atatgcgaaa gaatttaaat gg
#ggggctgt 2640
gtgtctttcg catgtgtcat cacttagaaa acaacatttg ctgtagcatt tt
#acggaggg 2700
tggggggatt gagattttga tttattttgc taatgtattt cagactgacg at
#aagatcaa 2760
ttcggaaccg aagattaaaa aactggagcc agtccttttg ccaggtaaac at
#tagttagg 2820
attctaacag atactttagc aacgtatttt ggtttaagat tattctgccg ac
#tagtatca 2880
tgtggttaac ttcccttctc tcattaaact ttctccagtt aaaagtctag tg
#actgagag 2940
gagaaaaagg aactgtcaag aatgtcatta cctcatttcc ttttttgtct cc
#cgaatttc 3000
tttttgaaaa gatgtatatg tttaattgct tgggtagtaa aagtactctt tg
#ctgacgtg 3060
tttgccactt attgcattaa tgattaatca ttttaatgca ttttgatagt at
#aaaaagac 3120
gcctttatta tgtgtgtgtc tctataccaa taacagagct tagtgaactt tg
#aattactt 3180
gcttggcaat tgttttttga agttgtcagc tgtatttgca aatttgcttg tt
#tcagttta 3240
gaaccaggct tttcccagca gagacactta attgacattt ggggccagat aa
#ttcatagt 3300
tggacgggca ggctgtcctg tgtatagcaa caaagatggc ctccacccac ta
#gatgccag 3360
tagtagtacc cttatccccc accacctagt tgcgacctag ttgccacacc aa
#aatgccac 3420
cagtcattgc caattttttt ttgtccccta cctctggggg acaaaaatct ca
#cagttgag 3480
aatcactgct ttagaacaaa atttgctata ggtgacctta gagatggaag ta
#gggattgg 3540
tggtagaaag gggtttgttt tagagcatac agaatattgg tatggtattt tg
#aattgtat 3600
aacaattgta taataattag gaaaagtcag ttgtttaatg cgattattag gg
#gaagtagc 3660
cagatactta ggaaagcctg ttttaaacct gaaatcggcc gggcacggtg gc
#tcatgcct 3720
gtaatcccag cactttggga ggccgaggcg ggtggatcac gtggtcaaga ga
#ccgagacc 3780
atcctggcta acacggtgaa accccgtctc tactaaaaat acaaaaaaaa tt
#agccaggc 3840
atggtggcgg gcgcctgtag tcccagctac tcgggaggct gaggcaggag aa
#tggcatga 3900
actcgggagg cggagcttgc agtgagccga gatcctgcca ctgcagtcca gc
#ctgggcgg 3960
cagagtgaga caccgtctca aaaaaaaaaa aaaacctgaa atcaaatact ag
#tttgtgtg 4020
gctactatca gcattgtaaa atctgactca ttacttaaag ccaaatcggt aa
#aataatta 4080
gaattttgta ggtaaaaatt gaacaaatgt ggaaacttta aaattttaaa ta
#ttatatag 4140
ggacaaaata ttaaaaacac caaactttgg ttccatatga aagtttaaaa ag
#tgtttttt 4200
aaactttact atgggagtca taaatatttt cccttgattt tgttagtgct tt
#tcactcaa 4260
cagtgtgtac taattaatca tttgtacttt tcctcagagt gaacagtaga at
#tactaagt 4320
aacccttgct ccctgtgtgc tctgttttag tcttagtcac tctgagcatt ta
#aaatgcag 4380
ggacgaggaa acagtactca tcttgaatga gtgcctatga gctattgaac tt
#tgacttcg 4440
tttactctga acaggcctgg ttcttaggct ttgattcctc cactctgcat ac
#tatgattt 4500
cacactcaga aacaacatgg tcttagctgt aaatgtcagt gcttgctttt ta
#atttttta 4560
aaattttttt taaatttttt tttttttttt tttgagacag agtctcactc tt
#acttgggc 4620
tggagtgcag tggcgtgatc tcggctcact gcaacctctg cctcccaggt tc
#aagcgatt 4680
ctcctgcctc tgtctcccaa gtagctggga ttacaggagc ccaccaccac ac
#ctggctaa 4740
tttttcgtat ttttagtaga aatggggttt ctccatgttg gccaggctgg tc
#ttgaactc 4800
ctgccctcag gtgatccgcc cgccttggcc tcccaaagtg ctgggattac ag
#gcgtgagc 4860
cactggcgcc tggccacttt tttaaaatta gcttttaaat ttaagatatg tg
#ctaagaaa 4920
aggtgttact aagtatgcat aaacttgaag aactttctca ctgagggtta tc
#aattctat 4980
aaaatggcta aaagtcagag ttttctgggg aagttgtaaa ccaagtttct ga
#ctgtgctt 5040
ttcttgtccc agaaatggca gctaaattcc gtattatttt tagagaaatt ct
#aaaagagc 5100
tgtaacacta agtctgaacc ttttagttgc ccattaagga attctctgac ct
#gtgttaat 5160
ttttattgca ttggcggcca aatcatagct gaaatctgta catgcataca tg
#acggctct 5220
atcacccagc attctgtttg tacctgactt atccttaccc aacatttagc cg
#gtcctgaa 5280
ttaggatgtc ttttgccccc ttcctctccc cttctgttct taccctctca tt
#ctggcctt 5340
cctgcaccca tcctggctgt gttctgtctg gctgccctgt tgtggtctct gt
#ttcctgct 5400
ttacctcgcc tgtcacatct ctcactgcta ccatttgctc tttgttggcc tg
#tagcctac 5460
tgctctaccc atgaaatctg gaagacaagt ggaaagttac cgaactattg gt
#gatctaaa 5520
gacctagact aggctagagc ttttactaag agggagtgaa taatatagtt ct
#tgcctttg 5580
tgactatcag aatcaataga aaacctggcc acatcacnnn nnnnnnnnnn nn
#nnnnnnnn 5640
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 5700
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 5760
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 5820
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnntgttggg ggtgggggat ga
#gggaaggg 5880
agagcattag gacaaatacc taatgcgtgc ggggcttgaa attcccggcg tc
#atccctaa 5940
agacggggtt gatgggtgca gcaaaccagc atggcacgta tatacctatg ta
#acaaacct 6000
gcacattctg cacatgtatc ccagaactta aaaaaaaaaa taaaaaaaga at
#taattgtt 6060
agagatatgg tattgcatgc tttgctttgg cataatgcct tgggtccaag gg
#tatcctac 6120
ttcagttgcc caaagtttga acttctaatt caataagcag atgaaaatta ga
#acacaaaa 6180
tgagttgttt atttgtgtgc tgtcaccatg tgcactgttg gaacttaagc ct
#aatttcaa 6240
aatgatcctc atcttttatt aagtaaagaa aacagaagaa aatgactagt aa
#tttaattt 6300
agattgtggt ttatgttagt aattttcagc tttcctgata catgaaactc tg
#agatgggt 6360
attgtgccta cttcaacttt gtggtcttga tgtctcacaa agtgccagga at
#gtggtaga 6420
cactgagatg tttactgagg gactgaacga aaggacctct cagaccacct gg
#cttaaact 6480
gttaccttac ccaggcacac acacagacta actttcagat ttaggagtaa ag
#ggaagact 6540
gtgttatttt atgccagaca tttcaagaga tttatgtcgg agcctggaat tg
#aaatagag 6600
tactctgtca aagtagtcag cttttgtgta ggctttctct ttatcttcct ct
#cattatgt 6660
gaatttcatt ctttcagtga ttatattgta tatgtgtaaa atcactccaa ta
#cttgaaaa 6720
ctgagtttga cttttaaagt gtgtgtgtgt atatatgttt gtgttccagt at
#atatttgt 6780
taagagcatg taatgccaga ctctgtcctg tttagctgct ggactggtgg at
#cggttcgg 6840
tgaggatgtg agtatctcct gggtgccagg tctgtcctgg atagcgagaa tg
#ctggaggt 6900
gtcatgtgcc tgtatcgcag aaaggcgtgg ggtgagccct aagctgcctg tt
#gacaaggt 6960
agaagactgt gacctggatc actggtaccc agattccagc cagggcctgg ta
#tcagattt 7020
ggatgaagtt tttaccagcc cttggtcaaa gtgagaaaat taagaaaagt gc
#agttttct 7080
ttaataaaga taaatttatt tgatttaaaa gattgtcttt tattctgaga tt
#atgttctt 7140
ctaacttact tggaatagat actttttttg ttaaatgttg gtgataatag ct
#gtagcttt 7200
aaaaaagttt ttaagttaac aaaattaaaa agttaaaaac tctttattgg tc
#ctttaaat 7260
tagttttgca ctatacctgg tttggaatct aaactagaac ctactagatg ag
#attattat 7320
aatactatag atacaatttt gtgagcactc acacagagaa cattaattat tt
#tgtctgcc 7380
taggagtact gccatttttt tgtttgtgtt ttgagacagg gtctcgctct gt
#cacccagt 7440
ttggactgta gtggtgtgat cacggcttac tgcagcttca acctcctggg ct
#cgagtgat 7500
cctcacagct cagcctccca agtagctagg actacagacg tgcgccacca ca
#cctggcta 7560
atttttgtat tttttgtgga gatggggtcc aactatattg cccaggctgg tt
#tcgaactc 7620
ctgggctcaa gcaattggct caccttggcc tcccaaagtg ttgggattat ag
#ccgtgagc 7680
caccacaccc agcccccttc caccatcctc tgaaaaatgc atcctccctc tt
#ttgacaaa 7740
ttatcctttc ctgactaact ccacccaacc ttgggttcca gtgtggccag ca
#aggttaat 7800
aacccaccct ggactgcaag catgaacaca ggtctgcctc tggatgttgt ta
#ggttggta 7860
ctaagggaag aggtcctctt tggtaatgct gcaagtggcc acagttccag aa
#gaatctgt 7920
tgaaaagagt gaagaacccc aaggaagtgc actaatgtgt gttgaagtcc ct
#gggtttca 7980
ttgtccttgc aggccaggtg acacaaaagc cttgtattct tctttttgct aa
#gctattac 8040
caggcatgtt tctgaacata ctttgaacga ggatccttaa ctaatatagc tt
#gcagatta 8100
atcatcataa cagtcttgtc agctaggata ccagtttatc tccatttgac ag
#atgtgaaa 8160
actatagttt gctgaggtta agtaacttgc ccagtgtcac acagctagca ag
#gcagagcc 8220
agagttctct gtccagctcc caggctgtgc cactaactgc taagtagcac gg
#cccacctg 8280
gctgcactgg tgacactagg gtacagattt atgctttgga actgttgggg ag
#tagattgg 8340
atgtcagcct agagggagtt ctctagtgaa gtaaaaagag ctctgtcctt gt
#ctttgccc 8400
ttttcacaac agtgacagat tttgacccag cgtgcagaag aactttcaga ga
#atttcagc 8460
tgccagaaaa tggaatgtct tagggaggta gtggacttcc tgttgctggc tg
#tgccgaag 8520
cacagtctgg tgaaatgcca gcagctttgt attgaggatg taagatttgc ag
#tgagtggg 8580
gcttgatggc ctttgctctc ttctcacccc agggcatgct cttttttaag gg
#agaagagt 8640
tgaaatgcca agactaacga taatgaattt gttctgcagg tattgagtgt gt
#gcttgatg 8700
cagtttggca gaagggtaaa atgctgagga gatgggatcc tgttcttaga ca
#gtttcagt 8760
tcactggaga gatgcttcag tagaggagag aaaaagtagt aagagctcag ag
#gaaggtca 8820
cctaagccag atttggagta gggcaggggt gtcaagaaag atctctggaa ac
#aaatgctt 8880
gtgctctgaa tcttgagtgc ccgttgagcc tgggcccctg tgctgaggct gt
#gcgtcagc 8940
tcagttcttt cccctgttcg catctacagt gctcacagca ctttcattct tg
#agattaac 9000
tattagataa tgaatgcagt gattgtcaga gtcttttgta atcggatcag aa
#aagcatac 9060
aaccatgggc catctgggaa atgaaaatag ccattgttgt atagatgtct tg
#tttatttt 9120
ttacaagctc actggcccgt actgttcttg ttttctgtct caccatacgt ct
#tatttcct 9180
cagttgggtt gttaattcct taaaggcaaa gactttatct ttcaagtgtt tt
#atgtaatt 9240
cctttttgta ggtaggcttc ataaatgatt gtagactgat ttttgtagta tt
#ttaatttg 9300
tgaatgcatt gtttttgaaa gaccaaagga cttgtaacac accctcagaa ca
#gtgaacag 9360
tgtaactgta ctatcttagc attagcttta taccttaccc gtagagcctt ag
#gaatgttt 9420
ggagctgtcc attccttagg cttttgctgc agtaccttag gccagcattt tc
#ttacccct 9480
ccaaactact cactatcgtt gtcaacaccg ttcatgaacc tccataaata aa
#atcctact 9540
taagcaggat aaaatccaaa ttctttaacc ttgtaatttg ctaacactgt ac
#ctcactga 9600
cttcatttct cagtatttcc caatattgat atttgcttca atcatgccgc tt
#ccttggtc 9660
tcttccagat gccttattcc ttatttagga ccttgttact gttattatca ca
#cattctct 9720
actatctcaa tgctcttctt ccttcaagat ttcattctac aatttttcct ga
#gatcggca 9780
ctataccctt cctcctgccc catcctatcc tgagtgctac tcactggact tg
#gtacttgc 9840
ttttttacat tgtgtgttag taccagcatt aaagatttgt gtttatcttc ca
#catagttt 9900
caatttcctg tgataacttt tgagccactt taattcctga atttacctaa ag
#ctagggtg 9960
accagcttgt cccagtttgc ttgagactgt cctggtttta gtgctaaaaa ta
#ccacatcc 10020
cagggaaacc cctctgtccc agacaaactg gggcagtcac cctactgtta aa
#agcccaag 10080
ttaagttatg cttttggcct ctacacatcc cacaggttaa ttagccacgt gt
#gccgtgag 10140
actttgcctt aaactgtgtt ccaacctaaa atgtatggga aacattattt ct
#gtccatca 10200
aacgtgatga atttctaaat gtataaggtg ttaggaaaga taatacaaca tg
#gttttgag 10260
gtcctcaggg agttaaaaac tttcctagcc atatcatttg gaggtttatt aa
#ctgtaatt 10320
gcatttccct tcttatttat atttacagat gaaagggtct tgagaaaata aa
#cttggatt 10380
tcttgatttc ttcccaggtg ttagtagaaa cctttggctc atcatcctct aa
#tttagaag 10440
gtttttgctt accgcacact gaagctaatt tcctgctttt tctggcttca tg
#aggcttcc 10500
ttgtggcatc ctgggaagtg cttggtgctg taaatggtcc caccgtggct ga
#tggcatag 10560
cacagagctg ggagagagga gtctggtggg ttctcacaag caggccagcc ag
#ccgtctct 10620
agcacaccac ccttttactg cataaaaagc acaggcgtat agtctccctg aa
#aacttcag 10680
atcctctaga gctttgaagc ttttattcgg agttttctct tcaaggtcac tt
#aatttaac 10740
atgtgaacaa gagcagtctc agtaccttct ttttatatat cctatctggg aa
#gaggccac 10800
tttgtgtctt ctttttcttc cctgtgtata agctagtttt ctggcccaca gt
#gtttcagt 10860
gcatggcagg agcttatgac agctcctctt cagcattcct tttttttaaa at
#tatgaaca 10920
aatgacttac gtgagcagac agctgtgcta catgatccaa atattttaaa ga
#ctggttct 10980
gcatgaacaa aatttagcat tatcaaataa aactcatgtc actaactcga ca
#cttaatta 11040
ttgtaatagg aagacccaat tgtagcatat cctcagaagt gcccttcttt tc
#tttcttct 11100
tcccctgtat ccctctgtac ttctgttctt tgctctcttc caagggctca tt
#tccattct 11160
gtaagaaaag gctgtgtggc gcttaaaaga ccctggccca gagagtcctt ct
#ttcacttt 11220
ttttttcttt tttctttttt ttggctgttg ttaatgttgt gtctcttgtt ta
#ttttcttc 11280
tttagtagtt ttattttgga atgaatttga atttgtaaga gttgtacaaa ag
#aggataga 11340
gttaatgtga actcttcagc cagcttccgc taatgttaat agcttatgta ac
#cttggtga 11400
atttagctca actgagaaac caacaatact attagctaaa ctgcaggttt ta
#ttcgtatt 11460
tccctagttt ttccacaaat gttctttacc tgtttcaggt tcacatccag ga
#tactacat 11520
agcatttagt tgtcgtgtct ccttattctc aatgtctcag tctgtgacag ct
#ttttcatc 11580
tcatctttca agaccttgac gtgttttttt ctattgaatt tgattttctt tt
#ttttcttt 11640
ttcttttctt tttttttttg agatggagtc ttgttctgtc acccaggctg ga
#gtgcagtg 11700
gcgtgatctc cgctcaccgc aacctccagc tcccgagttt gagcgattct cc
#tgcctcag 11760
cctgttgagt agctgggagt acaggtgcgc accaccaggc ccagctaatt tt
#ttgtgttt 11820
ttagtagaga cggggtttta ccatgttggc caggctggtt tcgaactcct ga
#cctcaagt 11880
gatctgcctg cctcagcctc ccaaagtgct aagattacag gcatgagaat ga
#gattttta 11940
ttttgcctca aataatacat attaaagctc tttaaacata gaaatatact ac
#tacaaaag 12000
gaaaaatttt ataattacta gatttctgtt ctaacaaacc accccctaga aa
#cgtcatca 12060
aattgactta aaaatgtaga cgtaatttca gacttagaga aaagttgcaa at
#aacagaag 12120
aatctgtgga taccctttcc ttagattccc caataaaacc ttgacgcttt gg
#aagattat 12180
tattcaggta gtgtcttgta gtatgcctct tggtttggat ttgtccgatg tt
#ttcttttg 12240
attaagcaga ggttatggat tttgggaaag acccacagag gtggtatcct tt
#gcccttgt 12300
gtcatgtgag caggcacaag acatcaacat gattggttat tggtgaggtt aa
#cctcgatc 12360
acttcaggtt aaagtgatat ctgtcaggtt tctcctctag aaagtgactg tt
#tttccttt 12420
tctgtactgt ttgttagaaa caaatcacta agtgcagccc acattcaagg ga
#ttgggaat 12480
taagctccac ttcctggaga gaggagaatc acgaatttat gggcatacct ta
#aaactacc 12540
acagtaatta gtcaatactt ttgggaagat agctttgtgc ttatacaaat aa
#cctgtttc 12600
tccttaaagt ttggctctct gaatttagca ttcatcaatg catgttgcac ac
#agcagtca 12660
ttcagtctat gacattgagt ccatgatagt ttcttgatct ttactgtaat gt
#tctaatca 12720
tgattttgtt tccttattcc tcctacattt attaattgga attcttctgt ga
#ggaagatt 12780
tgtctcttct ccgccattta tttatttatt attcagtcat ctgttgacaa ca
#gtatggat 12840
tcacagatac tttttaattt actttctaat ccggcatttt tgttatttct tt
#tgttgctc 12900
agattgttcc agctttggcc attgagagtt atttcatctt ggctcttgta tc
#ctttggaa 12960
atgccgtccc cccgcttttc ttcaccccca cttccatatt ttctggtatt ct
#ggcattac 13020
cagaggctac agactcatct tctgtttccc ctgccccagc cttggaatca gc
#catttctc 13080
taaagagccc tagttctttt tattggaaaa tggtatttta aaagcaagag ct
#gggtactg 13140
agtgtgtatg ttgttgctgg agcgtcactg cttttagcac tttcagaggg ca
#gagctaga 13200
aaacatacac acatgtacca acccaggtgt acacacatct gttactgcat gt
#ctatttgt 13260
atatttatta aggcaagcat aagttcattc tgctatctca aactcttaat ct
#agcccctc 13320
ggggttcatt tccaaattct tgcttttgct ttttgttgat ggagtatggg ca
#gtacagca 13380
gttaaacctg gtttccatat ttactttctg ctgagtgctg tagctcattg gt
#gagaaagg 13440
gatcttttga cttgacttgc atggacacat tctagtagga aggttgtctg tc
#ctcatcac 13500
tcctgtgagt ggtcctctag agctctttga aatggctaca acattgcaga tc
#aaaaacac 13560
ctgcttttca ggtgcttcac ttctcacctt tcagatggga catgcccagt tg
#tgtcttct 13620
aaaccttgtt tcagataatt ttaagagttg tcgcttcagt aactatctct aa
#cacaggga 13680
tcagcaaacc ttttctgtga agtgcagtaa atattttagg ctttgcggac ca
#taaggtat 13740
ttgtttcaag tactcagctc tgtctttgtc ctgtgaaagc agccatagat gg
#cacatgaa 13800
caaatgagta tggctatgtc ttactaaaat ttcatttaca aaaacaaggt tt
#tgtatttg 13860
gcccgtgggc catggtttac catccgttgg acccattaag tatattctcc tc
#ctcttctt 13920
tgtctcattc tcactgcgtt cataggcttg atacgttaac attcgtgcat ca
#gtaaaaga 13980
atctggcttc tagagaagaa gggctgtcca tgggcgtttg actcctaaat ac
#agtttgtt 14040
tatggtacta gtgtggccac aaggctctgc cacacaagct ctgtctcttc ct
#tcctgtta 14100
ttacttctgc ttcccttctc aggaacctga aatcatatgg tagtttgttt gt
#ttaagtga 14160
tttttttttt tgagatggag tctagctctg ttgcccagtc tggagtgcac tg
#caacctcc 14220
acctcctggg ttcaagcagt tctcctgcct cagcctccca agtagctggg gc
#tacaggtg 14280
cgcaccacca cgcctggcgc accaccacgc ctggctaaat tttttttttt tt
#taatagag 14340
atgggtttca ccatgttggc tcaggtggtc tcaaactgac ttcaggtgat cc
#acccgcct 14400
cagccaaagt gttgggatta tagatgtgag ccaccacgcc cagcctttaa gt
#gaattttt 14460
atttgagtat aacatgcata acaagtttgt gtggatcata agtcttagaa gt
#ggatgaat 14520
ttttgtagca aggtttgaag agtctgtttt tagatgagtt tgctaaggtg gc
#acagtatg 14580
tgatgattcc gtgtaaagaa gtcattgtta cagggctgtg tcctctatct ga
#actggcat 14640
ggttagttta gttgtttaaa ttgagggcct gcttacaatt catatctaag at
#ttactgga 14700
gaggagaaag ggttgagtat tcagtggccc agaatctgat atgggaattg gt
#aaggttta 14760
tgttcaagga gccaaagaag atttaaattt tatgtatttg aattactcag tg
#cgtctata 14820
tatatatata tttggtcatc ttaaattttt tttctcgtta gaattcagtt aa
