The present invention provides amino acid sequences of peptides that are encoded by genes within the human genome, the phosphatase peptides of the present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the phosphatase peptides, and methods of identifying modulators of the phosphatase peptides.
|
|
The present application is a divisional of U.S. application Ser. No. 09/811,469 filed on Mar. 20, 2001 and issued on Apr. 22, 2003 as U.S. Pat. No. 6,551,809.
The present invention is in the field of phosphatase proteins that are related to the dual specificity phosphatase subfamily, recombinant DNA molecules and protein production. The present invention specifically provides a novel phosphatase splice form and nucleic acid molecules encoding the novel splice form, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.
Phosphatase proteins, particularly members of the dual specificity phosphatase subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of phosphatase proteins. The present invention advances the state of the art by providing a previously unidentified human phosphatase proteins that have homology to members of the dual specificity phosphatase subfamily.
Protein Phosphatase
Cellular signal transduction is a fundamental mechanism whereby external stimuli that regulate diverse cellular processes are relayed to the interior of cells. The biochemical pathways through which signals are transmitted within cells comprise a circuitry of directly or functionally connected interactive proteins. One of the key biochemical mechanisms of signal transduction involves the reversible phosphorylation of certain residues on proteins. The phosphorylation state of a protein may affect its conformation and/or enzymic activity as well as its cellular location. The phosphorylation state of a protein is modified through the reciprocal actions of protein phosphatases (PKs) and protein phosphatases (PPs) at various specific amino acid residues.
Protein phosphorylation is the ubiquitous strategy used to control the activities of eukaryotic cells. It is estimated that 10% of the proteins active in a typical mammalian cell are phosphorylated. The high-energy phosphate that confers activation and is transferred from adenosine triphosphate molecules to protein-by-protein phosphatases is subsequently removed from the protein-by-protein phosphatases. In this way, the phosphatases control most cellular signaling events that regulate cell growth and differentiation, cell-to-cell contacts, the cell cycle, and oncogenesis.
The protein phosphorylation/dephosphorylation cycle is one of the major regulatory mechanisms employed by eukaryotic cells to control cellular activities. It is estimated that more than 10% of the active proteins in a typical mammalian cell are phosphorylated. During protein phosphorylation/dephosphorylation, phosphate groups are transferred from adenosine triphosphate molecules to protein-by-protein phosphatases and are removed from the protein-by-protein phosphatases.
Protein phosphatases function in cellular signaling events that regulate cell growth and differentiation, cell-to-cell contacts, the cell cycle, and oncogenesis. Three protein phosphatase families have been identified as evolutionarily distinct. These include the serine/threonine phosphatases, the protein tyrosine phosphatases, and the acid/alkaline phosphatases (Carbonneau H. and Tonks N. K. (1992) Annu. Rev. Cell Biol. 8:463-93).
The serine/threonine phosphatases are either cytosolic or associated with a receptor. On the basis of their sensitivity to two thermostable proteins, inhibitors 1 and 2, and their divalent cation requirements, the serine/threonine phosphatases can be separated into four distinct groups, PP-I, PP-IIA, PP-IIB, and PP-IIC.
PP-I dephosphorylates many of the proteins phosphorylated by cylic AMP-dependent protein phosphatase and is therefore an important regulator of many cyclic AMP mediated, hormone responses in cells. PP-IIA has broad specificity for control of cell cycle, growth and proliferation, and DNA replication and is the main phosphatase responsible for reversing the phosphorylations of serine/threonine phosphatases. PP-IIB, or calcineurin (Cn), is a Ca+2-activated phosphatase; it is involved in the regulation of such diverse cellular functions as ion channel regulation, neuronal transmission, gene transcription, muscle glycogen metabolism, and lymphocyte activation.