#ggccaata 14880
tttgaacttt aataagtttt ggtacttgct acactgcagt acatttaatt gt
#atgtaatt 14940
atagggaaag actatgggaa ttgaagtcag aacacttggt tataagtgcg aa
#gtccacta 15000
cttcttttta agatcttagg aaagtgattt aacctctttg ggtgcaaatc ct
#ttatctgt 15060
gtattaagga aaccatctgc cttcctcacc ttacaggttg ttgaaagaat ca
#gacaggac 15120
agatgtccta tttatagctc tttaatgcat atgtaggcaa gcagtggcag tt
#ctgtgact 15180
cttctctaac ttacatatca tttacccaaa cagcccttat cttccagcca gc
#ttggctgc 15240
ttagccatat tgaattacta gtttctctta tctagaacaa cttctgccca ac
#tcatggtg 15300
gacagaacca agtgtcatga agtgatttta ttcattcttg cattcagcac tc
#ttttcaca 15360
ggcacctacc ctgtgccaga cactgttcta ggcactaaca tttcagcagt ga
#ataaagtc 15420
agtccatctt ctaccctcat ggagcatata atcctgaggg taatgcaggc at
#taatttaa 15480
aaatatataa atataattgt agctatcatg agtgctggaa atacaatgct tc
#gatatgtg 15540
aatgtaaact agataggaag atttttttaa agaggcattc cctagacagt gg
#ttggacta 15600
aggtagaaga aaagaatatt ccatgaaatg ggaagaagca tggtcccatg ag
#ggattaat 15660
aggccaccac tgtgggcaga gcagtgaggg tgaggaaggc tggtagctgg ct
#gggtatgc 15720
agggctccca gccatgagag ggaggcttgt cttcaaagtg gaagttaact ca
#agctgttg 15780
gcactgtgaa tttgacatga gcagatttta ggtaaatgtt aaggggcagt ta
#ctaaaact 15840
agccttgtac atttttaaga acttcgaata aaagttattg cagctcaaat tt
#gttataac 15900
ctatttgtta aagagaggat tgttttgaga ctatagttcc attcttcatg aa
#ttggtagg 15960
agtttggagt ttgtcagcaa acattctatc gggctaaagg tttttataat ga
#aagaaata 16020
ggcaaagtgg atcagtacac tcacttttct accattgacc ctggagacag at
#ggcttaaa 16080
atgttctgcg tctagttgac ttttagatct tgaaattaag gtttaatgat ga
#ccaagctt 16140
taaataaatt gtagaaaagt attctttcaa aagtacatta taacttttat at
#tggtttct 16200
tatatttatt tcttttaatc ttttctttta actcaaacta cgttttaagg tt
#ttgttgcc 16260
tactaagtta taatctgagt gcagaaggaa acttgatttg gctttatgga at
#acatttta 16320
cattcagtga agctgagctc tgtttctcat tccttacaaa aggaatcaaa gg
#cattggtt 16380
tgagagatca agtcatgtgt taataaaaca caaatattcc atcaagtaat ac
#tctgaagg 16440
agcaggtgta gtttatttct tctccagaaa gtcttccagc agataaataa tg
#agaggtag 16500
tatggcatag gaaaaaagta cactgaagtc agcctttctg gttcaaccag ct
#cagacccc 16560
tgagctattt ttgcctcagt tttacgcctt ggagaacaat gccttgtcat ta
#ctattcac 16620
tttatgacca tacagtgcct ggcacctggt gggcaattgg tgaatgtttt ca
#ctatcctc 16680
atccttgccc tcatgaaaca ctccttctag gtcccacaaa gaccgttggt at
#tttatgac 16740
aaagtacctt acaaatattt ttcttttttt aaaggagaaa ttgtcgtaaa tg
#aagtcaat 16800
tttgtgagaa aatgcattgc aacagacaca agccagtacg atttgtgggg aa
#agctgata 16860
tgcagtaact tcaaaatctc ctttattaca gatgacccaa tgccattaca gg
#tgtgtttt 16920
attagtacac tgtttcattc tatcaggctt tcaactctaa gtggtacata tt
#attatata 16980
aaacataggt atggaaaagt tatagtagaa gtattaggta atgcaatgtt tg
#ggataaat 17040
tatattaaga tttaaagtaa agtttaagaa gaatgttgga acttgctaga gg
#agtattag 17100
tgagaggatt gtaagtcacc ttgctttatt tatcctctgt gatcgttcat ta
#tatgtcct 17160
tttcattaag gaagttattc cctctgttgc agatctttta acctgcttat aa
#aaatgaca 17220
taaagagaaa aggttgtttg ctaaatgatt ttataaatgc cacacatttt ag
#tgatttca 17280
taggtttttt tgttgttggg tttttgattt ttttgttttg agcctggatc tc
#gctctgtc 17340
ttgtctccca ggctggagtg cagtggcatg atgtcggctc actgcaacct ct
#gtctgctt 17400
cctgggctca agctatcctg ccacctcagc ctcctgagta gctgggacta ca
#ggtgcatg 17460
ccaccactcc cggctaactg ttgtattttt ttgtagagat ggggttttgt ta
#tgatgccc 17520
ggattggtct tgaacttctg agcccaagca atctgcctgc ctccccctcc ca
#aagtgcca 17580
gagtacaggc cactgcaccc agctaccttt tttttttttt tttaaactaa tt
#agagttat 17640
tttcctaaaa agttaaattc taatttctag gaagagtgaa gaatagtatc ga
#tttaaaaa 17700
ttttcagtag ccctcttgct attttatgtt cttactggaa agtaatagtt cc
#atgtaatt 17760
ttggttttta gaagttcagg cattcatttg attaacttaa aaaccctgga ct
#tttctgtc 17820
agccattttg tattttgttt tataaagtat tatacacact tacccctaga tc
#tttcttta 17880
tagtaattgt tctttaatga aatattggta tatgaactgt aaacttttaa at
#ttaaggat 17940
ctaatagttt agtgtaagta tatttcatgt agtcactcac taatttacca ta
#attattat 18000
actgtacaaa tatttattgt actgtatatt tgtgtgttca ttacagtctt at
#gtaggtat 18060
atttagacta aatttaaggc acttaaagat acccactgtg tagggacagt ag
#cttatttg 18120
gatataggct tgtgtgtttc tctttgtttt tagcttcata atgatcattg gc
#cccagact 18180
tcactgtaaa tgagaagcag atacctggaa cagcttaaat ccagtaccac ta
#ttaggaaa 18240
aagtaaacca gtgccctact gacagcagat tgatagtgtt aactacgtcc tt
#agtttgaa 18300
catgcaaaac cttttctaat ggtttttatt tctagtagac tttgtgcttt aa
#aaagatag 18360
ttattttgca ctttaaaatc ttcagtgtga aaatcaaaca tgattttacc ca
#cttaaaat 18420
ctgatgacct aagagccctt ttttctttaa tatgttgtgg ccagcttatc ca
#gatctaga 18480
catgcaaatg cttgctggta aggtgattga tgatattccc tatcttaggt at
#tataataa 18540
gattgttgtg tacattttaa cctaatttct atctgtcaac attggaatgg cc
#ctagctac 18600
ctagacaaaa gctttttgtg ctttttagag ataactgtca cagtttatca tc
#acagttta 18660
aggcttatac taccattgtg agattattgg gaaaagaatt aatatgaaca ta
#atttttta 18720
ttccagaaat tccattacag aaaccttctt cttggtgaac acgatgtccc tt
#taacatgt 18780
attgaacaaa ttgtcacagg tacgtagtat tccgtacata ctctaaaagt ca
#attccact 18840
ctggaagtat tatttgaaaa gtcatacctc tcaaaatact tggattggcg tt
#ttatttct 18900
gtaagtttac ttttgccgtt tttttgagtc ccgggaacat aaagagggat at
#gttaataa 18960
attattttaa aaggaagata taaaatgtat aacttttcat agtttctagg tt
#ttttgtcc 19020
tctttttaat taaaattaat cattaaatgt atctagatgg tggttttatg ca
#aataatca 19080
tttaaaatat cttccaaagc aaagttaaaa ccaaccccca agttctagga at
#tacaagta 19140
tgaaacattc tagacaagca gagctcaaat gttgggtgac cttccaatta tt
#ttcactaa 19200
gaatttgtat taaagggtga gtaacaaata actgttacgc attttatttt ct
#ctattttt 19260
ttttcttttt tagtaaacga ccacaagagg aagcagaaag tcctaggccc ca
#accagaaa 19320
ctgaaattta atccaacaga gttaattatt tattgtaaag atttcagaat tg
#tcagattt 19380
cgctttgatg aatcaggtcc cgaaagtgct aaaaaggtaa tactgttaag gt
#ttatcaag 19440
ttctgggttc tgtactgtgt ttactgattt caattccgta tggcagtttt ca
#tttctcaa 19500
ttgctcagat gttttttagg ggaagttatc agacatcttc ttaagtaaag tc
#aaagccaa 19560
gaatattaat agaactattt tcttggattg gtttatggct gttttaaagt gt
#tctatata 19620
actttttatc agcttctcaa atattaaaga ctcttacgtg gaaattagca tt
#tttttaca 19680
taaagatcat tacttgtcag tttcttggtt aaaaggttga aaagttggtg at
#atactgta 19740
attaaggttt ggttaggctt ttaattcagt actgcagaac tttaccaaca aa
#ctgtaagc 19800
tagacttatg ttacataaga tttaggtaaa tatataatta cgggaaaggc ct
#agtaatta 19860
ttagtggttt aaagaaatat tatgaattga gtgacactca acaggggcaa ca
#caaagcta 19920
gtaacttttt aactgcctta tttttccacg gccttccaga taatgactta tt
#accctact 19980
tgtaagagtc aagggcatgt tttccatgtt ttgctttgcc agaggagtga ag
#ctggtaga 20040
cctaatatgg cccccgttcc agtctgtgct gcagcaaatg cagagtcaca ga
#ctttccag 20100
taggaagctt gcgcgtgtgt atgggaatag ggcaacagta tcttagtata at
#aggacgtg 20160
gctttctctc agaatggagg cagtctttgc accaccaagc aatgagtgcc tt
#tgttttcc 20220
atggttagtc aactgactgc agtaaatctt ctgttgatac caaaacaagg ct
#ggcaaaaa 20280
tactgtaagg cagctgtctt catatacttt ggtgaagagg tggtagattt gt
#ttttagat 20340
tgagaaccaa cagtttcttc acaggaaggc aagcaggaga tgaatatatg aa
#aatacatc 20400
tgaaaatatg tgactgtcta gcagagtaga gtggttgtag gctcctctat gg
#gtaaaagt 20460
tttcaaatgg tctgtataac catctctcag caagctgcat tattgaaaat tc
#aactagat 20520
aactcttaaa gcctctttca cctgttcgat tgtgctgttt gtgattttgg ca
#ttttacta 20580
atttaaagtg cctattatat agaaggactt tagaattcat gatgtattag ac
#tgtacata 20640
aaatatttca gacaggttaa ttcctcaagc ttatttatat ttgtaattta at
#tgatcaaa 20700
gcatcaaaga cctgcttatg aaaaccttaa gatgtgtagc atctcaagat ta
#gggacatc 20760
acagaacttg ctagattgag ttaggacagc atattcctaa ggaagaaatt ga
#tgcaattg 20820
accggatctc tttcggaaag ttcaattctc cctcttttac tgtatttttc ag
#tttacact 20880
attttaatga gtggaaataa taattatttg gcctagttct tgaaccatct gt
#agtacttg 20940
ttggtcattt ttcatgttga ggcagtgtgc taaattttgc aagtagaaag aa
#gggtaaga 21000
tgcagtttct tgccctagag aacttaaatc tagtgaagaa gataaagcat ga
#acaaatga 21060
aaagtaatgg tacaaagtgg cagcataaaa tcaactacac aaatagttga tt
#tccagatg 21120
aacagagcat aataagtgct gtggaaattc agaatatccc ctatgtgttg tg
#ctgctggt 21180
tcatgaagag ggccttacta aaccgtctgc acaaaacaag ccagtccctc at
#atgccctt 21240
tcctaagacc aagtttcaga caaaaatctt ttccccagta tcctaaaata ta
#aaaagcat 21300
gtgagtctct gtcttttgta tagccacggg ggttgcaggg caggggaggg tg
#caggaaaa 21360
aaaaatagat gcaatgagaa tataaatagt ttttttggga tttacgcatt tc
#aaacaggg 21420
ttaagttgta tatggctacc aaagcttgac ggctttgtga gttaaaaaca aa
#aattatgg 21480
catattcttt tatttcaagt gaaaagtttt catctaaaat tcggtagcag tt
#aggaaatt 21540
atggctcatt tttacctcct ggaagcttgg aatactgttt tctctggaaa at
#gctttgct 21600
attttatcag ttgctttaaa atgatgaaat gcatgtttgg agttctctgg tg
#ggtaaacc 21660
gttgattcat tttgaaatac ctaagccatt tatgtttttg ttttgaaaaa tg
#aaattcaa 21720
gaatactaaa ttggttcaca ttttgttaaa tgttctgaac ccttctggtt gt
#cttgttgg 21780
tgttgtttca attgtattat gacaaaatta gattgctttg ggcacttgta ct
#cattaata 21840
ttcatcctca ttatcctcga gctgtcacag gaaaatagtg atatttggga aa
#ggtctgta 21900
taaagaaaga aggaatttga tggtgcagaa ttggacatct aacctcatag ca
#acttagaa 21960
ccaccatttt cttttgcaga acctttgctc aaaactgaag ggcaaaataa ta
#aaggttgt 22020
ttttaatgat ttatctatat atctgtctgt gtagataaag ataaatatat ag
#atacacat 22080
gagtgacaag tgaaatacat gccttttgtc tccactttgt tctctgatta gt
#gggttgtg 22140
aatcacttct tcaggaatac tttatagaag tgaattccat tcatctgatt aa
#ggaacaag 22200
ttggcctttt catgaactgt catttttgac ttgaatctgg tactgttttt tg
#gtggcttt 22260
caggccacag aaataaacca cttttgtttg caaatgagat agaacttaat ga
#ggtttgag 22320
tgtttcctgg atttgagttt cttcagtact gcaccccagg tgatcttagg aa
#agaaacca 22380
tccactgtgg gtacttctgg cttctgtcca gagaagatta tcagctttgg tc
#caaaaatt 22440
gatttaaaag tagtttactt ctttttctcc aataaaatat ttgccataat tt
#aatgtctt 22500
taataccaac attttcttca tttcctgtgg tagccaggac aaatgaagta tt
#tcagatct 22560
ttcaaaaact cttaggatga aaggtaggaa tttggactta ggtttttaaa at
#agtgtgta 22620
tgtaaaagtg caaagaatgg ggccctggct ttctcttctc ggagtgttcc ac
#agtaacaa 22680
catgaagaca atccaggtac acaagtttgt atgtgcctta gtctgtgtgt cc
#aaagaggc 22740
ctcttactta ggtcatatga acataagtta tacacttgaa attcactact ga
#aaaacaat 22800
gtatttagtt cgagttctgc caccccaaaa aaatcaacga gtaattcaac tg
#acttgcag 22860
ttttacaata tttttataga cttctttcag cgtagatgct tttggacata ct
#catttgtt 22920
tcctaacctg atgtgatatt gtgctatttt taaggggctt ttaaaaaata cg
#ctgtgttg 22980
ggttttgcct tgaaaatagg ctttatttct tttttgcctc atggccacaa aa
#aaaggatg 23040
tccatgatca atgatctgtg aatttctttt ctgtaaacag aaagagcatg ta
#actgcttt 23100
ctaattgttt tggagaatgt gatagacatt agtattatta ttattggctt gg
#agcatttt 23160
ccttaatatg ttggtaacta cttttgtcag tgaatattag tgtagccact gt
#tggacaca 23220
gagcaccgtc agaaagctac tgaagtggtg ctgcaaagtg cagacatctt ca
#gatcttta 23280
ctcaagtctg tgcagagagg tctttcttgg tctccttctc tactttttag cc
#tgtctccc 23340
tcttctcact gtaacacttc atattcccct tccctgctct attatttttc tc
#ttttagca 23400
ttcatagtta tctaactttc tgtatttttt ctctttatct tgtttagtgt ct
#gtcttccc 23460
actagaatgt aagcttcatg aggacaggga ttagtgtctg ttttgttcac tg
#catctcta 23520
gggcttacaa cattgtaggt actcagtaaa tatttgttaa atcaatgtga aa
#tgtgtcat 23580
ttatccttaa ggaattgacc ttcatggtag aagtgtaaca gaaccaccta ta
#tcctactt 23640
ttcatccaca tcataactat tatgtgaata ccttggaagt aaagcaaaat aa
#gcacttaa 23700
ctaaagagac gctttatatt gaaactgttg ttctgggttt ctggaattag ta
#ctctgaaa 23760
ttggctccct ctaggaaggc ttgtgaagag agtagtgttg aacagacatg ac
#agtttcca 23820
agaaagcata gttggctaag aggagtagga ttttccaagc aaagagtgtg ac
#agtggaga 23880
tggctggggc taagtcaggc agaatgtgtt caaacctgtt tttctctgac ct
#gagattgc 23940
ggagggaata ttgggaaggt atagttacct ggtgaggaga gccagttttg tg
#aagaatca 24000
agaatgagga gatttaattt gttatgcaga tgtctgggaa ccacagcaga tt
#atcaggag 24060
agcaaaattg ttagtcagaa ttacatcgtt agaaggtaat ccttaagttt tg
#tagatttc 24120
tagaatgtaa ggaagctctc agaggtgcca taaggtgagt atggcctaag ga
#tgtggcta 24180
tggcagtgta gcaaaatgga caactatgaa aaatgtctag agaaaagtgc aa
#catagctt 24240
atcaacggtg cccaaacaaa taggaaggat gagaactttt tcaagctaca ga
#tttcagta 24300
gttttgctgc tagaaatgct ttaaggaaaa ctgttaaaaa gattaggaat gg
#gaatatag 24360
ataaccggct cctaaatttt gcaagtggga ccgtcataga aagctctcct at
#aggtattg 24420
agaaatcgag ataccacgta agtttcaaga agcagttttt tttttctttt tg
#gtcaaaac 24480
taatgacaaa ttctgtcccc ttgtttgtat attttaactt agtgagacag ga
#aacattta 24540
ttctatagaa gacttttaaa atgtagttta aacaagttga cacatgctta ct
#ggttaatg 24600
aaatgtgcat caacccactc caaacaccac taatttgaca tgaactaaca at
#taactttt 24660
cttactcact gtcaaaagta tatcattctg ccttaactta acgctttacc tt
#ctaaataa 24720
aatttaatct tttaaataag tttttctgct atgttttcct tgcatatgtc tt
#aaatttct 24780
tctttcgtct ttgctcactg aagagcattt tctcccacat tctagtgact ac
#cagggttt 24840
gtaagcctag agcaccatcc ttcattctat ctagcagcag ttgagaataa ta
#acagccat 24900
atttctatat atggagctcc tccaaaggcc tagcctgcat taagcttgtt aa
#ttcttacc 24960
acagcctagg tattactttt gttttacaag tgagcaaact gaggctagaa aa
#gaggaaat 25020
gacttcacac atgttatgta gcaagtactt gacagagcta ggattcaagc cc
#cctgatct 25080
gtttgattct aaagcccgca cgttttccac cacagggcac acagtcccaa ac
#cattttac 25140
ttaaacacag tttgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tg
#tgtgttgt 25200
ttttttgatg tacctctttg agccacccat gcatttttgg agtttcttgc ta
#attttaat 25260
tttttgtaat tatgtttctc tatttagatg tttaaatcca tgaggcgtaa ac
#tttaaagt 25320
ttcatgcctt atattaatcc tttatagtcc accaaaaatg aaactttttt ct
#tccttttt 25380
tggagtggac atgtagtcac tgcctttttg gagaatgctt ctttagtttg aa
#gctttctt 25440
tattggacta aaattacttt ccaattaaaa tttaactcag caaatactta ct
#gaatactt 25500
gccatgtgct agctaaagat aaacaatgtc ttgagggcat gaaagtgaat ga
#gatacctg 25560
gccttaagga gctcttttat attctaggtc aacagaaaaa catgtaaata gt
#atctataa 25620
tcactgcccc aagatgatgc tcccagtgcc caaggcctta ttgtacattt ca
#tttaacta 25680
agtgtgttaa aatcaaattc taaatgtaga atttttccta ggtatgcctt gc
#aatagctc 25740
attattccca gccaacagac ctccagctac tctttgcatt tgaatatgtt gg
#gaaaaaat 25800
accacaattc aggtaaatat gaaaatatta aatattgtga ctaattttac at
#gtgtaaat 25860
tttactctta tgtttaccgg aagcctccaa gtacatgagc tttaatgatt gt
#agaattac 25920
tagcttcata ccttagagaa gtaagcacta catgctaaaa gagccaatag tt
#tgtcagat 25980
tatttcttga caagttacca ggaagaacct ttaatgctat gaatatgggc tt
#ataagtta 26040
tgtcagatat ttaatctcca gtcactggct tgtattttat gatgaagaat at
#ataaccca 26100
ccctttttaa ttgatagctt gagttaaagt aatcttatct tttaagaaaa ct
#ggcagaaa 26160
actaaaagat atattaaaag cataatcttt tctggcaagg tgtgatttca tg
#caaaagct 26220
aaagtgatta aaaacttttt gtggacttca ttaagattct cagaatactg ag
#tttctatt 26280
tctgagtaat actgatgaaa ggaagatgag catttttcca aggacaagta ta
#ttactaga 26340
cagcttttgt gaaagtaaat agttttgtct atatatctga cagtcatgac at
#gaccaggg 26400
aagattccag atgatcatgc aannnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26460
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26520
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26580
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26640
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26700
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26760
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26820
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26880
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 26940
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27000
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27060
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27120