PP-IIC is a Mg++-dependent phosphatase which participates in a wide variety of functions including regulating cyclic AMP-activated protein-phosphatase activity, Ca++-dependent signal transduction, tRNA splicing, and signal transmission related to heat shock responses. PP-IIC is a monomeric protein with a molecular mass of about 40-45 kDa. One α and several β isoforms of PP-IIC have been identified (Wenk, J. et al. (1992) FEBS Lett. 297: 135-138; Terasawa, T. et al. (1993) Arch. Biochem. Biophys. 307: 342-349; and Kato, S. et al. (1995) Arch. Biochem. Biophys. 318: 387-393).
The levels of protein phosphorylation required for normal cell growth and differentiation at any time are achieved through the coordinated action of PKs and PPS. Depending on the cellular context, these two types of enzymes may either antagonize or cooperate with each other during signal transduction. An imbalance between these enzymes may impair normal cell functions leading to metabolic disorders and cellular transformation.
For example, insulin binding to the insulin receptor, which is a PTK, triggers a variety of metabolic and growth promoting effects such as glucose transport, biosynthesis of glycogen and fats, DNA synthesis, cell division and differentiation. Diabetes mellitus, which is characterized by insufficient or a lack of insulin signal transduction, can be caused by any abnormality at any step along the insulin signaling pathway. (Olefsky, 1988, in "Cecil Textbook of Medicine," 18th Ed., 2:1360-81).
It is also well known, for example, that the overexpression of PTKs, such as HER2, can play a decisive role in the development of cancer (Slamon et al., 1987, Science 235:77-82) and that antibodies capable of blocking the activity of this enzyme can abrogate tumor growth (Drebin et al., 1988, Oncogene 2:387-394). Blocking the signal transduction capability of tyrosine phosphatases such as Flk-1 and the PDGF receptor have been shown to block tumor growth in animal models (Millauer et al., 1994, Nature 367:577; Ueno et al., Science, 252:844-848).
Relatively less is known with respect to the direct role of phosphatases in signal transduction; PPs may play a role in human diseases. For example, ectopic expression of RPTPα produces a transformed phenotype in embryonic fibroblasts (Zheng et al., Nature 359:336-339), and overexpression of RPTPα in embryonal carcinoma cells causes the cells to differentiate into a cell type with neuronal phenotype (den Hertog et al., EMBO J 12:3789-3798). The gene for human RPTPγ has been localized to chromosome 3p21 which is a segment frequently altered in renal and small lung carcinoma. Mutations may occur in the extracellular segment of RPTPγ which renders a RPTP that no longer respond to external signals (LaForgia et al., Wary et al., 1993, Cancer Res 52:478-482). Mutations in the gene encoding PTP1C (also known as HCP, SHP) are the cause of the moth-eaten phenotype in mice that suffer severe immunodeficiency, and systemic autoimmune disease accompanied by hyperproliferation of macrophages (Schultz et al., 1993, Cell 73:1445-1454). PTP1D (also known as Syp or PTP2C) has been shown to bind through SH2 domains to sites of phosphorylation in PDGFR, EGFR and insulin receptor substrate 1 (IRS-1). Reducing the activity of PTP1D by microinjection of anti-PTP1D antibody has been shown to block insulin or EGF-induced mitogenesis (Xiao et al., 1994, J Biol Chem 269:21244-21248).
Myotubularin Dual Specificity Phosphatases
The novel human protein provided by the present invention is an alternative splice form of a known gene (referred to in Genbank as "hypothetical protein FLJ20313"; mRNA: gi8923296, protein sequences: gi11433679 and gi8923297). The alternative splice form of the present invention differs from the art-known protein at both the 5' and 3' ends.
The human protein, and encoding gene, of the present invention is related to dual specificity phosphatases (DSPs) in general, and myotubularin DSPs specifically. Mutations in myotubularin DSP genes are known to cause X-linked myotubular myopathy, which is a severe congenital muscle disorder (Laporte et al., Hum Mol Genet October 1998;7(11):1703-12). Furthermore, is has been suggested that myotubularin DSP genes are good candidates for other genetic diseases (Laporte et al., Hum Mol Genet October 1998;7(11):1703-12).
Other than containing an active tyrosine phosphatase consensus site, myotubularin shares limited homology with other phosphatases. Myotubularin acts on both phosphotyrosine and phosphoserine, and has been shown to hydrolyze a synthetic analog of tyrosine phosphatase in a reaction that can be inhibited by orthovanadate. The myotubularin DSP family is strongly conserved throughout evolution and is the largest known DSP family (Laporte et al., Hum Mol Genet October 1998;7(11):1703-12).
The discovery of a new human protein phosphatase and the polynucleotides encoding it satisfies a need in the art by providing new compositions that are useful in the diagnosis, prevention and treatment of biological processes associated with abnormal or unwanted protein phosphorylation.
The present invention is based in part on the identification of amino acid sequences of a novel human phosphatase splice form that is related to the dual specificity phosphatase subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate phosphatase activity in cells and tissues that express the phosphatase. Experimental data as provided in
FIGS. 1(A-C) provides the nucleotide sequence of a cDNA molecule that encodes the phosphatase protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in
FIGS. 2(A-H) provides the predicted amino acid sequence of the phosphatase of the present invention. (SEQ ID NO:2) In addition, structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.
FIGS. 3(A-QQ) provides genomic sequences that span the gene encoding the phosphatase protein of the present invention. (SEQ ID NO:3) As illustrated in
General Description
The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or sequence homology to protein/peptide/domains identified and characterized within the art as being a phosphatase protein or part of a phosphatase protein and are related to the dual specificity phosphatase subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of a novel human phosphatase splice form that is related to the dual specificity phosphatase subfamily, nucleic acid sequences in the form of transcript sequences, cDNA sequences and/or genomic sequences that encode this phosphatase splice form, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the phosphatase of the present invention.
In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology and/or structural relatedness to known phosphatase proteins of the dual specificity phosphatase subfamily and the expression pattern observed. Experimental data as provided in
Specific Embodiments
Peptide Molecules
The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the phosphatase family of proteins and are related to the dual specificity phosphatase subfamily (protein sequences are provided in
The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the phosphatase peptides disclosed in the
As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).
In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.
The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the phosphatase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.
The isolated phosphatase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as provided in
Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in
The present invention further provides proteins that consist essentially of the amino acid sequences provided in
The present invention further provides proteins that comprise the amino acid sequences provided in
The phosphatase peptides of the present invention can be attached to heterologous sequences to form chimeric or fusion proteins. Such chimeric and fusion proteins comprise a phosphatase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the phosphatase peptide. "Operatively linked" indicates that the phosphatase peptide and the heterologous protein are fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the phosphatase peptide.
In some uses, the fusion protein does not affect the activity of the phosphatase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant phosphatase peptide. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.
A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A phosphatase peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the phosphatase peptide.
As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.
Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the phosphatase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.
To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol. Biol. 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)). When utilizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.
Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides of the present invention can readily be identified as having complete sequence identity to one of the phosphatase peptides of the present invention as well as being encoded by the same genetic locus as the phosphatase peptide provided herein. The gene encoding the novel phosphatase protein of the present invention is located on a genome component that has been mapped to human chromosome 15 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
Allelic variants of a phosphatase peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the phosphatase peptide as well as being encoded by the same genetic locus as the phosphatase peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in
Paralogs of a phosphatase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the phosphatase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a phosphatase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.
Orthologs of a phosphatase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the phosphatase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a phosphatase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.
Non-naturally occurring variants of the phosphatase peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the phosphatase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a phosphatase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., Science 247:1306-1310 (1990).
Variant phosphatase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to dephosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions.
Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.
Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081-1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as phosphatase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992); de Vos et al. Science 255:306-312 (1992)).
The present invention further provides fragments of the phosphatase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.
As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid-residues from a phosphatase peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the phosphatase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the phosphatase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.
Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in phosphatase peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in FIG. 2).
Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as Proteins--Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N.Y. Acad. Sci. 663:48-62 (1992)).
Accordingly, the phosphatase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature phosphatase peptide is fused with another compound, such as a compound to increase the half-life of the phosphatase peptide, or in which the additional amino acids are fused to the mature phosphatase peptide, such as a leader or secretory sequence or a sequence for purification of the mature phosphatase peptide or a pro-protein sequence.