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27180
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27240
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27360
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27420
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27480
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27540
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27600
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27660
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27720
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27780
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27840
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27900
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 27960
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28020
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28080
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28140
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28200
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28260
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28320
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28380
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28440
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28500
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28560
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28620
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28680
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28740
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28800
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28860
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28920
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 28980
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29040
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29100
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29160
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29220
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29280
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29340
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29400
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29460
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29520
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29580
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29640
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29700
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29760
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29820
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29880
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 29940
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30000
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30060
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30120
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30180
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30240
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30360
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30420
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30480
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 30540
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnncagtg at
#ggaaagta 30600
gggcagccca ctagaagcca ctagccacat gtggctgtta agtacttgaa at
#gtggctag 30660
tgcaaactga tggactgaat ttttaatttt atttaatttt catttcagtt ta
#aatttaaa 30720
tgggcttgtg tggctagaag ttacgttttt gggaaacata ctagagtcta gg
#ccctattt 30780
gatttcccgc ctctcttcca ccacctgttg aatccctatg ctctagctgt at
#ttagttac 30840
ttgatattat acagttatac catcttttta aagttcttct ctgtctagca tg
#cctacctc 30900
ctcctcacca gctacctggc aacttttgac ttgttcctta gaactctctt ta
#gttgtggt 30960
caagtcatga agcttttcct gccccggcct ctctctgcag cgagagttag gg
#gacttctc 31020
ttttgcatct tcattgcact cagacatctg gtactctgtg attatcacac tt
#attaatgc 31080
tctcaagata gagataaaat cttattcatc tttttgctct caggcattag ca
#catgggga 31140
gttctcagaa aatacctgtc ttataccagg aattaatgaa taatcagtag ga
#atgagcat 31200
gacatgttca tgggacgttg gagggtagtg catggctgca gaggagaatg gg
#aaatgaag 31260
gtcagataag ttacgtgagg gatctctaag gccaagagaa gccatttagg tt
#tgatttgg 31320
ttggaaaatg agcttattga aagtttaagg caagggacta gcatcatgaa ca
#catctttt 31380
tagggaagtg tgtcttgtgg taagctgctg gctggtttaa atgcagcaga at
#attccatt 31440
ggggatgcca gctgggagac ttgccacagt tgcagcctgc agcagaaaga cc
#ctgggcca 31500
gaatgggttg tgccatctgt caccagatat tgccaaggta gatctggctg ac
#tttgtggg 31560
acagcttgtt tctcaataat cactttgcag gcactcttga ggctgtgagc at
#gctcccag 31620
aagatagcat tacttctctc tcagagcagg ctcctttcta aggaaatgca ag
#tctaggcc 31680
tgccctgctg taatcttcat gtggaaacag cactctagca aagaacaagg aa
#cctgatga 31740
gcttttcaaa ggaaaatcga gtagatacag gaaaccaaga attttctaat ga
#gcagatag 31800
aaaagagcag gtaggtgaga agttggtatt agaaaaatta aagatttgaa gg
#gcttgagg 31860
acagagatga ttgttggatg tttcattttt ccaggcaaaa tatgtggagc aa
#ataatcaa 31920
atgacatgga cttaccccac aattagggac ggagatgagg aagggttagg aa
#tagtttct 31980
gttagaatgg tagggatgga agacaattga aaattaaaga gaaaataaat gg
#agaggaaa 32040
tctaggcagc agccattctt cattctgggg gaaggtggtc aggaaaagga ag
#gaagaaaa 32100
atgtatagca tagtagctag agtggtccgg cgtgatcaaa gtgttttcaa ta
#tcatgttg 32160
actgacctgt ttacgtttga aggcagagaa gatagagcca gtagaaggag ag
#aaaaatca 32220
aagctgtttt acggagttgt gaaagagctg gataaggaca agactaaatg ag
#ttattttt 32280
aggccaggca tggtggctca tgcctgtaat cccagcactt tgggaggcca ag
#gcaggtgg 32340
ggcacctgag gtcaggagtt caagagcagc ctggccaaca tggtgaaacc ct
#gtctctat 32400
taaaaataca aaaattagct ggacatggtg catggtggca ggtgcctgta at
#cccagcta 32460
ctcaagaggc tgaggcagga gaatagcttg aacccggggg gcggaggttg ca
#gtcagccg 32520
agatcatgcc agtgcattcc agcctgggcg acagaacgag actccgtcaa aa
#aaaaaaaa 32580
aggagttatt tttaaatgga aagggcaaga cagttactcg gagagacttg ga
#aggtgaag 32640
caggttagag acagcacatc agagtatgca tgtgacagga ggctcagaga ag
#agggaatg 32700
ctggggaaaa tgtgactgtt aaaattcata atgttgcttt ttcctacagc aa
#acaaaatt 32760
aatggaattc cctcaggaga tggaggagga ggaggaggag gaggtaatgg ag
#ctggtggt 32820
ggcagcagcc agaaaactcc actctttgaa acttactcgg attgggacag ag
#aaatcaag 32880
aggacaggtg cttccgggtg gagagtttgt tctattaacg agggttacat ga
#tatccact 32940
tggtaagtac aattttagca atgttatata tggctggaag tcacttccct at
#gaataatc 33000
atcaaactct gttgtcattg atgactttca agttgtggtt aatggaatat tt
#gtttttaa 33060
taatgtttta ataaatattt tattttaaag atcaaggctt attaatataa at
#tacggtat 33120
cccttaaaag aagttgatag taattcctta ctgtcatcag tagtcagtgt tt
#attgcatt 33180
atatcttgta actggtgttt tacagttggt ttgttcatat caggatctaa ag
#tcttcaca 33240
ttgaatttgc ttaatatgtc tcttaggcct tttaatctac aacagtctcc tc
#ccacctct 33300
tttttaccta ctatttgttg acaaaccagg tcatttgttc cctagaattt tc
#cacattgt 33360
agatattgct tgttttatcc ccagggtgtc ccgtaatgtg ttcctctgtc tc
#taatattt 33420
cctttaaaat gttagcaaca gaggcttaat cggattcagg ttcagtactt tt
#ggcaagaa 33480
tgtttcatta ggtggttctg tgttctcctg tggagtcaca tcccatctca gg
#ctggctgg 33540
ctgtgtctct ctcattgtaa tcctgacgac cagtgggctt agagggtgtc aa
#cctgatcc 33600
acccagtaaa agttcccctc ttatatcatg gtttgagctc ccaaaaatag tt
#ttgcactg 33660
ggagggagga tcattgctca gatcgttatt tcactaagga ttgctattgt tc
#accttcta 33720
attctatcat ctttctgctt ttatcgaact tttctctcac cagctcttta gt
#gccctgta 33780
acacagttcg tacaagaaaa gcaatataaa tatctacatt ttctccttta ct
#taacattt 33840
ttccaaatag tgagctggtt ccctagggga tctttctaga agtgactagg aa
#tttgtttt 33900
tttaatttgt ttaatgtcat ttagttatta tgaatttttt ggaatgcctt at
#tttaaggt 33960
cattgaagtc ctcattagtt cacgcacata agcagctttt tagaaaaagg aa
#gaaaagca 34020
ctactgtgtt attactggtt aatccagtac caggaacttc tagtacagtt ct
#agaaaggt 34080
gctttgcagc atgtagcttg tatgcttttg cttcccctgg aatttaagct tc
#aaggccag 34140
cacactctgg tatatgtgct gagaaacatg tgatggggct gccnnnnnnn nn
#nnnnnnnn 34200
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34260
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34320
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34380
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34440
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34500
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34560
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34620
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34680
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34740
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34800
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34860
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34920
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 34980
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 35040
tggtaaaacc ccgcctctac taaaaataca aaaatttagc caggtgtggt gg
#cgggtgcc 35100
tgtaatccca actactcggg agggtgaggc aggagaatcg cttgaacccg gg
#agggggag 35160
gttgcagtga gccgagatgg tgccactgca ctccagcctg ggcgacagta tg
#agactccg 35220
tctcaaaaag aaaaagaagg aaatgatcta atttgttctg tgcactgcac gt
#gggggtgg 35280
cagtgaggtg aatggcagca ttctgcagta gtcaaagcca gatgggtggg ag
#aagttggg 35340
tgctaagagg gaaacaaagt ttacctgtct tctccttgat ttcactctca gt
#tttatgag 35400
aatacagaaa aatcatgcag agaaacctga tggaatagtc tctaaaacta aa
#aaataaga 35460
taagcaatgg ttctgtctta aaaaaaaaaa agtaaactcc atgaaggcag ag
#accttacc 35520
tgtctcattc ctctctctat cccctggtct atagtaaggg ttaaataaat at
#atgctgaa 35580
atgaatgagt aatgactaaa gtatttttgt ctttattagg atttgtaatg ca
#ataactaa 35640
aagtcaccca cagagaagtg atgtttacaa atcagatttg gataagccct tg
#cctaatat 35700
tcannnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn 35760
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nncagctcaa at
#ttgttata 35820
acctatttgt taaagagagg attgttttga gactatagtt ccattcttca tg
#aattggta 35880
ggagtttgga gtttgtcagc aaacattcta tcgggctaaa ggtttttata at
#gaaagaaa 35940
taggcaaagt ggatcagtac actcactttt ctaccattga ccctggagac ag
#atggctta 36000
aaatgttctg cgtctagttg acttttagat cttgaaatta aggtttaatg at
#gaccaagc 36060
tttaaataaa ttgtagaaaa gtattctttc aaaagtacat tataactttt at
#attggttt 36120
cttatattta tttcttttaa tcttttcttt taacacaaac tacgttttaa gg
#ttttgttg 36180
cctactaagt tataatctga gtgcagaagg aaacttgatt tggctttatg ga
#atacattt 36240
tacattcagt gaagctgagc tctgtttctc attccttaca aaaggaatca aa
#ggcattgg 36300
tttgagagat caagtcatgt gttaataaaa cacaaatatt ccatcaagta at
#actctgaa 36360
ggagcaggtg tagtttattt cttctccaga aagtcttcca gcagataaat aa
#tgagaggt 36420
agtatggcat aggaaaaaag tacactgaag tcagcctttc tggttcaacc ag
#ctcagacc 36480
cctgagctat ttttgcctca gttttacgcc ttggagaaca atgccttgtc at
#tactattc 36540
actttatgac catacagtgc ctggcacctg gtgggcaatt ggtgaatgtt tt
#cactatcc 36600
tcatccttgc cctcatgaaa cactccttct aggtcccaca aagaccgttg gt
#attttatg 36660
acaaagtacc ttacaaatat ttttcttttt ttaaaggaga aattgtcgta aa
#tgaagtca 36720
attttgtgag aaaatgcatt gcaacagaca caagccagta cgatttgtgg gg
#aaagctga 36780
tatgcagtaa cttcaaaatc tcctttatta cagatgaccc aatgccatta ca
#ggtgtgtt 36840
ttattagtac actgtttcat tctatcaggc tttcaactct aagtggtaca ta
#ttattata 36900
taaaacatag gtatggaaaa gttatagtag aagtattagg taatgcaatg tt
#tgggataa 36960
attatattaa gatttaaagt aaagtttaag aagaatgttg gaacttgcta ga
#ggagtatt 37020
agtgagagga ttgtaagtca ccttgcttta tttatcctct gtgatcgttc at
#tatatgtc 37080
cttttcatta aggaagttat tccctctgtt gcagatcttt taacctgctt at
#aaaaatga 37140
cataaagaga aaaggttgtt tgctaaatga ttttataaat gccacacatt tt
#agtgattt 37200
cataggtttt tttgttgttg ggtttttgat ttttttgttt tgagcctgga tc
#tcgctctg 37260
tcttgtctcc caggctggag tgcagtggca tgatgtcggc tcactgcaac ct
#ctgtctgc 37320
ttcctgggct caagctatcc tgccacctca gcctcctgag tagctgggac ta
#caggtgca 37380
tgccaccact cccggctaac tgttgtattt ttttgtagag atggggtttt gt
#tatgatgc 37440
ccggattggt cttgaacttc tgagcccaag caatctgcct gcctccccct cc
#caaagtgc 37500
cagagtacag gccactgcac ccagctacct tttttttttt tttttaaact aa
#ttagtgtt 37560
attttcctaa aaagttaaat tctaatttct aggaagagtg aagaatagta tc
#gatttaaa 37620
aattttcagt agccctcttg ctattttatg ttcttactgg aaagtaatag tt
#ccatgtaa 37680
ttttggtttt tagaagttca ggcattcatt tgattaactt aaaaaccctg ga
#cttttctg 37740
tcagccattt tgtattttgt tttataaagt attatacaca cttaccccta ga
#tctttctt 37800
tatagtaatt gttctttaat gaaatattgg tatatgaact gtaaactttt aa
#atttaagg 37860
atctaatagt ttagtgtaag tatatttcat gtagtcactc actaatttac ca
#taattatt 37920
atactgtaca aatatttatt gtactgtata tttgtgtgtt cattacagtc tt
#atgtaggt 37980
atatttagac taaatttaag gcacttaaag atacccactg tgtagggaca gt
#agcttatt 38040
tggatatagg cttgtgtgtt tctctttgtt tttagcttca taatgatcat tg
#gccccaga 38100
cttcactgta aatgagaagc agatacctgg aacagcttaa atccagtacc ac
#tattagga 38160
aaaagtaaac cagtgcccta ctgacagcag attgatagtg ttaactacgt cc
#ttagtttg 38220
aacatgcaaa accttttcta atggttttta tttctagtag actttgtgct tt
#aaaaagat 38280
agttattttg cactttaaaa tcttcagtgt gaaaatcaaa catgatttta cc
#cacttaaa 38340
atctgatgac ctaagagccc ttttttcttt aatatgttgt ggccagctta tc
#cagatcta 38400
gacatgcaaa tgcttgctgg taaggtgatt gatgatattc cctatcttag gt
#attataat 38460
aagattgttg tgtacatttt aacctaattt ctatctgtca acattggaat gg
#ccctagct 38520
acctagacaa aagctttttg tgctttttag agataactgt cacagtttat ca
#tcacagtt 38580
taaggcttat actaccattg tgagattatt gggaaaagaa ttaatatgaa ca
#taattttt 38640
tattccagaa attccattac agaaaccttc ttcttggtga acacgatgtc cc
#tttaacat 38700
gtattgagca aattgtcaca ggtacgtagt attccgtaca tactctaaaa gt
#caattcca 38760
ctctggaagt attatttgaa aagtcatacc tctcaaaata cttggattgg cg
#ttttattt 38820
ctgtaagttt acttttgccg tttttttgag tcccgggaac ataaagaggg at
#atgttaat 38880
aaattatttt aaaaggaaga tataaaatgt ataacttttc atagtttcta gg
#ttttttgt 38940
cctcttttta attaaaatta atcattaaat gtgtctagat ggtggtttta tg
#caaataat 39000
catttaaaat atcttccaaa gcaaagttaa aaccaacccc caagttctag ga
#attacaag 39060
tatgaaacat tctagacaag cagagctcaa atgttgggtg accttccaat ta
#ttttcact 39120
aagaatttgt attaaagggt gagtaacaaa taactgttac gcattttatt tt
#ctctattt 39180
ttttttcttt tttagtaaac gaccacaaga ggaagcagaa agtcctaggc cc
#caaccaga 39240
aactgaaatt taatccaaca gagttaatta tttattgtaa agatttcaga at
#tgtcagat 39300
ttcgctttga tgaatcaggt cccgaaagtg ctaaaaaggt aatactgtta ag
#gtttatca 39360
agttctgggt tctgtactgt gtttactgat ttcaattccg tatggcagtt tt
#catttctc 39420
aattgctcag atgtttttta ggggaagtta tcagacatct tcttaagtaa ag
#tcaaagcc 39480
aagaatatta atagaactat tttcttggat tggtttatgg ctgttttaaa gt
#gttctata 39540
taacttttta tcagcttctc aaatattaaa gactcttacg tggaaattag ca
#ttttttta 39600
cataaagatc attacttgtc agtttcttgg ttaaaaggtt gaaaagttgg tg
#atatactg 39660
taattaaggt ttggttaggc ttttaattca gtactgcaga actttaccaa ca
#aactgtaa 39720
gctagactta tgttacataa gatttaggta aatatataat tacgggaaag gc
#ctagtaat 39780
tattagtggt ttaaagaaat attatgaatt gagtgacact caacaggggc aa
#cacaaagc 39840
tagtaacttt ttaactgcct tatttttcca cggccttcca gataatgact ta
#ttacccta 39900
cttgtaagag tcaagggcat gttttccatg ttttgctttg ccagaggagt ga
#agctggta 39960
gacctaatat ggcccccgtt ccagtctgtg ctgcagcaaa tgcagagtca ca
#gactttcc 40020
agtaggaagc ttgcgcgtgt gtatgggaat agggcaacag tatcttagta ta
#ataggacg 40080
tggctttctc tcagaatgga ggcagtcttt gcaccaccaa gcaatgagtg cc
#tttgtttt 40140
ccatggttag tcaactgact gcagtaaatc ttctgttgat accaaaacaa gg
#ctggcaaa 40200
aatactgtaa ggcagctgtc ttcatatact ttggtgaaga ggtggtagat tt
#gtttttag 40260
attgagaacc aacagtttct tcacaggaag gcaagcagga gatgaatata tg
#aaaataca 40320
tctgaaaata tgtgactgtc tagcagagta gagtggttgt aggctcctct at
#gggtaaaa 40380
gttttcaaat ggtctgtata accatctctc agcaagctgc attattgaaa at
#tcaactag 40440
ataactctta aagcctcttt cacctgttcg attgtgctgt ttgtgatttt gg
#cattttac 40500
taatttaaag tgcctattat atagaaggac tttagaattc atgatgtatt ag
#actgtaca 40560
taaaatattt cagacaggtt aattcctcaa gcttatttat atttgtaatt ta
#attgatca 40620
aagcatcaaa gacctgctta tgaaaacctt aagatgtgta gcatctcaag at
#tagggaca 40680
tcacagaact tgctagattg agttaggaca gcatattcct aaggaagaaa tt
#gatgcaat 40740
tgaccggatc tctttcggaa agttcaattc tccctctttt actgtatttt tc
#agtttaca 40800
ctattttaat gagtggaaat aataattatt tggcctagtt cttgaaccat ct
#gtagtact 40860
tgttggtcat ttttcatgtt gaggcagtgt gctaaatttt gcaagtagaa ag
#aagggtaa 40920
gatgcagttt cttgccctag agaacttaaa tctagtgaag aagataaagc at
#gaacaaat 40980
gaaaagtaat ggtacaaagt ggcagcataa aatcaactac acaaatagtt ga
#tttccaga 41040
tgaacagagc ataataagtg ctgtggaaat tcagaatatc ccctatgtgt tg
#tgctgctg 41100
gttcatgaag agggccttac taaaccgtct gcacaaaaca agccagtccc tc
#atatgccc 41160
tttcctaaga ccaagtttca gacaaaaatc ttttccccag tatcctaaaa ta
#taaaaagc 41220
atgtgagtct ctgtcttttg tatagccacg ggggttgcag ggcaggggag gg
#tgcaggaa 41280
aaaaaaatag atgcaatgag aatataaata gtttttttgg gatttacgca tt
#tcaaacag 41340
ggttaagttg tatatggcta ccaaagcttg acggctttgt gagttaaaaa ca
#aaaattat 41400
ggcatattct tttatttcaa gtgaaaagtt ttcatctaaa attcggtagc ag
#ttaggaaa 41460
ttatggctca tttttacctc ctggaagctt ggaatactgt tttctctgga aa
#atgctttg 41520
ctattttatc agttgcttta aaatgatgaa atgcatgttt ggagttctct gg
#tgggtaaa 41580
ccgttgattc attttgaaat acctaagcca tttatgtttt tgttttgaaa aa
#tgaaattc 41640
aagaatacta aattggttca cattttgtta aatgttctga acccttctgg tt
#gtcttgtt 41700
ggtgttgttt caattgtatt atgacaaaat tagattgctt tgggcacttg ta
#ctcattaa 41760
tattcatcct cattatcctc gagctgtcac aggaaaatag tgatatttgg ga
#aaggtctg 41820
tataaagaaa gaaggaattt gatggtgcag aattggacat ctaacctcat ag
#caacttag 41880
aaccaccatt ttcttttgca gaacctttgc tcaaaactga agggcaaaat aa
#taaaggtt 41940
gtttttaatg atttatctat atatctgtct gtgtagataa agataaatat at
#agatacac 42000
atgagtgaca agtgaaatac atgccttttg tctccacttt gttctctgat ta
#gtgggttg 42060
tgaatcactt cttcaggaat actttataga agtgaattcc attcatctga tt
#aaggaaca 42120
agttggcctt ttcatgaact gtcatttttg acttgaatct ggtactgttt tt
#tggtggct 42180
ttcaggccac agaaataaac cacttttgtt tgcaaatgag atagaactta at
#gaggtttg 42240
agtgtttcct ggatttgagt ttcttcagta ctgcacccca ggtgatctta gg
#aaagaaac 42300
catccactgt gggtacttct ggcttctgtc cagagaagat tatcagcttt gg
#tccaaaaa 42360
ttgatttaaa agtagtttac ttctttttct ccaataaaat atttgccata at
#ttaatgtc 42420
tttaatacca acattttctt catttcctgt ggtagccagg acaaatgaag ta
#tttcagat 42480
ctttcaaaaa ctcttaggat gaaaggtagg aatttggact taggttttta aa
#atagtgtg 42540
tatgtaaaag tgcaaagaat ggggccctgg ctttctcttc tcggagtgtt cc
#acagtaac 42600
aacatgaaga caatccaggt acacaagttt gtatgtgcct tagtctgtgt gt
#ccaaagag 42660
gcctcttact taggtcatat gaacataagt tatacacttg aaattcacta ct
#gaaaaaca 42720
atgtatttag ttcgagttct gccaccccaa aaaaatcaac gagtaattca ac
#tgacttgc 42780
agttttacaa tatttttata gacttctttc agcgtagatg cttttggaca ta
#ctcatttg 42840
tttcctaacc tgatgtgata ttgtgctatt tttaaggggc ttttaaaaaa ta
#cgctgtgt 42900
tgggttttgc cttgaaaata ggctttattt cttttttgcc tcatggccac aa
#aaaaagga 42960
tgtccatgat caatgatctg tgaatttctt ttctgtaaac agaaagagca tg
#taactgct 43020
ttctaattgt tttggagaat gtgatagaca ttagtattat tattattggc tt
#ggagcatt 43080
ttccttaata tgttggtaac tacttttgtc agtgaatatt agtgtagcca ct
#gttggaca 43140
cagagcaccg tcagaaagct actgaagtgg tgctgcaaag tgcagacatc tt
#cagatctt 43200
tactcaagtc tgtgcagaga ggtctttctt ggtctccttc tctacttttt ag
#cctgtctc 43260
cctcttctca ctgtaacact tcatattccc cttccctgct ctattatttt tc
#tcttttag 43320
cattcatagt tatctaactt tctgtatttt ttctctttat cttgtttagt gt
#ctgtcttc 43380
ccactagaat gtaagcttca tgaggacagg gattagtgtc tgttttgttc ac
#tgcatctc 43440
tagggcttac aacattgtag gtactcagta aatatttgtt aaatcaatgt ga
#aatgtgtc 43500
atttatcctt aaggaattga ccttcatggt agaagtgtaa cagaaccacc ta
#tatcctac 43560
ttttcatcca catcataact attatgtgaa taccttggaa gtaaagcaaa at
#aagcactt 43620
aactaaagag acgctttata ttgaaactgt tgttctgggt ttctggaatt ag
#tactctga 43680
aattggctcc ctctaggaag gcttgtgaag agagtagtgt tgaacagaca tg
#acagtttc 43740
caagaaagca tagttggcta agaggagtag gattttccaa gcaaagagtg tg
#acagtgga 43800
gatggctggg gctaagtcag gcagaatgtg ttcaaacctg tttttctctg ac
#ctgagatt 43860
gcggagggaa tattgggaag gtatagttac ctggtgagga gagccagttt tg
#tgaagaat 43920
caagaatgag gagatttaat ttgttatgca gatgtctggg aaccacagca ga
#ttatcagg 43980
agagcaaaat tgttagtcag aattacatcg ttagaaggta atccttaagt tt
#tgtagatt 44040
tctagaatgt aaggaagctc tcagaggtgc cataaggtga gtatggccta ag
#gatgtggc 44100
tatggcagtg tagcaaaatg gacaactatg aaaaatgtct agagaaaagt gc
#aacatagc 44160
ttatcaacgg tgcccaaaca aataggaagg atgagaactt tttcaagcta ca
#gatttcag 44220
tagttttgct gctagaaatg ctttaaggaa aactgttaaa aagattagga at
#gggaatat 44280
agataaccgg ctcctaaatt ttgcaagtgg gaccgtcata gaaagctctc ct
#ataggtat 44340
tgagaaatcg agataccacg taagtttcaa gaagcagttt tttttttctt tt
#tggtcaaa 44400
actaatgaca aattctgtcc ccttgtttgt atattttaac ttagtgagac ag
#gaaacatt 44460
tattctatag aagactttta aaatgtagtt taaacaagtt gacacatgct ta
#ctggttaa 44520
tgaaatgtgc atcaacccac tccaaacacc actaatttga catgaactaa ca
#attaactt 44580
ttcttactca ctgtcaaaag tatatcattc tgccttaact taacgcttta cc
#ttctaaat 44640
aaaatttaat cttttaaata agtttttctg ctatgttttc cttgcatatg tc
#ttaaattt 44700
cttctttcgt ctttgctcac tgaagagcat tttctcccac attctagtga ct
#accagggt 44760
ttgtaagcct agagcaccat ccttcattct atctagcagc agttgagaat aa
#taacagcc 44820
atatttctat atatggagct cctccaaagg cctagcctgc attaagcttg tt
#aattctta 44880
ccacagccta ggtattactt ttgttttaca agtgagcaaa ctgaggctag aa
#aagaggaa 44940
atgacttcac acatgttatg tagcaagtac ttgacagagc taggattcaa gc
#cccctgat 45000
ctgtttgatt ctaaagcccg cacgttttcc accacagggc acacagtccc aa
#accatttt 45060
acttaaacac agtttgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tg
#tgtgttgt 45120
ttttttgatg tacctctttg agccacccat gcatttttgg agtttcttgc ta
#attttaat 45180
tttttgtaat tatgtttctc tatttagatg tttaaatcca tgaggcgtaa ac
#tttaaagt 45240
ttcatgcctt atattaatcc tttatagtcc accaaaaatg aaactttttt ct
#tccttttt 45300
tggagtggac atgtagtcac tgcctttttg gagaatgctt ctttagtttg aa
#gctttctt 45360
tattggacta aaattacttt ccaattaaaa tttaactcag caaatattta ct
#gaatactt 45420
gccatgtgct agctaaagat aaacaatgtc ttgagggcat gaaagtgaat ga
#gatacctg 45480
gccttaagga gctcttttat attctaggtc aacagaaaaa catgtaaata gt
#atctataa 45540
tcactgcccc aagatgatgc tcccagtgcc caaggcctta ttgtacattt ca
#tttaacta 45600
agtgtgttaa aatcaaattc taaatgtaga atttttccta ggtatgcctt gc
#aatagctc 45660
attattccca gccaacagac ctccagctac tctttgcatt tgaatatgtt gg
#gaaaaaat 45720
accacaattc aggtaaatat gaaaatatta aatattgtga ctaattttac at
#gtgtaaat 45780
tttactctta tgtttaccgg aagcctccaa gtacatgagc tttaatgatt gt
#agaattac 45840
tagcttcata ccttagagaa gtaagcacta catgctaaaa gagccaatag tt
#tgtcagat 45900
tatttcttga caagttacca ggaagaacct ttaatgctat gaatatgggc tt
#ataagtta 45960
tgtcagatat ttaatctcca gtcactggct tgtattttat gatgaagaat at
#ataaccca 46020
ccctttttaa ttgatagctt gagttaaagt aatcttatct tttaagaaaa ct
#ggcagaaa 46080
actaaaagat atattaaaag cataatcttt tctggcaagg tgtgatttca tg
#caaaagct 46140
aaagtgatta aaaacttttt gtggacttca ttaagattct cagaatactg ag
#tttctatt 46200
tctgagtaat actgatgaaa ggaagatgag catttttcca aggacaagta ta
#ttctagac 46260
agcttttgtg aaagtaaata gttttgtcta tatatctgac agtcatgaca tg
#accaggga 46320
agattccaga tgatcatgca attctgtaca ttctgtttcg tacaaatgta at
#tttaataa 46380
acaattttta aaaatatctt gatagagaaa aacaaagagc cgtgtctcct gt
#tagcccca 46440
ttgtcagtta gtgactgcaa gtcagttaac tgagcgaagc ctgtgttctt tt
#atttaagc 46500
aagaaaaata aatcagctgt gtatttataa tgaaaaatcc attcacccag ca
#tgctctgg 46560
gccatacaaa ttattaattg tactgaaatt ttatattttg ttaccacgaa ac
#atggtagt 46620
aatttaaata actggcataa taaaagtata ttccagcaac actatattgt aa
#atacatta 46680
aaatgtatca gtgtacggta tctgaagatg catgtgtata agtaaatttt cc
#ttagttta 46740
aaagataact acctttctgt taagcactga gaggaccaaa aaaaaaaaaa aa
#agaaaata 46800
cagtagagat aatatatgaa aataatgctt tgcagagcag cttttatcat ac
#agtattat 46860
atttatagaa attgtataac aaaagtattt gtaacttaat ttttcttatc ga
#tatataca 46920
taattgtaac tgaggcttaa gcaatacagt tattttttga agtttattaa ta
#ttaagtaa 46980
attcacttac tgtctaaaaa taaagtatac agatcctgca ctattaggta aa
#cactcctt 47040
gggatcatcg tcaagctaca gaacagtgat caaggttatc ttcaataaga tc
#ctcaccca 47100
gagttgcaag ggttgtagga gtgagtcttt gattcctgct caactgttta tg
#atacagac 47160
cagttcttca tgctgctgtt tttccaatag aaatgattca tttcagttta ca
#gatccata 47220
acttctacag taatgtagtg acttgggctc agcaaagaca gtaaacttca tt
#atacagtt 47280
ggtaacctga tgcctgcttc agttactttc cacatttttc ttcattcata cc
#ttgtgggc 47340
atctctggtt tacagtactt tagtttatcc acccataggt cttctactac tg
#gaatttta 47400
aaatctacat cattcagttc cactatttct tcttatatag cttattgata aa
#atttgatg 47460
attaatactg aaaatattca gggatgcttt tttatattac atccttcaga ct
#cctccttt 47520
gacaagtacc tcataaacat aacactggcc atagttttgt taagattcct cg
#tagggtaa 47580
catcctttaa tatccttcca tgctgttaca gaagcataaa tactgcatct tt
#aagatcaa 47640
aaggagcctg aaatttccac acactgcagt cagaattcat taatttgtga gt
#gaaagatg 47700
cccactcatc cactcttgaa cttctggatg acaccttgat tcattggctg ga
#ttaaagaa 47760
gtcctttttg caggcaggta ggtgacaaag ctgtttccac aaataagatc ca
#aagttgga 47820
ggagctcccc tgcagttatc tgagaaaatg atattttagc tggccttagt ca
#ctcaggtt 47880
ttcattcata ttcagtatca catgaggaaa agccatctct gaaaggtcct gc
#agtcatcc 47940
caacacttct gtgaatatcc tggagtaaag taagatgtgt agcacccagg ct
#ttggaaca 48000
tcgctttgca caaacacccc aggagatatt actagcacaa acaagaacaa tg
#attctgtt 48060
ttttctcttt taactttaaa gaaaccatga ggactctgtt ttcatcagtc ag
#attattat 48120
tgggcaaata acgtcaaaaa agtacagatt catctttctt atagaattga ta
#agatgtca 48180
gattatgctt ctggaccaaa aatattgaaa gtttcatgaa gttatctgca gc
#ctagtgtc 48240
agcaactgct tcatgacaga catcctgctt acagatgctg tgatgtaatc tg
#aagttgta 48300
atgaaatttc acatcagaag ttgtacattt tcagtgacat ttaattttat cc
#tttttatt 48360
aacatagatc ttgttattag attttcctta aaatgcctat ttgaaaaaca ca
#aggtacac 48420
aatccatttg aaacagtata ggaattttta aactttgttg cttaagattc tc
#agaatagc 48480
tataaatgat tgttgaatat tggtggttcc agccagctgt atacatcagg at
#tactggag 48540
gaacctttag aaatgcagcc atgttggctc cagcacaggt cagaatctcc ca
#gttaagaa 48600
ccactttgtt gactcatgct tttgaactga ttaatactca cagtcctctt tt
#taccttat 48660
tcctttgtga cttctaattt ctgcagtatc atcagagtgg tgggctttct tt
#tcatatat 48720
tgatgacttg tattttctgt tgcttgaagc cattctagat atcaattggc ca
#attcagtg 48780
gaaattatct aaaataaccc caacagtata ggattagact tttgtactgt ca
#cagaagat 48840
agccaaggtc aggagcatat aatatctatt tcacgcttag tctgctgtgg ag
#gcatgtca 48900
taaaacctca gtcaggtagc ggtcagcgga gccaggtctc cctgagatga cc
#cacctttc 48960
actgtgttgg tccagcccct catagcgatc cactcataga gcaggccact gg
#tatcaggt 49020
cttttgaact ttggaaagca ttcaaatttc tggactataa aaccagattg ag
#tatacatt 49080
acacattctg taatgagctc taactgaaga tgatatagaa catataaaag ac
#ctagtccc 49140
agttgtttag aaaagtacag gatttgaacg agagaaatgg caaaaataac aa
#acgataga 49200
ggatctcact ttatgcttag aaaatataga tgttctcatt ttacgtttag aa
#aaatttgt 49260
gtaagttaga tcttgaaaca aaatttggcc agagaaacaa tctcataaac aa
#tagcacat 49320
tcttagccta gcttattaaa gtctgcaacc caaaacacta aaaagtattc ag
#tgctgctg 49380
gactcagtca ccaaactgtt ttacataact gttaaaattt tgagtgtgtt tt
#ttataatt 49440
cttttttggt ggtggtggtt ttattgtttg gctaggactg ctggttcagt gt
#tgaatagc 49500
agtaatatta gcaggcataa tttcacttcc cgcttttaat gaagatgctc tt
#agctatgt 49560
ctttttgata aacaccctct atccagttaa ggaaattccc ttttattcca aa
#cttgctaa 49620
cgttgttggg tttttttttt taagtcataa acaggtatct atcatatgtt tt
#tctgcact 49680
tacagagcta gtcattcata tagccttttt cgtgtttaat gtagtcatat ga
#tgaattac 49740
ttagattttc taatattgaa tagctttctt tgttttggtg cactggaaca ct
#gtatagat 49800
tgggctttgc caaaaattcc atatgcaggt tttgtgttct ggagagatca ta
#actcctaa 49860
gtcttccttc tcacagacac gctttttagt tgtgttactc cagagaaggc cc
#tgagatgg 49920
agtgggactc taggatgtgg gcttagaatg agcattttac tatctatcta tc
#tatctatc 49980
tgtctgtcta tctatctatc tgtctattta tttttgagac agagtctcgc tg
#tgtcgctc 50040
aggctggagt gcactggtac gatctcggct cactgcaagc tctgcctgcc ag
#gttcacac 50100
catctcctgc ctcaccctcc caagtagctg ggactacagg cacgtgccgc ca
#cacccggc 50160
ttattttttt ttttttagta tttttaatag agacagggtt tcaccgtgtt ag
#ccaagatg 50220
gtctcgatct cctgaccttg tgatccgccc acctcggcct cccaaagtgt tg
#ggattaca 50280
ggcatgagcc accgcgccca gcaacatttt actttttaat gagctttgtt aa
#aatcagaa 50340
tcactggata attctgatac cacttaagag gagtccaaat tcctaacata gc
#ccctccgt 50400
aatctagagc agcaccgtcc agtgatggaa gtagggcagc cactagagcc ac
#tagccaca 50460
tgtggctgtt aagtacttga aatgtggcta gtgcaactga tggactgaat tt
#ttaatttt 50520
atttaatttt catttcagtt taaatttaaa tgggcttgtg tggctagaag tt
#acgttttt 50580
gggaaacata ctagagtcta ggccctattt gatttcccgc ctctcttcca cc
#acctgttg 50640
aatccctatg ctctagctgt atttagttac ttgatattat acagttatac ca
#tcttttta 50700
aagttcttct ctgtctagca tgcctacctc ctcctcacca gctacctggc aa
#cttttgac 50760
ttgttcctta gaactctctt tagttgtggt caagtcatga agcttttcct gc
#cccggcct 50820
ctctctgcag cgagagttag gggacttctc ttttgcatct tcattgcact ca
#gacatctg 50880
gtactctgtg attatcacac ttattaatgc tctcaagata gagataaaat ct
#tattcatc 50940
tttttgctct caggcattag cacatgggga gttctcagaa aatacctgtc tt
#ataccagg 51000
aattaatgaa taatcagtag gaatgagcat gacatgttca tgggacgttg ga
#gggtagtg 51060
catggctgca gaggagaatg ggaaatgaag gtcagataag ttacgtgagg ga
#tctctaag 51120
gccaagagaa gccatttagg tttgatttgg ttggaaaatg agcttattga aa
#gtttaagg 51180
caagggacta gcatcatgaa cacatctttt tagggaagtg tgtcttgtgg ta
#agctgctg 51240
gctggtttaa atgcagcaga atattccatt ggggatgcca gctgggagac tt
#gccacagt 51300
tgcagcctgc agcagaaaga ccctgggcca gaatgggttg tgccatctgt ca
#ccagatat 51360
tgccaaggta gatctggctg actttgtggg acagcttgtt tctcaataat ca
#ctttgcag 51420
gcactcttga ggctgtgagc atgctcccag aagatagcat tacttctctc tc
#agagcagg 51480
ctcctttcta aggaaatgca agtctaggcc tgccctgctg taatcttcat gt
#ggaaacag 51540
cactctagca aagaacaagg aacctgatga gcttttcaaa ggaaaatcga gt
#agatacag 51600
gaaaccaaga attttctaat gagcagatag aaaagagcag gtaggtgaga ag
#ttggtatt 51660
agaaaaatta aagatttgaa gggcttgagg acagagatga ttgttggatg tt
#tcattttt 51720
ccaggcaaaa tatgtggagc aaataatcaa atgacatgga cttaccccac aa
#ttagggac 51780
ggagatgagg aagggttagg aatagtttct gttagaatgg tagggatgga ag
#acaattga 51840
aaattaaaga gaaaataaat ggagaggaaa tctaggcagc agccattctt ca
#ttctgggg 51900
gaaggtggtc aggaaaagga aggaagaaaa atgtatagca tagtagctag ag
#tggtccgg 51960
cgtgatcaaa gtgttttcaa tatcatgttg actgacctgt ttacgtttga ag
#gcagagaa 52020
gatagagcca gtagaaggag agaaaaatca aagctgtttt acggagttgt ga
#aagagctg 52080
gataaggaca agactaaatg agttattttt aggccaggcg tggtggctca tg
#cctgtaat 52140
cccagcactt tgggaggcca aggcaggtgg ggcacctgag gtcaggagtt ca
#agagcagc 52200
ctagccaaca tggtgaaacc ctgtctctat taaaaataca aaaattagct gg
#acatggtg 52260
catggtggca ggtgcctgta atcccagcta ctcaagaggc tgaggcagga ga