Protein/Peptide Uses
The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a phosphatase-effector protein interaction or phosphatase-ligand interaction), the protein can be used to identify the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.
Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.
The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, phosphatases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the phosphatase. Experimental data as provided in
The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to phosphatases that are related to members of the dual specificity phosphatase subfamily. Such assays involve any of the known phosphatase functions or activities or properties useful for diagnosis and treatment of phosphatase-related conditions that are specific for the subfamily of phosphatases that the one of the present invention belongs to, particularly in cells and tissues that express the phosphatase. Experimental data as provided in
The proteins of the present invention are also useful in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally express the phosphatase, as a biopsy or expanded in cell culture. Experimental data as provided in
The polypeptides can be used to identify compounds that modulate phosphatase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the phosphatase. Both the phosphatases of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the phosphatase. These compounds can be further screened against a functional phosphatase to determine the effect of the compound on the phosphatase activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the phosphatase to a desired degree.
Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the phosphatase protein and a molecule that normally interacts with the phosphatase protein, e.g. a substrate or a component of the signal pathway that the phosphatase protein normally interacts (for example, another phosphatase). Such assays typically include the steps of combining the phosphatase protein with a candidate compound under conditions that allow the phosphatase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the phosphatase protein and the target, such as any of the associated effects of signal transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.
Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82-84 (1991); Houghten et al., Nature 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')2, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).
One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant phosphatases or appropriate fragments containing mutations that affect phosphatase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.
The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) phosphatase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate phosphatase activity. Thus, the dephosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the phosphatase protein dependent signal cascade can be assayed.
Any of the biological or biochemical functions mediated by the phosphatase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the phosphatase can be assayed. Experimental data as provided in
Binding and/or activating compounds can also be screened by using chimeric phosphatase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate then that which is recognized by the native phosphatase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the phosphatase is derived.
The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the phosphatase (e.g. binding partners and/or ligands). Thus, a compound is exposed to a phosphatase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble phosphatase polypeptide is also added to the mixture. If the test compound interacts with the soluble phosphatase polypeptide, it decreases the amount of complex formed or activity from the phosphatase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the phosphatase. Thus, the soluble polypeptide that competes with the target phosphatase region is designed to contain peptide sequences corresponding to the region of interest.
To perform cell free drug screening assays, it is sometimes desirable to immobilize either the phosphatase protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.
Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35S-labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of phosphatase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a phosphatase-binding protein and a candidate compound are incubated in the phosphatase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the phosphatase protein target molecule, or which are reactive with phosphatase protein and compete with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.
Agents that modulate one of the phosphatases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.
Modulators of phosphatase protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the kinase pathway, by treating cells or tissues that express the phosphatase. Experimental data as provided in
In yet another aspect of the invention, the phosphatase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with the phosphatase and are involved in phosphatase activity. Such phosphatase-binding proteins are also likely to be involved in the propagation of signals by the phosphatase proteins or phosphatase targets as, for example, downstream elements of a kinase-mediated signaling pathway. Alternatively, such phosphatase-binding proteins are likely to be phosphatase inhibitors.
The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a phosphatase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a phosphatase-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the phosphatase protein.
This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a phosphatase-modulating agent, an antisense phosphatase nucleic acid molecule, a phosphatase-specific antibody, or a phosphatase-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
The phosphatase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in
One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.
The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered phosphatase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.
In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.
The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 23(10-11):983-985 (1996)), and Linder, M. W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may lead to allelic protein variants of the phosphatase protein in which one or more of the phosphatase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are more or less active in substrate binding, and phosphatase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.
The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in
Antibodies
The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.
As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')2, and Fv fragments.
Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).
In-general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in
Antibodies are preferably prepared from regions or discrete fragments of the phosphatase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or phosphatase/binding partner interaction.
An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).
Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.
Antibody Uses
The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in
Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in
The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Experimental data as provided in
Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.