#atagcttg 52320
aacccggggg gcggaggttg cagtcagccg agatcatgcc agtgcattcc ag
#cctgggcg 52380
acagaacgag actccgtcaa aaaaaaaaaa aggagttatt tttaaatgga aa
#gggcaaga 52440
cagttctcgg agagacttgg aaggtgaagc aggttagaga cagcacatca ga
#gtatgcat 52500
gtgacaggag gctcagagaa gagggaatgc tggggaaaat gtgactgtta aa
#attcataa 52560
tgttgctttt tcctacagca aacaaaatta atggaattcc ctcaggagat gg
#aggaggag 52620
gaggaggagg aggtaatgga gctggtggtg gcagcagcca gaaaactcca ct
#ctttgaaa 52680
cttactcgga ttgggacaga gaaatcaaga ggacaggtgc ttccgggtgg ag
#agtttgtt 52740
ctattaacga gggttacatg atatccactt ggtaagtaca attttagcaa tg
#ttatatat 52800
ggctggaagt cacttcccta tgaataatca tcaaactctg ttgtcattga tg
#actttcaa 52860
gttgtggtta atggaatatt tgtttttaat aatgttttaa taaatatttt at
#tttaaaga 52920
tcaaggctta ttaatataaa ttacggtatc ccttaaaaga agttgatagt aa
#ttccttac 52980
tgtcatcagt agtcagtgtt tattgcatta tatcttgtaa ctggtgtttt ac
#agttggtt 53040
tgttcatatc aggatctaaa gtcttcacat tgaatttgct taatatgtct ct
#taggcctt 53100
ttaatctaca acagtctcct cccacctctt ttttacctac tatttgttga ca
#aaccaggt 53160
catttgttcc ctagaatttt ccacattgta gatattgctt gttttatccc ca
#gggtgtcc 53220
cgtaatgtgt tcctctgtct ctaatatttc ctttaaaatg ttagcaacag ag
#gcttaatc 53280
ggattcaggt tcagtacttt tggcaagaat gtttcattag gtggttctgt gt
#tctcctgt 53340
ggagtcacat cccatctcag gctggctggc tgtgtctctc tcattgtaat cc
#tgacgacc 53400
agtgggctta gagggtgtca acctgatcca cccagtaaaa gttcccctct ta
#tatcatgg 53460
tttgagctcc caaaaatagt tttgcactgg gagggaggat cattgctcag at
#cgttattt 53520
cactaaggat tgctattgtt caccttctaa ttctatcatc tttctgcttt ta
#tcgaactt 53580
ttctctcacc agctctttag tgccctgtaa cacagttcgt acaagaaaag ca
#atataaat 53640
atctacattt tctcctttac ttaacatttt tccaaatagt gagctggttc cc
#taggggat 53700
cttctagaag tgactaggaa tttgtttttt taatttgttt aatgtcattt ag
#ttattatg 53760
aattttttgg aatgccttat tttaaggtca ttgaagtcct cattagttca cg
#cacataag 53820
cagcttttta gaaaaaggaa gaaaagcact actgtgttat tactggttaa tc
#cagtacca 53880
ggaacttcta gtacagttct agaaaggtgc tttgcagcat gtagcttgta tc
#ttttgctt 53940
cccctggaat ttaagcttca aggccagcac actctggtat atgtgctgag aa
#acatgtga 54000
tggggctgcc cagccacgtc ggggaaagaa ggaagatgtc ttgaggtgca gt
#gagcttgc 54060
ccactagtaa ttattgtctg atcagtgtcc tagagtctga ctgtgccttt ta
#ggcatggg 54120
gaaaggtaga agagggactt aagaagagag ctaaagctcc tggtagattt gt
#ggggtttt 54180
cttttgtttg cctggtgtcc ttaaccatag cctgtcaaga gaacaaaggt gg
#atatattt 54240
ttcagtgaac acatacatgt ttaatagtca ttctggaaaa tatttctaat ac
#cttctttg 54300
gaattttctc atgctataaa tttagatttt taagaattgg tcatatcgca cc
#aattttag 54360
actaagaggt gtaggatcgt cactgccccc ccatggtgcc caccatgtgg ct
#actaagtg 54420
gggtgcacat taaatgcgga caacttgctt aattatttat agggtctgca gg
#agcacact 54480
attcctgctt ttagcacagc actcatataa tttttttttt cccctccagc ct
#tccagaat 54540
acattgtagt gccaagttct ttagcagacc aagatctaaa gatcttttcc ca
#ttcttttg 54600
ttgggagaag gatgccagta agtgatttct gttggatttt atgaatgctg ac
#gtccattg 54660
tttctacaca gtgaagtaag gattctacct ctcccctagc tctggtgctg ga
#gccactct 54720
aacggcagtg ctcttgtgcg aatggccctc atcaaagacg tgctgcagca ga
#ggaagatt 54780
gaccagaggt aattgagaaa tggtcattgt cactttagat agttttactt gt
#tgtgtaac 54840
tacagtgagt tccctactaa ttgaaaataa caaaatgcat agtcttacta at
#tagttagc 54900
accatgtttt atataagaat tgccattttg aaaagaatgt gataatatta aa
#attaactg 54960
acattggagt tacactaaat ataatttaat tatttggttt gtaagacact tg
#tggatctt 55020
acattgctga catcttgcta tagcatttcc tataacatac tttcaaagtg ca
#gtgatatc 55080
cagttgagac acttcaggat aaatcaaact tttcttgtag atctgatgtg tc
#ttatttag 55140
gtctacacat ttgcaaatag cctagacagt gcttttaatt agccaccaca ga
#cgagtctg 55200
gcatcatctg ctgtgggtca tagtaactcc ccgtcattaa agtaggaggc ct
#ttctcagt 55260
tgtgctcata gcagtgagca atactattga tcactctctc cttaaacccg cc
#tgggccct 55320
cagcctctgc tcctctccac tctcctgaag ctcctcttcc tcactggcac tc
#cgtgcctt 55380
ctgcagaccc atcctcttct ctccagacat tacacagatt ctaaggccgc tt
#cctcatgt 55440
tctgtattct tttcctaaag aagtttcccc aagaatgtgg ctttagtgac ca
#acacattt 55500
atatcttcag tctaccttga cttctacatg gaggtctcaa agacccctta aa
#ctcattat 55560
gtccaaaacc aaactcaagg atatggcctc catgccctcc cccagcctgc tc
#tcagaaac 55620
cggggggtca tcctggatgc cttcctcttt ctttcccttc cccatcacca at
#ccctcctc 55680
aggttttctc acttcacttt tcagacacct tgcaaaccca tgtgcttcca ca
#aacccagc 55740
tccacctctg cctgtgtgtt ataagtgcta tcatttcctc cttccatgtc tc
#ctccaccc 55800
ctgggctcca gccccctgga ctttccctgg tgttttcaac ctcctgacat tg
#tccagcgc 55860
tcttcccttc tggactgcct tctttgcact catctgggaa cactctccac gc
#ttacccac 55920
ttggcactcc ttgtttcttt ttttttgaga cagagtctca ctctgtcacc ca
#tgctggag 55980
tgcagtggta cgatctcggc tcccgggttc aagtgattat catgcctcag cc
#tcctgagt 56040
agctgggatt acaggcaccc accaccacat ccagctgatt tttgtatttt ta
#atagagac 56100
aagatttcac catgtcggcc aggctggtct cgaactcctg acctcaggtg at
#ccacccgc 56160
ctcggcctac cgaagtgctg ggattacagg cgtgagccac tgcacccggc tc
#actcattc 56220
tttatatctc aattcaaaca tcatttcctc aagataagcc ttctctcccc tc
#taaagttt 56280
gatcagacct caaaagtcta tgttcttaga gctcctgagt ttttaacatt ta
#tttcagtt 56340
tttaattata tatgtgtgtg ttacagtttg attaccgcct gtcgttttta ct
#ccatgaga 56400
tgagggacta tgtctgtttt gcacaccgtt atatatttag cacccaggaa gc
#atatatga 56460
tatttattca atacttgttg aataaatgag gagtaaatga acagatctta ta
#aaacaggc 56520
ttatggagcc tcagaaattg tgtatcacag tcctttttgg tacagccaga gt
#gtagggtt 56580
tttccactgt accgtaactg acagagccat attcactgaa gcaaataacc at
#caagtgac 56640
cctcaaatga ccttcagttt tctggaaagg aaggtgacta tagttcacac ga
#gtccgtat 56700
tctctgtgga ttttgattta cctgaactcc atttggaatt aactgtctgc tg
#tgtcatac 56760
tccaagcctt gttttcatta gcatacatgc tgatgaagtg cacagttagg aa
#ttttgctg 56820
ttaaagggac aattgtagca ttgttgggtg agagttagtt ataaaacctt at
#aatcagtg 56880
gcagtttcag tgatttatta agctgaaaat tactttaatg ccttttgtgt tt
#tcagctat 56940
cctattcttc ataagtagaa cagatcctct tttttgtcca acctcgtctc ct
#aacctttt 57000
tccctcaggt gtgtcatcta gccccactgg ccttctttag gtttctcagc ag
#ccatgctt 57060
gttacctgcc acagggccct tgcactagct gccctctgcc tagaacattt tc
#accccaga 57120
tctttacatt gcttctctat tcatttaggt ttcggcttca gtaccatctt ca
#cagagcag 57180
ctgtttttca ccatgtgacc taaagtagcc tgtaatctca tgattacatc at
#ccatggca 57240
ttcaccacag cccatttatc ttatcatcta ccccacccca cgaagaatgt ca
#acccccca 57300
cttgcttggg caacaccagt agtaaaattg gaatgataca gggaaggtta gc
#atagccct 57360
tgcacaaaga tgacatgcag gttcatgaca cattacatat tttaatgaaa tg
#ggagcata 57420
ttcttgttat ttaattttta aaaatcagtt tatcaagcaa atgtacagcg cc
#attttatt 57480
tttcatgcct acattaaatt ccatacacat aaaggtgcat agaggaaacc ta
#gaaagatt 57540
gcaccaaaat tttagaattc tgagtgattt tgtttttctt atcttttcta gg
#tgttttta 57600
aacattccac actaatttat attacttttt ctattcagga aaaaaaaaaa ca
#acagcagg 57660
gttttgtttt gtttttttaa agtggtgtgg aagttaccca ttgaatatag at
#gggaatcc 57720
cagtcctggc tgtttccttt gaaaagatct agagacccca tggcacatat tt
#atagtagc 57780
ccattctctc ctaagaatag aggaagggtg ggaggaattt tggtgaatgt ct
#gtacttgc 57840
agtttatcct acagcaaatc gttaagactg tgggaatagg tgctttgcat tc
#tctagagc 57900
tggagaatgt gcatctggtt tgccatcctt ctgtctacat catgtggaaa ga
#tgtgggag 57960
tgtagggtct ccttaatcta aatgcagtgc tgccccgccc cccccttggc ag
#tgtttctg 58020
tttcccaggc aagtgttcca atggatgtgc tttattttct cccatcagaa at
#aagggaat 58080
gagcccgggc gcggtggctc acgcctgtaa tcccagcact ttgggaggcc aa
#ggggggtg 58140
aatcacaagg tcaggagttt gagaccagcc tggccaacat ggtgaaaccc cg
#cctctact 58200
aaaaatacag aaatttagcc aggtgtggtg gcgggtgcct gtaatcccaa ct
#actcggga 58260
gggtgaggca ggagaatcgc ttgaacccgg gagggggagg ttgcagtgag cc
#gagatggt 58320
gccactgcac tccagcctgg gcgacagtat gagactccgt ctcaaaaaga aa
#aagaagga 58380
aatgatctaa tttgttctgt gcactgcacg tgggggtggc agtgaggtga at
#ggcagcat 58440
tctgcagtag tcaaagccag atgggtggga gaagttgggt gctaagaggg aa
#acaaagtt 58500
tacctgtctt ctccttgatt tcactctcag ttttatgaga atacagaaaa at
#catgcaga 58560
gaaacctgat ggaatagtct ctaaaactaa aaaataagat aagcaatggt tc
#tgtcttaa 58620
aaaaaaaaaa gtaaactcca tgaaggcaga gaccttacct gtctcattcc tc
#tctctatc 58680
ccctggtcta tagtaagggt taaataaata tatgctgaaa tgaatgagta at
#gactaaag 58740
tatttttgtc tttattagga tttgtaatgc aataactaaa agtcacccac ag
#agaagtga 58800
tgtttacaaa tcagatttgg ataagacctt gcctaatatt caagaagtac ag
#gcagcatt 58860
tgtaaaactg aagcagctat gcgttaatgg taatttcatt cttatttcat at
#atataatg 58920
aacacaggat acagagttgc atgagatgtc aggaaaagtg atgttcttaa aa
#atgtagaa 58980
atagatatat ttaaggagtc tatggaacta tttgtacaaa ttatatatta tt
#gtatgaga 59040
acttcagaac ctcctaagga attaagttta aactactttt tgttttagag gg
#ggaaaaat 59100
gagtgtatta aatttccttc agatgatgaa aggtatagga gaatactttt at
#aaaagcat 59160
ttgctgagta gaacactgta ttaccttaca gacaaactta ttaagattgt aa
#tacataca 59220
gttatacttt gagataggtg acttgacatg ggtatcaaac agctgtgtta ta
#tctgtagc 59280
atcagaattc tgatatatct gagcaaacgt accaggtggc tttcatgtgt cc
#tgcgggat 59340
gagtcacatg aaagcatctt tggtgtaatg tgggtcctcc tcaagagatc ct
#ctaagtca 59400
ccagggagtc agcaaaggca gccttgcagc agatcttgag caatgagtaa gc
#acttccct 59460
gggggagggc cttgcagggg cggggcaggg gcaagttgtt gaaaaaacta gt
#gtcctgaa 59520
tgattatgtg cactctgggc agggcagtga ggatgcctgt cctcatgcag tg
#gctagccc 59580
tcggccacgt gagccatgca cagaggcacc actggcagca ggggtggggc ag
#ggaagcag 59640
gagggcaagg cttgcagtga gaaagccaag ggctagggcc tgggcagctg ac
#ctcacagg 59700
tcaggagggc caggatcaag gcataggctg agcagggacg gctggaattc tt
#agctgttg 59760
ggagtcagag ttggttggac tccaagattt ccctgaaaga gcgagagaga ag
#atgatgga 59820
gccccagggg aatgctttgt tttgctttgt tacagaattg taatgtcttc tt
#aaatgctt 59880
attccatgtt attaaagtga aaatgcatga tatttactta aagctaactt tt
#aaatatta 59940
gaaactgatg tatctcttta ctctgatagg gatcgtataa aataaaaagt aa
#aaatgtgt 60000
atgtatataa tttattacag agccttttga agaaactgaa gagaaatggt ta
#tcttcact 60060
ggaaaatact cgatggttag aatatgtaag gtttgtactt ctttactttc tt
#ttccttta 60120
actttttatt ttgagataac tacagactca ctggaggtac aaaaatagca ca
#gagggcca 60180
tgtacttact cttcatccaa cttcccccaa tagtaacatc tcgtaactag ag
#tacagcat 60240
ccaaaccagg aagctgacac tgggacactg gatagctctt actcaccagt tc
#atacatgc 60300
tgtcgtctgt gtgcatgccc ttaacacagc tgtgcgattt tatcacgtgt gt
#aggttcac 60360
gtaaccacca ccacagggag atacagacct gttccatgac aaggctcccc tg
#tgctagcc 60420
ttcttatagg tgcaccctca tcgccatctg tgtctgttga ctaccactaa tc
#tcttctca 60480
atctctatag ttttgtcata agtcaacccc ttccttttca taaagggttt at
#gaatttcc 60540
ctgatgaaaa agtacaaaat gaggccaggc gtggtggctc atgcctgtaa tc
#ccagcact 60600
ttgggaggcc aaggcgggtg gctcacctga ggtcaggagt tcaagaccag cc
#tggccaac 60660
atggtgaaac cttgtctctg ctaaaaatac aaaaattagc caagcatggt gg
#cacgcacc 60720
tgtagtccca gctactcagg aggctgaggc aggagaatca cttgaacctg gg
#aggcagag 60780
gttgcattga gtcaagatca cgccactgca ctgcagcctg ggtgatagag ca
#agtctcca 60840
tctcaaaaaa aaaaatttac aaagtggggc cggttgtggt agctcatgcc ag
#taattcca 60900
aagctctggg gaggaagatc acttgaggcc agtagttcac aaccagcctg ag
#caacacag 60960
tgagacccca tctccacaaa aaagttggaa actagccagg catggtggca tg
#tgcctgct 61020
gtcctaggga gcctgaggca ggaggatcac ttgaggccag gagttcacaa cc
#agccgagg 61080
aacatagtga gatgcccatc tccacaaaaa aattttaaaa ctaggcaggc at
#ggtggctc 61140
gtgcctgtgg tcctagctgc tcaggaggtg gaggcaggag gatcacttga gg
#ccaggagt 61200
tcagggttac aatgagctgt gatatgccac tgcactctag tgtgggtgac aa
#aatgagag 61260
cctgtctctt aaaaagaaaa caaaaattac aaaatatact cctttgagaa at
#cgtataag 61320
taactaaaga aactttacgg taatgcgaaa gctatgtgca ttcagtagaa ag
#cagtcaat 61380
cctctcttgt gatgctgagt agcagcaggg agccacagct gccagtcagc ca
#cacagtct 61440
cagtttaggg tattttcagc ttacagtggg ttatcatggg tcatgagtta tg
#ggaatatc 61500
atgatcagag agcatctgta aagtgagaaa ttagatttgc ttgatttcaa gt
#actttatg 61560
tatttgtagt ggaaatttga tttttaacac tgcttttcct tttctctctt ca
#gggcattc 61620
cttaagcatt cagcagaact tgtatacatg ctagaaagca aacatctctc tg
#tagtccta 61680
caaggtaact aaagtaactc ctgaaagcac catgaccacc ataccagcca gc
#cttggttt 61740
actgcttgtc cccattcaag taaatcacat cagttttagc tatttcttat tt
#actacagt 61800
accatcaaat acattacaga ttttgcacat catttgagta aaacagtggc ac
#aggctggg 61860
cgcagtggct gaagcctgta atcccagact ttgggaggtc gaggcgggcg ga
#tcacttga 61920
ggtcagaagt ttgagatcag cctggccaac gtggtgaaac cttgtctcta ct
#aaaaatac 61980
aaaaattagt caggagtggt ggtgtgcgcc tgtagtctca gctactcggg ag
#gccgaggc 62040
aggagtatca cttgaaccta ggaggcggag gttgcagtga gcagagatcg ca
#ccactgca 62100
ctccagcctg ggcaacacag caagactcaa aaaaaaaata aataaaaacc ag
#tggcacaa 62160
ggactgcaaa tagaagaata gaaagtagtc cagtttttac cctttattaa at
#tatccttc 62220
ctattttatg ggaagggtgg gtcccatccc ctaatggatt aatacttagt gt
#taattttg 62280
acagggcatt ctctctctgt aattttgctg tctaatttgt acaaatttgt tt
#tagtttaa 62340
ataccttctg gctcatgcta gattatgact ctaaggaagc agtttgagat ga
#agaaattt 62400
agactgaact gctgaatagc tagtaatgta atatttggta ggaataaacg gt
#gatgtaaa 62460
aatctttcag ttaagcaaag gataattaca tattaaataa cttacagcta at
#agaatttg 62520
taagtttgca gataaagttc aatagactaa aaactacctt cgtataatac ag
#tagtaggt 62580
cctttgtacc catggcttcc ccatctgtgg tcaaccaacc caggactgaa aa
#tattggcg 62640
ggggaaagct ttggccgtaa tgaacatgaa cagacttttt ttttgttgtc at
#tattctct 62700
aaacagtata gtataacaac tgtttacata gcatttacat tgtattaggt gt
#tataagta 62760
atctagaggt aacttaaagt gtacaggagg atgtgcatag gttatatgca aa
#tattaaca 62820
tcattttata tccaggactt aagcatttgt ggatcttggt atccaaagga gg
#ccctggaa 62880
tgagttcccc atggatactg agggaagact atatactcat gttgcatagt at
#atgaatac 62940
aaaatgttgc ttaagcttgc agaagtactt tttttttttt tgagatggag tt
#tcgctcct 63000
gtcacctagg ctggagtgca gtggaacgat ctcagctcac tgcaacctcc ac
#ctcctggg 63060
ttcaagcgat tctcctgctt cagcctccca agtagctggg attacaagca tg
#caccacca 63120
cgcccggcta atttttgtat ttttactaga gatggggttt caccttgttg gc
#caggctgc 63180
tctcgaactc ctgccctcag gtggtctgcc cacctcagcc tcccaaagtg ct
#aggattat 63240
aggcgtgagc caccgtgcct ggccaggctt gcagaagtac atttaacaac tg
#ccaaactt 63300
gattgacttt aacaaggcaa aaatctttaa gactcttaga aaaaaatcaa at
#agtaatgt 63360
gtcatataaa gtaatcctga actgatacag tcagagtgtg tgtttaactc ac
#aaatgcat 63420
gcagagccta ataatcacaa tttctctcat ccagtgggtg ttctcatcgt at
#tggagaac 63480
cctactcatc ctccatttct ccatgcattt gtaatagaaa aggcctcaga ag
#tagcactg 63540
aaccttcatt ttactagcat ttttatatac gtttattttt aaacagtttg tt
#aaaaattt 63600
acatactatg gaattcaccc atttttaatt tgtaattcag taaattttag ta
#aatataca 63660
gagtctagtt ttggaaattt ttcatcaccc caaaagtccc agctccaggc ag
#ccactaat 63720
ctttctgtct ctagattttc cctttctggg catttcatat aaatggaatc at
#acaatatg 63780
tggccttttg ccgctggctt ctttcattca acatacatgt ttttgaggtt ca
#ttcatgta 63840
gtgtgtatca gcaatctttt cctttttatt tctgaattgt attccactgt tt
#gtaaatgc 63900
attttgctta cccatttacc tgttgatgga catttgggtt gtttccactt tg
#tggctgtt 63960
atgaattatg ctgcttcatt tatttagatc tttcatttta tcagcagtgt tt
#tattatgt 64020
aagtcttata tttattttgt taaatctctt aagtatttta tttttatgtc ac
#tgtgaata 64080
taattgttaa tttcattttc aggtttacta tgtactcaga ttgttgtgta ca
#gaatttct 64140
gtaaccttac tgacctcatt tattaattct agtagttatt ttgtggattc cg
#taggagtt 64200
tttacataca ggatcatatt gtcttcaaag acagttttta cctttttctt tc
#tgatctga 64260
atgcctttta ttttcttttt cttgcctaat tgctctggct agattctcca gt
#tcaatgag 64320
atggagaagt gtagagaaca gacatcctta tcatcttcct gatcttaggg ag
#agagtatc 64380
cagtctttca ccagtgaaat gggaataaca ttaattgtag gtttttgtgg at
#gtctctga 64440
tcagtttaaa tatgtttact tttattccta atcaggaatg aaggtagaat tg
#tatcagat 64500
gctttttccg catctaatga gataatcgtg ttggttttgt cctttattac tg
#tggtacgt 64560
tactacaatt gacagatgtt aaaccaactt tgcattcctg gataatttgg tt
#tactcata 64620
tttttattga tttttacatc tgtaatcata agggatattg gtcaatagtt gt
#cttctgat 64680
ttccctggct gactttgata gcgtggcaat tctggcctta ttggaaagga ca
#acaactat 64740
aaaagacagg agggaatcgt ttgccacagc ttcagttggt agtgaacagt cc
#cactctcc 64800
ccattcactt ctcagtattg ccatgtggcc tgtcagtaga aagattacct ta
#tacttaat 64860
accttgacaa aagagcagta gaatggagtc tagacggatt ttctaccaca aa
#ccattcga 64920
atgtaaaaag tatgagtgat gagcttctat tatctggcaa atatccatgt at
#aaaagacc 64980
atctcctatt aaatgctaat ttagtttatc tacaagtctg taatatttta ga
#gttgctgg 65040
aatccagtaa aatttcctta tacagatttg gaaggcagcc taggtgtgca ga
#atactaaa 65100
ttatctagtt tacctttcct tccctttctc tctcagcatt tttctatgtt gt
#aatcattt 65160
tctttccatt ttattaacag aggaggaagg aagagacttg agctgttgtg ta
#gcttctct 65220
tgttcaagtg atgctggatc cctattttag gacaattact ggatttcaga gt
#ctgataca 65280
gaaggagtgg gtcatggcag gatatcagtt tctagacaga tgcaaccatc ta
#aagagatc 65340
agagaaagag gtaacaaaat cttgatgcct ttttatcagt ctttaaggat ac
#acaaaata 65400
aaatttgtgt cattaaaaga tgaaggggct tttaaaaaat actgtattta gt
#acaactta 65460
atttccttag tccaaagcta actaatggat tagagttcaa attgatgtac tt
#attataaa 65520
gattatcgta actatgaagg tgaaattttt aaaagttgtc tattgaattt gt
#ctaagtgg 65580
aaaactactg aaaaaattct gaataaaata ctgaaaaaca gataacaagc ac
#attggcta 65640
ttttgaaaaa tcacttttgg aatatcatat tttcttaaaa tgggatacat ag
#gttaagat 65700
gaaaagtttg agagggccac ctttgcaaca gctgtggagt tagtggctgc ct
#cggatctc 65760
tagttaggct gcggaaggcc ttacaaatat cttaccggcc aggcaggtca gt
#cagatcag 65820
tttttagaag gttgtttcag agagcgccat ttgacttgtg gtgtctcata aa
#aaatagtg 65880
gtcacccgct actgcacttg gggacacacc acgtgaccta ggctcatccc aa
#agtgtttt 65940
ctgaaatatg gggatgtttt ctggatgctg agcctacagg atcaaccaaa ca
#ttagagaa 66000
gtttggttga tggttttgtt ttgttatata atctaaagaa ttgtttctaa ga
#catgctta 66060
aacacatatt ttgctcttcc cccttcatat agtggcaacc cgctcaactg tg
#tgctttgc 66120
tgtttcaact tgttacatgt actgggcaaa taagggttgt gatgtttatc ac
#ggttgaat 66180
gttacttctt gggtttgata gatgtgtata gctcagctta gaaggcaagt gt
#tttaggct 66240
tcgatgtttt ctcattcatc tcttctttaa catcagcagt acattttgaa gt
#aaatgtga 66300
acggctgaag gataacatta aatgatccca ttgtctcttt gtatttgcca gt
#ctccttta 66360
tttttgctat tcttggatgc cacctggcag ctgttagaac aatatcctgc ag
#cttttgag 66420
ttctccgaaa cctacctggc agtgttgtat gacagcaccc ggatctcact gt
#ttggcacc 66480
ttcctgttca actcccctca ccagcgagtg aagcaaagca cggtaagcaa cc
#ctgtggct 66540
gtggctacgt tttccctgtt tttacaactt tatcgaggca taattgaagt at
#aattcact 66600
gcctatttaa aatcttatga tttaaaattc ttactgccat tttcagctga aa
#tttctgaa 66660
tggattattt tgaagacaca aaaatctagg aaattatttt tatgaatgaa ca
#ttttttgt 66720
tttactctaa tgtaaatgtt ttgtagtaaa cccctttaaa gatgtaaatt ac
#tttaacca 66780
ccttaaatgt catgcttttg tatttatatt tcacatttgg gctattgggt ag
#taaaaaac 66840
aaaagccctg ttacacgaca tttatttcct aggtcagtag gataaaaagt tg
#tacaaaac 66900
aagattattt tccttcacga gtttgaagtt tctggtcaca attcattgat gt
#agaggatt 66960
tatgactaag cagggtctca agccaaactt gaaaccattc tgaaccaaag tg
#ccatttca 67020
cccacctcga accaacaaca gaagctgaca aatgccgtgg agaccattga ga
#gaaacaga 67080
aaggggcagc tcttgtggac cttcaggaag cctttctagg aagaggattg cc
#ctcatagt 67140
gagctccggg gtcttcagcc tcagccgtaa ggccctgggc taggcagtgt ga
#cctaggga 67200
gcgggaaacc tgagttctgg ccctggtctg ggaaaagtgc taggcccatg tt
#ccactcag 67260
gcttcagcct gagagtccag gttgctaacc tgtaaaatgg atctgtcaaa ct
#aacactta 67320
tgcctttagt ctcattgtat gaggtgaaac attttgtaaa ctgtgaatca tt
#atgcaaat 67380
tttcctaaag acatatgaat tattctggat ttgttggtat aaaagacaaa ac
#acactggt 67440
cagttaagga gctgatttta tttaggctat tgcaggaggg agaacttaat ta
#atgggcat 67500
cccaaagaaa aggacaaggc ctgggatttt atagtcagaa gacaggggaa tc
#aggaggga 67560
gggcagtctc agtccacagg agccagttct caggacacaa aaggcaggag ag
#attgtcca 67620
gcattgccac ttttggggaa cccagggctc aaagaaactc aacaccgtca gc
#ctgtctct 67680
acaaaaaata caaaaattag ccagacatgg tggtgcgcac ctgtggtccc ag
#ctactggg 67740
gaggctgagg tgggaggatg gcttaagccc aggaggcaga gattgcagtg ag
#ctgagact 67800
gtgccactgc actccagcct gggtgataga gccagagtct gtcccctgcc ca
#ccccacca 67860
ggaaagtttg acctttccag atactgtgct gagaaccagt gatacaggct ta
#gaggctcc 67920
tgaggcatgg aacgctcatt tgttcctaaa atacatgctc tcccagttgc tt
#gtttttat 67980
ttttcgtcac cataatcatt cttggggccc ctctctgcct cgagctaggc tt
#tccccctg 68040
gccttgtttg cctccttcag ctcttcccca ttgtctcccg tcactacccc gt
#gcgcacac 68100
agtgtgagcc tgcaaaaggt gcgtgaggcg aggacaaaga ctttggggtc tg
#gggactgg 68160
gcagtgcatg ggtgggtatc tgcgtggagg actcccagcc cccagacacc ac
#tgcctctg 68220
ctgcttggct gatgctgtgt gtgcggacag acttctcacc aggaatgaac at
#tactgaat 68280
tgtattgagg gagctgtaaa aaatactttc tacaagtatt tcctctgctt tc
#cctgttca 68340
tgttctagtg ctctttttaa tttggctctt tcaaaagcct tttctgacaa at
#actaacat 68400
gaatccccct ctcccttcct ccctagcagg aactggtcat tgtctaaggg tc
#gtgattct 68460
taaccgttct cagccccttc cacacaggca aaagcccaaa gcatttcttc ct
#tttttttc 68520
cattctgagg ccaccttagg tgctagtggc caggtagtgt ttatagaaaa tc
#tggtctct 68580
cttgggataa atatttttaa tttttacctt ttaaaaaaga gaacatcttt tt
#tttttttt 68640
ttaagacagt ttggctctgt cacccaggct ggagtacagt ggtacaatat ca
#gctcactg 68700
caacctctgc ctcctgggtc caagcactgc tctcgcctca accacctgag ta
#gctaggac 68760
tgcaggcgca tgccaccacg cctagctaat ttttgtattt ttttgtagag tc
#agggtttc 68820
gccatgttgc ccagtctggt cttgaactcc tggactcaag caatccgccc ac
#ctcagctt 68880
cccaaagtac tgggattaca ggcgtgagcc accgtgcttg gccaagagga ca
#ttttctat 68940
atacttactg aagggccatt aaaacacgtt tgggttcatg ttttactaga tt
#tcagctct 69000
taacagtgtt tgaagcaaat ggattgtttt taatccatgt acatgatgaa at
#gtcaagta 69060
actaaaattt tttttttttt ttttttgaga cagagtcttg ctctatcacc ca
#ggctggag 69120
cacagtggca tgatctcggc tcactgcaac ctctgccttc caggttcagg tg
#attctcct 69180
gccacagcct cccgagtagc tgggactaca ggtgcacacc accatgcctg gc
#taattttt 69240
gtatttttag tagagacggg gtttcaccat attggccagg ctggtcttga ac
#tcctgacc 69300
tcgtgatccg cctgccttcg gcctcccaaa gtgctgggat tacaggcatg ag
#tcaccact 69360
gcgcctggcc aaaactgtta agagtatgtg tatttggtgc ttaatgaatt tt
#tacttatt 69420
tgaaatagaa aattttgtaa aactttacaa aatgccctgt gctgttacac ag
#cttagcca 69480
tttcttgatg attcaagccg ccactgtgcc agggaatgcc acctggctgt ga
#tgtagtca 69540
tggcctcctg actgctatat tcttgtccta ataacattca ttgtttgcct tt
#ttaataat 69600
ttccaaataa attcttgggg gttttttttt ggtagaaaat ttggagagta ct
#gaaaggta 69660
cagaacaaag aatcagacat ttcccatcat ccagcgactt tgtgtctgga gt
#tatttcct 69720
ccagcgaact gttgtgtata cactgctgtg gtagcctgct gccatcaatc ag
#ctgagatg 69780
agagtccttt ctccacattg ctaaatgtga ctgtgcttca tagaaatggt ct
#gggctgcc 69840
ttccagagga gctccatgtc ttcctcacaa tgcggtggtt ggctgtcacc ct
#gtagcctt 69900
gtgttgcctc agtttactgt ggtgggaagc cagataacta ggctgcaccc gc
#ccagagtc 69960
cgggctagag gtggactcct gtgaaggagg ggtctcctgt gtacatggtc tc
#catggttt 70020
tagccacatg ctaggaccac agggagttga tcccttcctt cctaccctga gt
#ctgtggtc 70080
tgtgatttga gatcactggc tcagtgaagt gtagctcccc acttacgaag ta
#agttataa 70140
aattggtggc agtgatttcc atccaaagat tttgttaatc cacttaccaa ca
#ggtaacta 70200
cttaaatgta ctgaccgtgt gctcataaaa gtaaaatact gtaattatag aa
#ataaattc 70260
aacatgttta agactttcta gtatcatgtt agtgaaactt ctcttaataa ca
#ttcttatt 70320
gcccaaaggg cacggcttcc ttggggtcct aaggcagagg gcacctgaaa ag
#cacactcc 70380
ttgttcatgg ggactgtggg gccctctgag ctcaaaggcc aggagcgtct cc
#tctcttga 70440
agtgaaagtg ccactctggt gggttttgag ggctgcagta cagaacattt aa
#cctgtgta 70500
atgatgagtg gctcatctga aaaaaggcat tcatgagaga atctttagtt tt
#gcaaatat 70560
ttatttattt attttgcagg aatttgctat aagcaaaaac atccaattgg gt
#gatgagaa 70620
gggcttaaaa ttcccctctg tttgggactg gtctctccag tttacagcaa ag
#gatcgcac 70680
ccttttccat aaccccttct acattggaaa gagcacacct tgtatacaga at
#ggctccgt 70740
gaagtctttt aaacggacaa aggtaaatca cagctaacaa aacgtgatgt tg
#gctcacac 70800
gtaaccaaac acctcttttt cagaacagag agcgttaaaa gtaaaggcac tt
#ccaagagt 70860
aacactgcta atgcgggttt ctgaggggtc attccctttt taactcaaat ga
#ctgtatcc 70920
cagctttctt cctggtgtct gaggcccaca aagtctcagt acctgagagt gg
#gcagattg 70980
cagctttgag cctgcaagcc tgatttacta aagccccatt tatccatttc tt
#gatgattc 71040
aagccgccac tgtggcaggg aatgccgcct ggctgtgatg tagtcatggc ct
#cctgactg 71100
ctatattctt gtcctaataa cattcattgt ttgccttttt aataattccc aa
#ataaattc 71160
ttgggatttt ttttggtaga aaatttgcag actactgaaa ggtacagaac aa
#agaatcag 71220
acatttggcc tcctgactgc ctctgttcag tttgccattg ttcttgatag aa
#tcggccag 71280
gtctagtgtt ttttctagcc cgtcttagaa cttatcctta agcaaattag tg
#gataggag 71340
gtactctcat cccgccccca ttcaggctga tagtaacagc ctaggtagag tc
#aacacata 71400
aaaaagtgta attccagggg aggaggatta gaataaggac acaaaggaag gg
#aggaaaat 71460
gttctttgag gctgaaattc cattaatttt tcatagtatt gagtttatat tt
#gccattgc 71520
atccttcaat ctttctaaaa agggaatccc cggaacataa taaaatctct tc
#tgtataga 71580
aaagctacag ctccacacta agaggaatgc cgtctgcctt aaagaatgga at
#catcagtg 71640
accaagaatt acttccaagg agaaattcat tgatattaaa accaaagcca ga
#tccagctc 71700
agcaaaccga cagccagaac agtgatacgg agcagtattt tagagaatgg tt
#ttccaaac 71760
ccgccaacct gcacggtgtt attctgccac gtgtctctgg aacacacata aa
#actgtgga 71820
aactgtgcta cttccgctgg gttcccgagg cccagatcag cctgggtgct cc
#atcacagc 71880
ctttcacaag ctctccctcc tggctgatga agtcgacgta ctgagcagga tg
#ctgcggca 71940
acagcgcagt ggccccctgg aggcctgcta tggggagctg ggccagagca gg
#atgtactt 72000
caacgccagc ggccctcacc acaccgacac ctcggggaca ccggagtttc tc
#tcctcctc 72060
atttccattt tctcctgtag ggaatctgtg cagacgaagc attttaggaa ca
#ccattaag 72120
caaattttta agtggggcca aaatatggtt gtctactgag acattagcaa at
#gaagacta 72180
aaatagggtg ttttctgaac attttgaggg aagctgtcaa cttttttcct ct
#gaattaac 72240
attgctaacc taggcgtttg aatctctaat aactttatat gtaagaataa ta
#gttggaat 72300
ttgcactaat atttaaaaac atgttgaatc atgcttcttt cacacttatt tt
#aagagaga 72360
tgtaaatttt gttcctgtcc tctttctgtc attacaggtc tggctcttgt aa
#ccgtgatc 72420
aaactgttca tgttgtctgc tacatttttg tctccatcca tttttcctac ca
#cctcctga 72480
aggctatctg atagtcagtc acattagcac cccaggcagc agacaacagg aa
#agttagga 72540
aatttgtgtt tcgtgtcatt tttaggagca tctgataaaa cctccagcag gt
#tttaggaa 72600
gtattcatgt atttttctgg ttactttctg tcgtctctaa ttgaactcac ct
#gatgaagg 72660
ttcagtgttc tggggccaga atttatgatt ttagatcacc ttctttggaa cc
#ttagatca 72720
ctgtgttttg aaatcatgag tttgctttta acttcatagg gtcaacttta aa
#atgatatg 72780
cactgttaat tttaaagcat ttgctgcaga taattaaact tagaagtgcc tt
#tgacttta 72840
ggatacaaat attacagaag aaaatataat ttcacttttt aaaattgggg tg
#ggaaaatc 72900
ccattgcata tttgaaatag gcttttcata ctaagcttca tagccaggag tc
#cccagagt 72960
cttgttcctc tgaaagccac tggggagtgg cctctggggt gctgattcca ca
#gaggtgta 73020
tgctgtagac aggagagtgc catctatgcc aaaactcgcc ctcaaaaaca aa
#caaggctt 73080
gctgggaggc gtgctgggct tggccatcag tatttccagt gtggtaaact at
#tgctggca 73140
cttccccctg gaaataacta atgaggttac gagttgggca cctgcacaga tg
#tccttctc 73200
tcatagttcc taatgcttag gaatagagga gaaataaaaa aatggattct ct
#caaaacac 73260
tgccatttga atagcgacag aagtgctccc ccagccccca actttggaca gc
#aaagttga 73320
ggagaatgag cagacacagt tgtttgcttg atctgaatct ctctaaagta aa
#gtatttcc 73380
aaactgtgtg acaagagcct acctaccact gtagcggtca aagctgaagc tt
#cttacagc 73440
agtgaaacgg ggcaccacct cccccacact cctcattccc cgcttaaaac at
#ggatactt 73500
tcaaatttga ctgtttctta aactgccatc ctaagatatg gaaaattttt at
#agtaaagt 73560
gtctagttag cttatttcct tttctaaaac aagtgttttc aagataactg ta
#ttttacct 73620
ttatatgtac tgaatagctg tttctttttg aattatttgc cttttaaaat tt
#gataatgt 73680
ctctggatat aacaggacag gagttcttaa aaaatatctt aagaaattca ct
#ttatgggt 73740
aaacccaagg tttttgccaa cttgttgcct agaaaataag ggctagtttc ag
#tttataca 73800
aatagaatta ttaaacattt tacagtcctt gattagaaac cagacccaat ct
#ccttataa 73860
caccacagcg tatcctgcca ttgacagtgt aatcacaatt ctcccttttt ca
#tttagctg 73920
cttttttatt attactaaat gttttggatt gagcattttt ccctctgtaa tt
#ttcttcct 73980
tcacgtttat tttaactctt gtagtatttt attgttgtta atttacaagt tt
#aaaaatat 74040
taggtactat taataatggt taaaaataga aaaatgcata tttttgtatg at
#aatcaaat 74100
gtaaaatact tttatttttg ctggacagtt gttatatcat gattattgtg ct
#acagttta 74160
ttgtgcataa tatgaaaaac aactatgaca gccttcagtc gggccagggt ga
#agctgctt 74220
ataccacctc tgccgtcaga gggacatgtg gtgacagcag tggtgtggct gc
#acagggcg 74280
cactagagag agctcagcac ccctgctgcc cgccagcaga gcccgtgctg ag
#ggaatgcc 74340
gcacagatgc tgatgcactg ggtgaaattt ctagtattga acgtaaaggt gt
#acagtgtc 74400
ttgctgttat tttatgatgg aaactgattt tgaaaccaaa aatagctaac ta
#actttatt 74460
taaggaaagg atattaattt gtactaacag agggtgaaag ctgttcacat tt
#gtcaacaa 74520
aatctgcttg ctgcagtagt aacctcaagt ggttaaaact tgatttcccg ag
#aaaactaa 74580
aacctttgtg cctaaaattg atgacttgag ttcaagtggg atgagcaaga ag
#atgtgtta 74640
tcttgttgtt caacagtatt gaatgtgaag gaaattttga tggcttaata aa
#attccaca 74700
gcgactgttt gttgttgtca gtatgaaatc atctactgga acacagtgat tg
#atagaaga 74760
ggtgaaggca tcttctccta cccatacttc tgtgtcatcc atgggatgtt tc
#tgcttgcc 74820
ctctaaagcc aggtagtgat cagtaacttt ttttaacagc aattcggaag tg
#gctaaagt 74880
taaagccatg tggatattga tagatcatgc cctaactggt ccttccattc aa
#taaataaa 74940
tataaaaact ggggagtaat attcccccaa gaaggcttca aagaagtcaa ga
#gacagact 75000
ggggttccag tccctgactc ccgggcctgg cgcatggata aatcaccttt ct
#accacacc 75060
cccttgccca gcctgagacc ctcccacaat ggtgatgagc agccgatttg ac
#tgtactgt 75120
caacagagaa aataccccta tctagttatt agggatggtc ccagggagat gg
#acaatgaa 75180
ggacaactgc ctctgataaa gacttcattc ctttcatgat ccgggcccaa tc
#agtagaac 75240
aagcatttac atgttataaa tcaacacaac ttcatgagaa tgttttgatt cc
#taaagaaa 75300
ttggaatttc aactgtttca gcccttctta gataatcata aaagtttaac ag
#ctaaatgt 75360
gtatagggca gtaaagaaaa acttaattca agaatctcgg tttcccatat aa
#ttaattac 75420
ttgaaggaaa cactggttat gctagttttt aaattttttt ttttttgaga ca
#gagtctcg 75480
ctctgtctcc caggctggag tgcagtggtg caatctcggc tcactgcaag ct
#ccacctcc 75540
cgggttcacg ccatcctcct gcctcagcct cctgagtagc tgggaccaca gg
#cgtgtgcc 75600
accaagccca cccaattttt tgtattttta gtagagatgg gtttcaccat gt
#tggccagg 75660
atggtctcga tctcttgacc tcatgatgcg cctgcctcgc tcagcctccc aa
#agtgctgg 75720
gattacaggc atgagccact gtgcccagcc actacttttt tataaaaaaa ac
#ctaaagat 75780
gaatcatcac ttgtttttga gttttccagc tttttgcaca tctaatcata ta
#gatgcatc 75840
cagctccaat aatggtcaac aaaatttttc tcttttaaaa aagttcatta tg
#agctgggt 75900
acagtggctc aatgcctgta atccccagca ctttgggagg ccaaggtgag ta
#ggtcagtt 75960
gaggtcagaa gttccagacc aacctggcca accaacatgg tgaaaccccg tc
#tctactaa 76020
aaatacaaaa tttagccagg cgtggtggcg cacacctgta gtcccagcta ct
#ggggaccc 76080
tgaggcagga gaatcacttg aacctagcag gcggaggttg cagtgagccg ag
#atcacacc 76140
actgcactcc agcctgggtg acagagcgag actctgtctc aaaaaaaaaa aa
#aaaaaaaa 76200
aagtttatta cccactgtgt ggaatcaatg agtgtattca agcaaacact gt
#tttgtgat 76260
atgcagacac tgtaaaatga caagtcaaac tatcaggttt ataatgcacg at
#aacaaaat 76320
taaataaaac atgttttata ctcttgaaaa tcttacatta atgtatgacc aa
#atatcccc 76380
aattccatac cttttagcta aggctttggc tcttagctcc aactgcaacc ac
#atggcaga 76440
cttctacttc agcccccagc ttctgcagtt cagccagcca gatcatctgc tt
#atgtgaaa 76500
gacgatcatt ggggccttta acttccacca gctggaaaag aaatttttaa aa
#gttgttat 76560