The antibodies are also useful for tissue typing. Experimental data as provided in
The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the phosphatase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See
The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.
Nucleic Acid Molecules
The present invention further provides isolated nucleic acid molecules that encode a phosphatase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the phosphatase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.
As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.
Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.
For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.
Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in
The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in
The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in
In
The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.
As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the phosphatase peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre- pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.
Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (anti-sense strand).
The invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the phosphatase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.
The present invention further provides non-coding fragments of the nucleic acid molecules provided in
A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.
A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.
Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel phosphatase protein of the present invention is located on a genome component that has been mapped to human chromosome 15 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6×sodium chloride/sodium citrate (SSC) at about 45 C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.
Nucleic Acid Molecule Uses
The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in
The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.
The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule and are useful to synthesize antisense molecules of desired length and sequence.
The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.
The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.
The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel phosphatase protein of the present invention is located on a genome component that has been mapped to human chromosome 15 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.
The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.
The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.
The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.
The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.
The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.
The nucleic acid, molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in
In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.
Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a phosphatase protein, such as by measuring a level of a phosphatase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a phosphatase gene has been mutated. Experimental data as provided in
Nucleic acid expression assays are useful for drug screening to identify compounds that modulate phosphatase nucleic acid expression.
The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the phosphatase gene, particularly biological and pathological processes that are mediated by the phosphatase in cells and tissues that express it. Experimental data as provided in
The assay for phosphatase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the phosphatase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.
Thus, modulators of phosphatase gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of phosphatase mRNA in the presence of the candidate compound is compared to the level of expression of phosphatase mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.
The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate phosphatase nucleic acid expression in cells and tissues that express the phosphatase. Experimental data as provided in
Alternatively, a modulator for phosphatase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the phosphatase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in
The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the phosphatase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.
The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in phosphatase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in phosphatase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the phosphatase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the phosphatase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a phosphatase protein.
Individuals carrying mutations in the phosphatase gene can be detected at the nucleic acid level by a variety of techniques.
Alternatively, mutations in a phosphatase gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.
Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.
Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant phosphatase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., Adv. Chromatogr. 36:127-162 (1996); and Griffin et al., Appl. Biochem. Biotechnol. 38:147-159 (1993)).
Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers et al., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Saleeba et al., Meth. Enzymol. 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and selective primer extension.
The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the nucleic acid molecules can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the phosphatase gene in an individual in order to select an appropriate compound or dosage regimen for treatment.
Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.
The nucleic acid molecules are thus useful as antisense constructs to control phosphatase gene expression in cells, tissues, and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene involved in transcription, preventing transcription and hence production of phosphatase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into phosphatase protein.
Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of phosphatase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired phosphatase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the phosphatase protein, such as substrate binding.
The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in phosphatase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired phosphatase protein to treat the individual.
The invention also encompasses kits for detecting the presence of a phosphatase nucleic acid in a biological sample. Experimental data as provided in
Nucleic Acid Arrays
The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in
As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.
The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.
In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support.
In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application W095/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.
In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large-scale correlation studies on the sequences, expression patterns, mutations, variants, or polymorphisms among samples.
Using such arrays, the present invention provides methods to identify the expression of the phosphatase proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the phosphatase gene of the present invention.
Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).
The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.
In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.
Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.
In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified phosphatase gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.
Vectors/Host Cells
The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR MAC.
A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell genome and produce additional copies of the nucleic acid molecules when the host cell replicates.
The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).
Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself. It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.
The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ, the lac, TRP, and TAC promoters from E. coli, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.
In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.
In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).
A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal; episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).
The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or-exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.
The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.
The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, E. coli, Streptomyces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.
As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterophosphatase. Typical fusion expression vectors include pGEX (Smith et al., Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., Gene 69:301-315 (1988)) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).
Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990)119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids Res. 20:2111-2118 (1992)).
The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepSec1 (Baldari, et al., EMBO J. 6:229-234 (1987)), pMFa (Kuijan et al., Cell 30:933-943(1982)), pJRY88 (Schultz et al., Gene 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).