tagtatctta ctgaatgaaa agccattcaa gtaagttgta gttgtcactg ac
#aactattt 76620
aaatggctct tctgctctct cactgtattt gtaagtgtaa cacaaatata cg
#gatggtcc 76680
ttcacttaca atggttcacc ttaggatttt ttgacttaaa aatggtgcaa aa
#gtgatata 76740
cattcaacag aaaccatact ctgagtgttg atcttttccc agtatgatac tc
#catgctgg 76800
gcagcagcag tgagccacag ctcccagtca gccacatgat catgaggata ac
#cagtactc 76860
tacggtttgc agtgaactac atgatctgcc caactgtagg ctaatgcaca ca
#ttctgagc 76920
acatttaagg taggctaagc taagctatga ggtttggtgg gataaatatg tt
#aaatgcat 76980
tttcaactta acaatatttt cagttgatgt gtaggattta tcaggacata ag
#gccatcat 77040
aagttgagaa gcgtctgtat gtagctaaga aatttattca gaaattcttc ta
#ttctgtag 77100
aaactagaca gttcttcaca gaggatgagt aaactgattc ttagtatagc aa
#atgaaaaa 77160
ttgttttaaa gcatgcactg gattttactt ccttgcttaa aaccctccga tt
#actctgtt 77220
acattttcaa ttaaatctaa ccttcttgcc atgaccagtc tcttccctac cc
#caaggccc 77280
tcacttccac ttgctacttg ctgttcccgc tgcctgggac atttctccct gt
#tcttgaca 77340
tgcctgactt cttacctttc aatgctcagc ttaaactgat ctggagaggt ca
#cagctcta 77400
agtatatcct ccctatgcac ttctttcatg gcattcataa gataaaaata ta
#tactacat 77460
gtcatcttca tgaaggcaag aattgtgtgt tttgttcact acacatcact ag
#acttgaag 77520
acacagcaat aaaaactata ggtaaaatat agaaaaaaat tgtttaaata ca
#gcatttag 77580
cagcctaagg gacatttaat tagagtcccc aaaggaacga gaaaaaaaaa ta
#cttaaaga 77640
aaaaatggcc aaaaattttc caaatttgat gaaaacagta aacccaaaga tt
#gaagaaaa 77700
tcaatgaatc ccaggcacac aaatgtaacg gcaccctagg aaatatcaca ac
#tgtataat 77760
caggggatat agtcaaagca gccagaattt ttaaagccag aggaaaaaaa aa
#gattctct 77820
gattggaaac catgctagtt agaagacagt agactaatat ttttaaagta tt
#gaaaaata 77880
actgtcaaca taaaattcat tgcacggaga aaatatcttt caaaaacaaa gg
#tgaaataa 77940
aggctaagac atacaaaacc taaatacagc catccctcag tatccatggg gg
#actgattc 78000
aaggaccccc tctgttacca aaatccatgg atgctcaagt ccctgatata aa
#atggcatc 78060
gcatctgcat attctagcac atcttctcat atactttaaa tcatctctac tt
#ataatacc 78120
taatataaat gctatgaaaa tagttgttat gctgtatttt tatttgattt gt
#ttattgtt 78180
gtagttactt tttattgttt ttcttttttc caaatacttt cagtccatgg tt
#gcatctac 78240
agaagcagaa accatggata cagagggcta actactgtaa ttcattacta gc
#agaacttc 78300
tagacatgga aattttttct ttttcttttt ttcttttttt ttgagacaag gt
#ctcactct 78360
gttgcccagg ctggtataca gtggtatgat ctcagcacac tgcagccttg ac
#ctcccagc 78420
ctcaagcagt tctctcacct cagcctccca agcagctggg actacaagtg ca
#caccacca 78480
cacccagcta atttgtttat cgttttgtag agatgaggtc tcactgtgtt tg
#cccaagct 78540
ggtctccaac tcctgagccc aagcaatccg cccacctcag cctcccaaag tg
#ctggaatt 78600
acaggcgtga aaggaaattc ttcaagcagg agaatgagac tacacagaaa cc
#tggatcta 78660
cacaaaagaa tagcaagcac tggaaatgct atgtacatga gtaaatacag ac
#tcattaat 78720
caactgtaga aagcaaaaat aatatgttat agaacatata acacgtagaa gt
#aaaatata 78780
tgaaaacacc acaaaggctg gaagggaaga tatatattat tgaaaggttc tt
#tttactct 78840
aaagtgtgta tcacctgaag gtggataagt ttaagatata taatatacta ac
#gcaaccac 78900
ttcaacacaa tgaacagtta cagctaacaa gccagcaaag ctatcaaatg ca
#atctttaa 78960
aaataagaca gggccaggca ctgtggctca tgcctgcaat cccaacacta ag
#agaccacg 79020
gcaggtgaac tgcttgagcc tggggatttg agatcagcct gggcaacatg gt
#ggaacccc 79080
atctctaaaa aatacaaaaa ccacaaaaat tagccaggca tggtggcgtg ca
#cctgtggt 79140
tccagctact caggaaaaag acaagggaca aaagagttct gagacaaaga ga
#aaataagt 79200
atcaggattt aaagctaagg atatcaataa tcaaattaaa tgtaaatgtt cc
#aaacaccc 79260
cattaaaaga cagaggttaa gttggattca aaagtaagac ccaactatat ga
#tgcctaca 79320
ggaaatccac attaaaaata agataaaaca ggtcaaaagt aaaagaatgg aa
#aaatgtat 79380
catgttaaca ttaaaaaaaa gaaggctgaa gtggctacat gttgacaata tc
#ggacaaag 79440
ttgatttcag agcaaagatt accaggtgta aagggggggt cactgcataa tg
#ataaaagg 79500
gtagactcat gaagaggaca tgacagtcct aaaagtctat gcgtcttata ac
#agaccttc 79560
aaaatacatg aagcaaatag tgatagaaac gcaagaagaa atacacaaat tg
#gctgggca 79620
cggtatactc tcagcatttt gggaggccaa cgtggagccc aggagtttga ga
#ccagcctg 79680
ggcaacatgg tggaacccca tctctacaaa aaataaaaaa aatcagctgg gc
#atgatggt 79740
gcatgcctat agttcgggct actcaacagg ctgaggcaga agaattgctt ga
#gcctggga 79800
gatcaaggct gcagcgatcc aggatcgcac tgccactaca ctccagccta gg
#tgatagtg 79860
agagtctgtc tcaaaaaaca aaaacaaaaa aaaaaagaaa agaaatacca ca
#attataat 79920
cagagatatc aatattctct caataattta tagaacaagt aaataagaaa tc
#agtaagga 79980
cacagacaac ttaaacaaca ctatcaacca acttgaccta attgacattt aa
#aaatactg 80040
cccacaacaa atgctaaaca cacattcttt tcaagtacaa acagaatatt ca
#ccagggaa 80100
taccatattc tggaccataa aacaagtctc aacaaattta gtgggattca aa
#tcatacaa 80160
aatatgtcct ctgaatacaa tggagttaaa ttacaaatca atagcagaaa ga
#tacctgaa 80220
aatctctcaa gtgtttggaa atgtaaatga ctcacttcta aataagccaa gg
#atcaaaga 80280
agagtcaaaa gggaaatcag aaagtattgt gaactgaatg aaaatgaaaa ca
#actactaa 80340
atttgtgagg ttcagataaa gcagcactga gaaggaaatt tggagcacta cc
#taactcta 80400
ttagaaaaga agttctcaaa gcaatcacca tagcttccac cttgagaaac ta
#ggaaataa 80460
aaaaacaaat gaaaccaaaa gctgattctt cgagaaaatc agtaaattga ta
#aacctcct 80520
gccagactca ttagggaaaa aagagaaaag acacaaatta ccaatatcaa ga
#ataagagc 80580
atgacagaga taaagattct acagatatta aaatacagta agaaatacat gg
#ccgtgtgc 80640
ggtggctcac accctgtaat cccagcactt tgggaggcca aggtgggcag at
#ctgaagcc 80700
aggagttcaa gaccagcctg gccaacatgg caaaacctca tctctactaa aa
#atacaaaa 80760
aaaaaaaaaa attatccagg catggtggtg cacagctgta atcccagcta ct
#agggaggc 80820
tgaggcacga gaatcacttg aacccaggag gcggaagttg cagtgagcta ac
#tcacgcta 80880
ctacactcca gtctgggcga cagagcgaga ctccatctca aaaaaaaaaa aa
#aagaaaag 80940
aaacaaatat aaacaacttt aagacaatac ttaaatgaaa tggacaaatt cc
#ttgaaaga 81000
cacaaactag caaagcgcaa tcaagaagaa acagataata tgaacagcct ta
#tgttgttt 81060
aaaaataaat ttaatttata gctttaaatt ttcctccccc caaaatctcc ag
#gcccatac 81120
tgcttcactg gggaattcta tcaaatgttt agggaataat actaattcta ca
#ccaactat 81180
tccatcccac tctgatgctg gtatgactct gaaaccaaaa cccaacaaag ag
#ataataag 81240
aaaagaaaag tacagctcaa tatccttcat gaacatatat gcaaaaattc tt
#aatatttt 81300
acaaaatcaa ctcccatttt tgctgatcaa aataatgctg ttaagatacc aa
#ttcctctc 81360
agattggtct acagattcaa aggaattcca attaaaatct cagctggctt tt
#tttttttt 81420
tttttttttg agatggagtc ttgctctgtc gcccaggctg gagggcagtg gt
#gccatctc 81480
ggctcttgac aacctccacc tcctgggttc aagcgattct cctgcctcag cc
#tcccaagt 81540
agctgggact acaggcgccc gccaccacac ccggctaatt ttttgtattt tt
#agtagaga 81600
cggggtttca ccatgttagc caggatggtc tcaatctcct gacctcgtga tc
#cgcccacc 81660
tctgtctccc aaagtgctgg gattacaggt gtgagccacc gtacccggcc tc
#agctggct 81720
tttttttttc ttggaaactt aaaatttgat gttataattc aaataaaaat gc
#aaaagagc 81780
cagaacaact ttgaaaaaca agtcattata ggacttacac tacctgactc ca
#agatgtat 81840
ctaaagctac aataatcaag aaatacagac aaacagatca atggaaccga ag
#agtatata 81900
gaaacagacc cacatatata tgggttactg atttttgaca aagatacaga gg
#gaattcag 81960
tggaggaagc atggtcttct tgacacatgg agctggaaca agtggatatc ca
#cacaccac 82020
aaatgaattc cagtgcatgc cccacactgt atacaaatgg cgtctcaaat ga
#tcataaaa 82080
ctgaatgtaa aacctaaaac tataacactt ctagaagaaa acaaaggaga aa
#ctctttgt 82140
gaccttggat taggcaagta tttctgacat gtgacaccaa aagcatgatc ca
#ctagagaa 82200
caaataagtt ggattttgtc aaactttgaa acctctgctc ttcaaaagac ac
#tattaaga 82260
aaatgaaaag acaagccata gactgggatg aaatgtcact gataaaggac tt
#gtatccag 82320
gatatataat tttttaatct caaaactcaa taatgagaaa acaaatcacc ag
#tgatgggc 82380
agcagggctg ggctagtgga cagcgttcaa ggaagtgttc actctctgag ct
#ttttaaaa 82440
aattttttgt gggtacatag tagatgtata tatttatggg gtacatgaga tg
#ttttgata 82500
caggcatgca atgtgaacta agcacatcaa ggggaatggg gtatctgtcc cc
#tcaagcat 82560
ttatcctttg agttacaaac cattatactc tttaagtcat tttaaaatgt ac
#aattatcg 82620
gtaagcttct aaaatagctc ctggtgtcca cacccgttgt gaccccctcc ct
#ttgagtgt 82680
cagctggact agagactcgt tcctaaccac agaatacagc aggagtgatg ga
#acatcatg 82740
tccacatcaa gtcataagag atggagctct gtcttgctca cactctgggg ct
#cctctcac 82800
ccgcctgctc tgatgaagcc agtcgcaggg gacaggccca caggaaccca gg
#ccctcggc 82860
ccaaaagctc tcaaggaatt caatcttgcc aacagccact caagaaatgc ct
#acttgtgg 82920
cctctgattc agttgctaat aaggttacca acaggacttt ccattctgcc tc
#aactgacc 82980
ttaaagtgac ggctctggga gttccacacc accaggtcgg ggaggccccc tc
#gacagtgt 83040
cgaaagtcag cagccaggtg cctgcacaca ccactgagca cagggccccc ca
#ggcaggag 83100
acaagatcct gaacacaaaa cacaggacag ttagccactt ccctcgtgac ag
#agaatgga 83160
aataggctcc agggatcacg agacggagaa aagctcagtg tatatgtaat tc
#agtgcaca 83220
tggaccccag gcccaccatg cgctgttctg ctgcttgtac cagagctgca ga
#gccatggc 83280
tggaatccca ctggcaagtg gtgggagact ggtcctcctg tggtcagttt cc
#aggcttct 83340
gcagcgtggc catgctgggg agcgctgagg aagagggatg tggaggatgc ac
#tcaggaac 83400
gcgacagcat ggcctcatag agggcagcag ttgaaggaac acagaaggta
# 83450
<210> SEQ ID NO 4
<211> LENGTH: 476
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 4
Gly Glu Ile Val Val Asn Glu Val Asn Phe Va
#l Arg Lys Cys Ile Ala
1 5
# 10
# 15
Thr Asp Thr Ser Gln Tyr Asp Leu Trp Gly Ly
#s Leu Ile Cys Ser Asn
20
# 25
# 30
Phe Lys Ile Ser Phe Ile Thr Asp Asp Pro Me
#t Pro Leu Gln Lys Phe
35
# 40
# 45
His Tyr Arg Asn Leu Leu Leu Gly Glu His As
#p Val Pro Leu Thr Cys
50
# 55
# 60
Ile Glu Gln Ile Val Thr Val Asn Asp His Ly
#s Arg Lys Gln Lys Val
65
#70
#75
#80
Leu Gly Pro Asn Gln Lys Leu Lys Phe Asn Pr
#o Thr Glu Leu Ile Ile
85
# 90
# 95
Tyr Cys Lys Asp Phe Arg Ile Val Arg Phe Ar
#g Phe Asp Glu Ser Gly
100
# 105
# 110
Pro Glu Ser Ala Lys Lys Val Cys Leu Ala Il
#e Ala His Tyr Ser Gln
115
# 120
# 125
Pro Thr Asp Leu Gln Leu Leu Phe Ala Phe Gl
#u Tyr Val Gly Lys Lys
130
# 135
# 140
Tyr His Asn Ser Ala Asn Lys Ile Asn Gly Il
#e Pro Ser Gly Asp Gly
145 1
#50 1
#55 1
#60
Gly Gly Gly Gly Gly Gly Gly Asn Gly Ala Gl
#y Gly Gly Ser Ser Gln
165
# 170
# 175
Lys Thr Pro Leu Phe Glu Thr Tyr Ser Asp Tr
#p Asp Arg Glu Ile Lys
180
# 185
# 190
Arg Thr Gly Ala Ser Gly Trp Arg Val Cys Se
#r Ile Asn Glu Gly Tyr
195
# 200
# 205
Met Ile Ser Thr Cys Leu Pro Glu Tyr Ile Va
#l Val Pro Ser Ser Leu
210
# 215
# 220
Ala Asp Gln Asp Leu Lys Ile Phe Ser His Se
#r Phe Val Gly Arg Arg
225 2
#30 2
#35 2
#40
Met Pro Leu Trp Cys Trp Ser His Ser Asn Gl
#y Ser Ala Leu Val Arg
245
# 250
# 255
Met Ala Leu Ile Lys Asp Val Leu Gln Gln Ar
#g Lys Ile Asp Gln Arg
260
# 265
# 270
Ile Cys Asn Ala Ile Thr Lys Ser His Pro Gl
#n Arg Ser Asp Val Tyr
275
# 280
# 285
Lys Ser Asp Leu Asp Lys Thr Leu Pro Asn Il
#e Gln Glu Val Gln Ala
290
# 295
# 300
Ala Phe Val Lys Leu Lys Gln Leu Cys Val As
#n Glu Pro Phe Glu Glu
305 3
#10 3
#15 3
#20
Thr Glu Glu Lys Trp Leu Ser Ser Leu Glu As
#n Thr Arg Trp Leu Glu
325
# 330
# 335
Tyr Val Arg Ala Phe Leu Lys His Ser Ala Gl
#u Leu Val Tyr Met Leu
340
# 345
# 350
Glu Ser Lys His Leu Ser Val Val Leu Gln Gl
#u Glu Glu Gly Arg Asp
355
# 360
# 365
Leu Ser Cys Cys Val Ala Ser Leu Val Gln Va
#l Met Leu Asp Pro Tyr
370
# 375
# 380
Phe Arg Thr Ile Thr Gly Phe Gln Ser Leu Il
#e Gln Lys Glu Trp Val
385 3
#90 3
#95 4
#00
Met Ala Gly Tyr Gln Phe Leu Asp Arg Cys As
#n His Leu Lys Arg Ser
405
# 410
# 415
Glu Lys Glu Ser Pro Leu Phe Leu Leu Phe Le
#u Asp Ala Thr Trp Gln
420
# 425
# 430
Leu Leu Glu Gln Tyr Pro Ala Ala Phe Glu Ph
#e Ser Glu Thr Tyr Leu
435
# 440
# 445
Ala Val Leu Tyr Asp Ser Thr Arg Ile Ser Le
#u Phe Gly Thr Phe Leu
450
# 455
# 460
Phe Asn Ser Pro His Gln Arg Val Lys Gln Se
#r Thr
465 4
#70 4
#75
<210> SEQ ID NO 5
<211> LENGTH: 434
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 5
Met Pro Leu Gln Lys Phe His Tyr Arg Asn Le
#u Leu Leu Gly Glu His
1 5
# 10
# 15
Asp Val Pro Leu Thr Cys Ile Glu Gln Ile Va
#l Thr Val Asn Asp His
20
# 25
# 30
Lys Arg Lys Gln Lys Val Leu Gly Pro Asn Gl
#n Lys Leu Lys Phe Asn
35
# 40
# 45
Pro Thr Glu Leu Ile Ile Tyr Cys Lys Asp Ph
#e Arg Ile Val Arg Phe
50
# 55
# 60
Arg Phe Asp Glu Ser Gly Pro Glu Ser Ala Ly
#s Lys Val Cys Leu Ala
65
#70
#75
#80
Ile Ala His Tyr Ser Gln Pro Thr Asp Leu Gl
#n Leu Leu Phe Ala Phe
85
# 90
# 95
Glu Tyr Val Gly Lys Lys Tyr His Asn Ser Al
#a Asn Lys Ile Asn Gly
100
# 105
# 110
Ile Pro Ser Gly Asp Gly Gly Gly Gly Gly Gl
#y Gly Gly Asn Gly Ala
115
# 120
# 125
Gly Gly Gly Ser Ser Gln Lys Thr Pro Leu Ph
#e Glu Thr Tyr Ser Asp
130
# 135
# 140
Trp Asp Arg Glu Ile Lys Arg Thr Gly Ala Se
#r Gly Trp Arg Val Cys
145 1
#50 1
#55 1
#60
Ser Ile Asn Glu Gly Tyr Met Ile Ser Thr Cy
#s Leu Pro Glu Tyr Ile
165
# 170
# 175
Val Val Pro Ser Ser Leu Ala Asp Gln Asp Le
#u Lys Ile Phe Ser His
180
# 185
# 190
Ser Phe Val Gly Arg Arg Met Pro Leu Trp Cy
#s Trp Ser His Ser Asn
195
# 200
# 205
Gly Ser Ala Leu Val Arg Met Ala Leu Ile Ly
#s Asp Val Leu Gln Gln
210
# 215
# 220
Arg Lys Ile Asp Gln Arg Ile Cys Asn Ala Il
#e Thr Lys Ser His Pro
225 2
#30 2
#35 2
#40
Gln Arg Ser Asp Val Tyr Lys Ser Asp Leu As
#p Lys Thr Leu Pro Asn
245
# 250
# 255
Ile Gln Glu Val Gln Ala Ala Phe Val Lys Le
#u Lys Gln Leu Cys Val
260
# 265
# 270
Asn Glu Pro Phe Glu Glu Thr Glu Glu Lys Tr
#p Leu Ser Ser Leu Glu
275
# 280
# 285
Asn Thr Arg Trp Leu Glu Tyr Val Arg Ala Ph
#e Leu Lys His Ser Ala
290
# 295
# 300
Glu Leu Val Tyr Met Leu Glu Ser Lys His Le
#u Ser Val Val Leu Gln
305 3
#10 3
#15 3
#20
Glu Glu Glu Gly Arg Asp Leu Ser Cys Cys Va
#l Ala Ser Leu Val Gln
325
# 330
# 335
Val Met Leu Asp Pro Tyr Phe Arg Thr Ile Th
#r Gly Phe Gln Ser Leu
340
# 345
# 350
Ile Gln Lys Glu Trp Val Met Ala Gly Tyr Gl
#n Phe Leu Asp Arg Cys
355
# 360
# 365
Asn His Leu Lys Arg Ser Glu Lys Glu Ser Pr
#o Leu Phe Leu Leu Phe
370
# 375
# 380
Leu Asp Ala Thr Trp Gln Leu Leu Glu Gln Ty
#r Pro Ala Ala Phe Glu
385 3
#90 3
#95 4
#00
Phe Ser Glu Thr Tyr Leu Ala Val Leu Tyr As
#p Ser Thr Arg Ile Ser
405
# 410
# 415
Leu Phe Gly Thr Phe Leu Phe Asn Ser Pro Hi
#s Gln Arg Val Lys Gln
420
# 425
# 430
Ser Thr
<210> SEQ ID NO 6
<211> LENGTH: 668
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 6
Lys Ala Pro Lys Pro Ser Phe Val Ser Tyr Va
#l Arg Pro Glu Glu Ile
1 5
# 10
# 15
His Thr Asn Glu Lys Glu Val Thr Glu Lys Gl
#u Val Thr Leu His Leu
20
# 25
# 30
Leu Pro Gly Glu Gln Leu Leu Cys Glu Ala Se
#r Thr Val Leu Lys Tyr
35
# 40
# 45
Val Gln Glu Asp Ser Cys Gln His Gly Val Ty
#r Gly Arg Leu Val Cys
50
# 55
# 60
Thr Asp Phe Lys Ile Ala Phe Leu Gly Asp As
#p Glu Ser Ala Leu Asp
65
#70
#75
#80
Asn Asp Glu Thr Gln Phe Lys Asn Lys Val Il
#e Gly Glu Asn Asp Ile
85
# 90
# 95
Thr Leu His Cys Val Asp Gln Ile Tyr Gly Va
#l Phe Asp Glu Lys Lys
100
# 105
# 110
Lys Thr Leu Phe Gly Gln Leu Lys Lys Tyr Pr
#o Glu Lys Leu Ile Ile
115
# 120
# 125
His Cys Lys Asp Leu Arg Val Phe Gln Phe Cy
#s Leu Arg Tyr Thr Lys
130
# 135
# 140
Glu Glu Glu Val Lys Arg Ile Val Ser Gly Il
#e Ile His His Thr Gln
145 1
#50 1
#55 1
#60
Ala Pro Lys Leu Leu Lys Arg Leu Phe Leu Ph
#e Ser Tyr Ala Thr Ala
165
# 170
# 175
Ala Gln Asn Asn Thr Val Thr Asp Pro Lys As
#n His Thr Val Met Phe
180
# 185
# 190
Asp Thr Leu Lys Asp Trp Cys Trp Glu Leu Gl
#u Arg Thr Lys Gly Asn
195
# 200
# 205
Met Lys Tyr Lys Ala Val Ser Val Asn Glu Gl
#y Tyr Lys Val Cys Glu
210
# 215
# 220
Arg Leu Pro Ala Tyr Phe Val Val Pro Thr Pr
#o Leu Pro Glu Glu Asn
225 2
#30 2
#35 2
#40
Val Gln Arg Phe Gln Gly His Gly Ile Pro Il
#e Trp Cys Trp Ser Cys
245
# 250
# 255
His Asn Gly Ser Ala Leu Leu Lys Met Ser Al
#a Leu Pro Lys Glu Gln
260
# 265
# 270
Asp Asp Gly Ile Leu Gln Ile Gln Lys Ser Ph
#e Leu Asp Gly Ile Tyr
275
# 280
# 285
Lys Thr Ile His Arg Pro Pro Tyr Glu Ile Va
#l Lys Thr Glu Asp Leu
290
# 295
# 300
Ser Ser Asn Phe Leu Ser Leu Gln Glu Ile Gl
#n Thr Ala Tyr Ser Lys
305 3
#10 3
#15 3
#20
Phe Lys Gln Leu Phe Leu Ile Asp Asn Ser Th
#r Glu Phe Trp Asp Thr
325
# 330
# 335
Asp Ile Lys Trp Phe Ser Leu Leu Glu Ser Se
#r Ser Trp Leu Asp Ile
340
# 345
# 350
Ile Arg Arg Cys Leu Lys Lys Ala Ile Glu Il
#e Thr Glu Cys Met Glu
355
# 360
# 365
Ala Gln Asn Met Asn Val Leu Leu Leu Glu Gl
#u Asn Ala Ser Asp Leu
370
# 375
# 380
Cys Cys Leu Ile Ser Ser Leu Val Gln Leu Me
#t Met Asp Pro His Cys
385 3
#90 3
#95 4
#00
Arg Thr Arg Ile Gly Phe Gln Ser Leu Ile Gl
#n Lys Glu Trp Val Met
405
# 410
# 415
Gly Gly His Cys Phe Leu Asp Arg Cys Asn Hi
#s Leu Arg Gln Asn Asp
420
# 425
# 430
Lys Glu Glu Val Pro Val Phe Leu Leu Phe Le
#u Asp Cys Val Trp Gln
435
# 440
# 445
Leu Val His Gln His Pro Pro Ala Phe Glu Ph
#e Thr Glu Thr Tyr Leu
450
# 455
# 460
Thr Val Leu Ser Asp Ser Leu Tyr Ile Pro Il
#e Phe Ser Thr Phe Phe
465 4
#70 4
#75 4
#80
Phe Asn Ser Pro His Gln Lys Asp Thr Asn Me
#t Gly Arg Glu Gly Gln
485
# 490
# 495
Asp Thr Gln Ser Lys Pro Leu Asn Leu Leu Th
#r Val Trp Asp Trp Ser
500
# 505
# 510
Val Gln Phe Glu Pro Lys Ala Gln Thr Leu Le
#u Lys Asn Pro Leu Tyr
515
# 520
# 525
Val Glu Lys Pro Lys Leu Asp Lys Gly Gln Ar
#g Lys Gly Met Arg Phe
530
# 535
# 540
Lys His Gln Arg Gln Leu Ser Leu Pro Leu Th
#r Gln Ser Lys Ser Ser
545 5
#50 5
#55 5
#60
Pro Lys Arg Gly Phe Phe Arg Glu Glu Thr As
#p His Leu Ile Lys Asn
565
# 570
# 575
Leu Leu Gly Lys Arg Ile Ser Lys Leu Ile As
#n Ser Ser Asp Glu Leu
580
# 585
# 590
Gln Asp Asn Phe Arg Glu Phe Tyr Asp Ser Tr
#p His Ser Lys Ser Thr
595
# 600
# 605
Asp Tyr His Gly Leu Leu Leu Pro His Ile Gl
#u Gly Pro Glu Ile Lys
610
# 615
# 620
Val Trp Ala Gln Arg Tyr Leu Arg Trp Ile Pr
#o Glu Ala Gln Ile Leu
625 6
#30 6
#35 6
#40
Gly Gly Gly Gln Val Ala Thr Leu Ser Lys Le
#u Leu Glu Met Met Glu
645
# 650
# 655
Glu Val Gln Ser Leu Gln Glu Lys Ile Asp Gl
#u Arg
660
# 665
<210> SEQ ID NO 7
<211> LENGTH: 508
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 7
Lys Ala Pro Lys Pro Ser Phe Val Ser Tyr Va
#l Arg Pro Glu Glu Ile
1 5
# 10
# 15
His Thr Asn Glu Lys Glu Val Thr Glu Lys Gl
#u Val Thr Leu His Leu
20
# 25
# 30
Leu Pro Gly Glu Gln Leu Leu Cys Glu Ala Se
#r Thr Val Leu Lys Tyr
35
# 40
# 45
Val Gln Glu Asp Ser Cys Gln His Gly Val Ty
#r Gly Arg Leu Val Cys
50
# 55
# 60
Thr Asp Phe Lys Ile Ala Phe Leu Gly Asp As
#p Glu Ser Ala Leu Asp
65
#70
#75
#80
Asn Asp Glu Thr Gln Phe Lys Asn Lys Val Il
#e Gly Glu Asn Asp Ile
85
# 90
# 95
Thr Leu His Cys Val Asp Gln Ile Tyr Gly Va
#l Phe Asp Glu Lys Lys
100
# 105
# 110
Lys Thr Leu Phe Gly Gln Leu Lys Lys Tyr Pr
#o Glu Lys Leu Ile Ile
115
# 120
# 125
His Cys Lys Asp Leu Arg Val Phe Gln Phe Cy
#s Leu Arg Tyr Thr Lys
130
# 135
# 140
Glu Glu Glu Val Lys Arg Ile Val Ser Gly Il
#e Ile His His Thr Gln
145 1
#50 1
#55 1
#60
Ala Pro Lys Leu Leu Lys Arg Leu Phe Leu Ph
#e Ser Tyr Ala Thr Ala
165
# 170
# 175
Ala Gln Asn Asn Thr Val Thr Val Pro Lys As
#n His Thr Val Met Phe
180
# 185
# 190
Asp Thr Leu Lys Asp Trp Cys Trp Glu Leu Gl
#u Arg Thr Lys Gly Asn
195
# 200
# 205
Met Lys Tyr Lys Ala Val Ser Val Asn Glu Gl
#y Tyr Lys Val Cys Glu
210
# 215
# 220
Arg Leu Pro Ala Tyr Phe Val Val Pro Thr Pr
#o Leu Pro Glu Glu Asn
225 2
#30 2
#35 2
#40
Val Gln Arg Phe Gln Gly His Gly Ile Pro Il
#e Trp Cys Trp Ser Cys
245
# 250
# 255
His Asn Gly Ser Ala Leu Leu Lys Met Ser Al
#a Leu Pro Lys Glu Gln
260
# 265
# 270
Asp Asp Gly Ile Leu Gln Ile Gln Lys Ser Ph
#e Leu Asp Gly Ile Tyr
275
# 280
# 285
Lys Thr Ile His Arg Pro Pro Tyr Glu Ile Va
#l Lys Thr Glu Asp Leu
290
# 295
# 300
Ser Ser Asn Phe Leu Ser Leu Gln Glu Ile Gl
#n Thr Ala Tyr Ser Lys
305 3
#10 3
#15 3
#20
Phe Lys Gln Leu Phe Leu Ile Asp Asn Ser Th
#r Glu Phe Trp Asp Thr
325
# 330
# 335
Asp Ile Lys Trp Phe Ser Leu Leu Glu Ser Se
#r Ser Trp Leu Asp Ile
340
# 345
# 350
Ile Arg Arg Cys Leu Lys Lys Ala Ile Glu Il
#e Thr Glu Cys Met Glu
355
# 360
# 365
Ala Gln Asn Met Asn Val Leu Leu Leu Glu Gl
#u Asn Ala Ser Asp Leu
370
# 375
# 380
Cys Cys Leu Ile Ser Ser Leu Val Gln Leu Me
#t Met Asp Pro His Cys
385 3
#90 3
#95 4
#00
Arg Thr Arg Ile Gly Phe Gln Ser Leu Ile Gl
#n Lys Glu Trp Val Met
405
# 410
# 415
Gly Gly His Cys Phe Leu Asp Arg Cys Asn Hi
#s Leu Arg Gln Asn Asp
420
# 425
# 430
Lys Glu Glu His Gln Arg Gln Leu Ser Leu Pr
#o Leu Thr Gln Ser Lys
435
# 440
# 445
Ser Ser Pro Lys Arg Gly Phe Phe Arg Glu Gl
#u Thr Asp His Leu Ile
450
# 455
# 460
Lys Asn Leu Leu Gly Lys Arg Ile Ser Lys Le
#u Ile Asn Ser Ser Asp
465 4
#70 4
#75 4
#80
Glu Leu Gln Asp Asn Phe Arg Glu Phe Tyr As
#p Ser Trp His Ser Lys
485
# 490
# 495
Ser Thr Asp Tyr His Gly Leu Leu Leu Pro Hi
#s Ile
500
# 505
<210> SEQ ID NO 8
<211> LENGTH: 80
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 8
Ser Asp Glu Leu Gln Asp Asn Phe Arg Glu Ph
#e Tyr Asp Ser Trp His
1 5
# 10
# 15
Ser Lys Ser Thr Asp Tyr His Gly Leu Leu Le
#u Pro His Ile Glu Gly
20
# 25
# 30
Pro Glu Ile Lys Val Trp Ala Gln Arg Tyr Le
#u Arg Trp Ile Pro Glu
35
# 40
# 45
Ala Gln Ile Leu Gly Gly Gly Gln Val Ala Th
#r Leu Ser Lys Leu Leu
50
# 55
# 60
Glu Met Met Glu Glu Val Gln Ser Leu Gln Gl
#u Lys Ile Asp Glu Arg
65
#70
#75
#80
<210> SEQ ID NO 9
<211> LENGTH: 638
<212> TYPE: PRT
<213> ORGANISM: Drosophila melanogaster
<400> SEQUENCE: 9
Phe Gly Leu Leu Ser Val Thr Asn Phe Lys Le
#u Ala Phe Val Pro Leu
1 5
# 10
# 15
His Glu Lys Arg Asn Gln Ala Ile Thr Ala Pr
#o Leu Ile Asp Leu Tyr
20
# 25
# 30
Gln Glu Asn Thr Tyr Leu Gly Arg Asn Glu Il
#e Thr Leu Asn Asn Ile
35
# 40
# 45
Asp His Ile Tyr Thr Ile Thr Glu Leu Gly Ar
#g Ala Ala Ser Ala Leu
50
# 55
# 60
Gln Ala Ala Arg Gly Met Ala Ser His Ala Gl
#y Met Ser Arg Arg Lys
65
#70
#75
#80
Lys Leu Glu Pro Phe Lys Gln Gln Asn Ile Se
#r Gly Arg Ile Ala Ala
85
# 90
# 95
Leu His Ile Val Cys Lys Asn Phe Arg Leu Le
#u Lys Phe Ala Phe Gln
100
# 105
# 110
Gln Gln Asp Ser Lys Met Phe Gly Ala Ser As
#p Gln Gly Lys Leu Ile
115
# 120
# 125
Ala Ser Ala Leu Val Arg Phe Ala Tyr Pro Me
#t Arg His Asp Leu Ser
130
# 135
# 140
Phe Ala Tyr Ala His Arg Glu Pro Tyr Tyr Se
#r Thr Leu Gly Ala Ser
145 1
#50 1
#55 1
#60
Gly Thr Ser Met Tyr Ala Thr Lys Asn Asp Tr
#p Ala Arg Glu Leu Ile
165
# 170
# 175
Arg Cys Gly Ala Thr Glu Trp Gln Val Val Se
#r Cys Ala Ser Val Gln
180
# 185
# 190
Leu Leu Gln Asn Pro Leu Gln Ala Gly Lys Ty
#r Thr Val Pro Pro His
195
# 200
# 205
Phe Val Ile Pro Lys Ser Cys Ser Val Asp Ar
#g Phe Leu Asp Leu Ser
210
# 215
# 220
Arg Ala Phe Cys Asp Ser Arg Ala Ala Phe Tr
#p Val Tyr Ser Tyr Gly
225 2
#30 2
#35 2
#40
Ser Ser Ala Ala Leu Val Arg Leu Ala Glu Le
#u Gln Pro Ala Ala Gln
245
# 250
# 255
Gln Asp Thr Lys Ser Glu Asn Val Met Leu Gl
#u Leu Val Arg Lys Cys
260
# 265
# 270
Asp Ala Gly Arg Gln Leu Lys Leu Leu Gln Le
#u Thr Asp Arg Leu Pro
275
# 280
# 285
Ser Ile Gln Asp Val Leu Arg Ala Tyr Gln Ly
#s Leu Arg Arg Leu Cys
290
# 295
# 300
Thr Pro Glu Thr Pro Glu Lys Phe Met Leu Gl
#n Asp Asp Lys Tyr Leu
305 3
#10 3
#15 3
#20
Gly Leu Leu Glu Lys Thr Asn Trp Leu Phe Ty
#r Val Ser Leu Cys Leu
325
# 330
# 335
Arg Tyr Ala Ser Glu Ala Ser Ala Thr Leu Ar
#g Ser Gly Val Thr Cys
340
# 345
# 350
Val Leu Gln Glu Ser Asn Gly Arg Asp Leu Cy
#s Cys Val Ile Ser Ser
355
# 360
# 365
Leu Ala Gln Leu Leu Leu Asp Pro His Phe Ar
#g Thr Ile Asp Gly Phe
370
# 375
# 380
Gln Ser Leu Val Gln Lys Glu Trp Val Ala Le
#u Glu His Pro Phe Gln
385 3
#90 3
#95 4
#00
Arg Arg Leu Gly His Val Tyr Pro Ala Gln Pr
#o Ala Gly Gly Asn Ala
405
# 410
# 415
Glu Leu Phe Asp Ser Glu Gln Ser Pro Val Ph
#e Leu Leu Phe Leu Asp
420
# 425
# 430
Cys Val Trp Gln Leu Leu Gln Gln Phe Pro As
#p Glu Phe Glu Phe Thr
435
# 440
# 445
Gln Thr Tyr Leu Thr Thr Leu Trp Asp Ser Cy
#s Phe Met Pro Ile Phe
450
# 455
# 460
Asp Thr Phe Gln Phe Asp Thr Gln Ala Gln Ar
#g Leu Lys Ala Val Thr
465 4
#70 4
#75 4
#80
Asp Ser Gln Leu Val Leu Arg Pro Val Trp As
#p Trp Gly Glu Gln Phe
485
# 490
# 495
Ser Asp Lys Asp Lys Met Phe Phe Ser Asn Pr
#o Leu Tyr Gln Arg Gln
500
# 505
# 510
Arg Gly Asp Leu Gly Ala Gln Ala Ala Ala Va
#l Ala His Arg Arg Ser
515
# 520
# 525
Leu Ala Val Gly Ser Lys Gly Ala His Gly Al
#a Ala Ser Gly Val Thr
530
# 535
# 540
Pro Ser Arg Asn Thr Ile Asn Pro Gln Leu Ph
#e Ala Thr Ala Ser Ser
545 5
#50 5
#55 5
#60
Val Pro Gln Asp Arg Tyr Leu Gln Pro Ala Hi
#s Arg Ile Phe Asp Leu
565
# 570
# 575
Gln Val Trp Asp Gln Cys Tyr Tyr Arg Trp Le
#u Pro Ile Leu Asp Ile
580
# 585
# 590
Arg Gly Gly Gly Gln Pro Gln Val Asp Leu Ty
#r His Arg Leu Leu Leu
595
# 600
# 605
Ser Asn Ile Ala Lys Val Gln Arg Cys Leu As
#p Tyr Gln Asn Phe Asp
610
# 615
# 620
Asp Leu Pro Asp Ala Tyr Tyr Glu Phe Ala Gl
#y Glu Ser Arg
625 6
#30 6
#35
<210> SEQ ID NO 10
<211> LENGTH: 458
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 10
Glu Pro Pro Leu Leu Pro Gly Glu Asn Ile Ly
#s Asp Met Ala Lys Asp
1 5
# 10
# 15
Val Thr Tyr Ile Cys Pro Phe Thr Gly Ala Va
#l Arg Gly Thr Leu Thr
20
# 25
# 30
Val Thr Asn Tyr Arg Leu Tyr Phe Lys Ser Me
#t Glu Arg Asp Pro Pro
35
# 40
# 45
Phe Val Leu Asp Ala Ser Leu Gly Val Ile As
#n Arg Val Glu Lys Ile
50
# 55
# 60
Gly Gly Ala Ser Ser Arg Gly Glu Asn Ser Ty
#r Gly Leu Glu Thr Val
65
#70
#75
#80
Cys Lys Asp Ile Arg Asn Leu Arg Phe Ala Hi
#s Lys Pro Glu Gly Arg
85
# 90
# 95
Thr Arg Arg Ser Ile Phe Glu Asn Leu Met Ly
#s Tyr Ala Phe Pro Val
100
# 105
# 110
Ser Asn Asn Leu Pro Leu Phe Ala Phe Glu Ty
#r Lys Glu Val Phe Pro
115
# 120
# 125
Glu Asn Gly Trp Lys Leu Tyr Asp Pro Leu Le
#u Glu Tyr Arg Arg Gln
130
# 135
# 140
Gly Ile Pro Asn Glu Ser Trp Arg Ile Thr Ly
#s Ile Asn Glu Arg Tyr
145 1
#50 1
#55 1
#60
Glu Leu Cys Asp Thr Tyr Pro Ala Leu Leu Va
#l Val Pro Ala Asn Ile
165
# 170
# 175
Pro Asp Glu Glu Leu Lys Arg Val Ala Ser Ph
#e Arg Ser Arg Gly Arg
180
# 185
# 190
Ile Pro Val Leu Ser Trp Ile His Pro Glu Se
#r Gln Ala Thr Ile Thr
195
# 200
# 205
Arg Cys Ser Gln Pro Met Val Gly Val Ser Gl
#y Lys Arg Ser Lys Glu
210
# 215
# 220
Asp Glu Lys Tyr Leu Gln Ala Ile Met Asp Se
#r Asn Ala Gln Ser His
225 2
#30 2
#35 2
#40
Lys Ile Phe Ile Phe Asp Ala Arg Pro Ser Va
#l Asn Ala Val Ala Asn
245
# 250
# 255
Lys Ala Lys Gly Gly Gly Tyr Glu Ser Glu As
#p Ala Tyr Gln Asn Ala
260
# 265
# 270
Glu Leu Val Phe Leu Asp Ile His Asn Ile Hi
#s Val Met Arg Glu Ser
275
# 280
# 285
Leu Arg Lys Leu Lys Glu Ile Val Tyr Pro As
#n Ile Glu Glu Thr His
290
# 295
# 300
Trp Leu Ser Asn Leu Glu Ser Thr His Trp Le
#u Glu His Ile Lys Leu
305 3
#10 3
#15 3
#20
Ile Leu Ala Gly Ala Leu Arg Ile Ala Asp Ly
#s Val Glu Ser Gly Lys
325
# 330
# 335
Thr Ser Val Val Val His Cys Ser Asp Gly Tr
#p Asp Arg Thr Ala Gln
340
# 345
# 350
Leu Thr Ser Leu Ala Met Leu Met Leu Asp Gl
#y Tyr Tyr Arg Thr Ile
355
# 360
# 365
Arg Gly Phe Glu Val Leu Val Glu Lys Glu Tr
#p Leu Ser Phe Gly His
370
# 375
# 380
Arg Phe Gln Leu Arg Val Gly His Gly Asp Ly
#s Asn His Ala Asp Ala
385 3
#90 3
#95 4
#00
Asp Arg Ser Pro Val Phe Leu Gln Phe Ile As
#p Cys Val Trp Gln Met
405
# 410
# 415
Thr Arg Gln Phe Pro Thr Ala Phe Glu Phe As
#n Glu Tyr Phe Leu Ile
420
# 425
# 430
Thr Ile Leu Asp His Leu Tyr Ser Cys Leu Ph
#e Gly Thr Phe Leu Cys
435
# 440
# 445
Asn Ser Glu Gln Gln Arg Gly Lys Glu Asn
450
# 455
<210> SEQ ID NO 11
<211> LENGTH: 458
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 11
Glu Pro Pro Leu Leu Pro Gly Glu Asn Ile Ly
#s Asp Met Ala Lys Asp
1 5
# 10
# 15
Val Thr Tyr Ile Cys Pro Phe Thr Gly Ala Va
#l Arg Gly Thr Leu Thr
20
# 25
# 30
Val Thr Asn Tyr Arg Leu Tyr Phe Lys Ser Me
#t Glu Arg Asp Pro Pro
35
# 40
# 45
Phe Val Leu Asp Ala Ser Leu Gly Val Ile As
#n Arg Val Glu Lys Ile
50
# 55
# 60
Gly Gly Ala Ser Ser Arg Gly Glu Asn Ser Ty
#r Gly Leu Glu Thr Val
65
#70
#75
#80
Cys Lys Asp Ile Arg Asn Leu Arg Phe Ala Hi
#s Lys Pro Glu Gly Arg
85
# 90
# 95
Thr Arg Arg Ser Ile Phe Glu Asn Leu Met Ly
#s Tyr Ala Phe Pro Val
100
# 105
# 110
Ser Asn Asn Leu Pro Leu Phe Ala Phe Glu Ty
#r Lys Glu Val Phe Pro
115
# 120
# 125
Glu Asn Gly Trp Lys Leu Tyr Asp Pro Leu Le
#u Glu Tyr Arg Arg Gln
130
# 135
# 140
Gly Ile Pro Asn Glu Ser Trp Arg Ile Thr Ly
#s Ile Asn Glu Arg Tyr
145 1
#50 1
#55 1
#60
Glu Leu Cys Asp Thr Tyr Pro Ala Leu Leu Va
#l Val Pro Ala Asn Ile
165
# 170
# 175
Pro Asp Glu Glu Leu Lys Arg Val Ala Ser Ph
#e Arg Ser Arg Gly Arg
180
# 185
# 190
Ile Pro Val Leu Ser Trp Ile His Pro Glu Se
#r Gln Ala Thr Ile Thr
195
# 200
# 205
Arg Cys Ser Gln Pro Met Val Gly Val Ser Gl
#y Lys Arg Ser Lys Glu
210
# 215
# 220
Asp Glu Lys Tyr Leu Gln Ala Ile Met Asp Se
#r Asn Ala Gln Ser His
225 2
#30 2
#35 2
#40
Lys Ile Phe Ile Phe Asp Ala Arg Pro Ser Va
#l Asn Ala Val Ala Asn
245
# 250
# 255
Lys Ala Lys Gly Gly Gly Tyr Glu Ser Glu As
#p Ala Tyr Gln Asn Ala
260
# 265
# 270
Glu Leu Val Phe Leu Asp Ile His Asn Ile Hi
#s Val Met Arg Glu Ser
275
# 280
# 285
Leu Arg Lys Leu Lys Glu Ile Val Tyr Pro As
#n Ile Glu Glu Thr His
290
# 295
# 300
Trp Leu Ser Asn Leu Glu Ser Thr His Trp Le
#u Glu His Ile Lys Leu
305 3
#10 3
#15 3
#20
Ile Leu Ala Gly Ala Leu Arg Ile Ala Asp Ly
#s Val Glu Ser Gly Lys
325
# 330
# 335
Thr Ser Val Val Val His Cys Ser Asp Gly Tr
#p Asp Arg Thr Ala Gln
340
# 345
# 350
Leu Thr Ser Leu Ala Met Leu Met Leu Asp Gl
#y Tyr Tyr Arg Thr Ile
355
# 360
# 365
Arg Gly Phe Glu Val Leu Val Glu Lys Glu Tr
#p Leu Ser Phe Gly His
370
# 375
# 380
Arg Phe Gln Leu Arg Val Gly His Gly Asp Ly
#s Asn His Ala Asp Ala
385 3
#90 3
#95 4
#00
Asp Arg Ser Pro Val Phe Leu Gln Phe Ile As
#p Cys Val Trp Gln Met
405
# 410
# 415
Thr Arg Gln Phe Pro Thr Ala Phe Glu Phe As
#n Glu Tyr Phe Leu Ile
420
# 425
# 430
Thr Ile Leu Asp His Leu Tyr Ser Cys Leu Ph
#e Gly Thr Phe Leu Cys
435
# 440
# 445
Asn Ser Glu Gln Gln Arg Gly Lys Glu Asn
450
# 455
38

Di Francesco, Valentina, Beasley, Ellen M., Yan, Chunhua, Gan, Weiniu

Patent Priority Assignee Title
8834866, Jun 15 2009 Valerion Therapeutics, LLC Methods and compositions for treatment of myotubular myopathy using chimeric polypeptides comprising myotubularin 1(MTM1) polypeptides
9447394, Jun 15 2009 Valerion Therapeutics, LLC Methods and compositions for treatment of myotubular myopathy using chimeric polypeptides comprising myotubularin 1(MTM1) polypeptides
Patent Priority Assignee Title
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 24 2003Applera Corporation(assignment on the face of the patent)
Jul 01 2008Applera CorporationCelera CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0215610124 pdf
Date Maintenance Fee Events
Aug 17 2007M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 03 2011REM: Maintenance Fee Reminder Mailed.
Feb 17 2012EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Feb 17 20074 years fee payment window open
Aug 17 20076 months grace period start (w surcharge)
Feb 17 2008patent expiry (for year 4)
Feb 17 20102 years to revive unintentionally abandoned end. (for year 4)
Feb 17 20118 years fee payment window open
Aug 17 20116 months grace period start (w surcharge)
Feb 17 2012patent expiry (for year 8)
Feb 17 20142 years to revive unintentionally abandoned end. (for year 8)
Feb 17 201512 years fee payment window open
Aug 17 20156 months grace period start (w surcharge)
Feb 17 2016patent expiry (for year 12)
Feb 17 20182 years to revive unintentionally abandoned end. (for year 12)