The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf9 cells) include the pAc series (Smith et al., Mol. Cell Biol. 3:2156-2165 (1983)) and the pVL series (Lucklow et al., Virology 170:31-39 (1989)).
In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. Nature 329:840(1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187-195 (1987)).
The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).
The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.
The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).
Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.
In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.
Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.
While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.
Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as phosphatases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.
Where the peptide is not secreted into the medium, which is typically the case with phosphatases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.
It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.
Uses of Vectors and Host Cells
The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a phosphatase protein or peptide that can be further purified to produce desired amounts of phosphatase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.
Host cells are also useful for conducting cell-based assays involving the phosphatase protein or phosphatase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native phosphatase protein is useful for assaying compounds that stimulate or inhibit phosphatase protein function.
Host cells are also useful for identifying phosphatase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant phosphatase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native phosphatase protein.
Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a phosphatase protein and identifying and evaluating modulators of phosphatase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.
A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the phosphatase protein nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.
Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the phosphatase protein to particular cells.
Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.
In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. PNAS 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al. Science 251:1351-1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter Go phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.
Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo, and that could effect substrate binding, kinase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo phosphatase protein function, including substrate interaction, the effect of specific mutant phosphatase proteins on phosphatase protein function and substrate interaction, and the effect of chimeric phosphatase proteins. It is also possible to assess the effect of null mutations, that is mutations that substantially or completely eliminate one or more phosphatase protein functions.
All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.
# SEQUENCE LISTING |
<160> NUMBER OF SEQ ID NOS: 11 |
<210> SEQ ID NO 1 |
<211> LENGTH: 4458 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 1 |
gagagcttta cgcccggagg cgtcggcgct gccactggcc cgcgacggga ac |
#ggggcgaa 60 |
aaggcggcgg caccatgttc tccctcaagc cgcccaaacc caccttcagg tc |
#ctacctcc 120 |
tgccaccgcc ccagactgac gataagatca attcggaacc gaagattaaa aa |
#actggagc 180 |
cagtcctttt gccaggagaa attgtcgtaa atgaagtcaa ttttgtgaga aa |
#atgcattg 240 |
caacagacac aagccagtac gatttgtggg gaaagctgat atgcagtaac tt |
#caaaatct 300 |
cctttattac agatgaccca atgccattac agaaattcca ttacagaaac ct |
#tcttcttg 360 |
gtgaacacga tgtcccttta acatgtattg aacaaattgt cacagtaaac ga |
#ccacaaga 420 |
ggaagcagaa agtcctaggc cccaaccaga aactgaaatt taatccaaca ga |
#gttaatta 480 |
tttattgtaa agatttcaga attgtcagat ttcgctttga tgaatcaggt cc |
#cgaaagtg 540 |
ctaaaaaggt atgccttgca atagctcatt attcccagcc aacagacctc ca |
#gctactct 600 |
ttgcatttga atatgttggg aaaaaatacc acaattcagc aaacaaaatt aa |
#tggaattc 660 |
cctcaggaga tggaggagga ggaggaggag gaggtaatgg agctggtggt gg |
#cagcagcc 720 |
agaaaactcc actctttgaa acttactcgg attgggacag agaaatcaag ag |
#gacaggtg 780 |
cttccgggtg gagagtttgt tctattaacg agggttacat gatatccact tg |
#ccttccag 840 |
aatacattgt agtgccaagt tctttagcag accaagatct aaagatcttt tc |
#ccattctt 900 |
ttgttgggag aaggatgcca ctctggtgct ggagccactc taacggcagt gc |
#tcttgtgc 960 |
gaatggccct catcaaagac gtgctgcagc agaggaagat tgaccagagg at |
#ttgtaatg 1020 |
caataactaa aagtcaccca cagagaagtg atgtttacaa atcagatttg ga |
#taagacct 1080 |
tgcctaatat tcaagaagta caggcagcat ttgtaaaact gaagcagcta tg |
#cgttaatg 1140 |
agccttttga agaaactgaa gagaaatggt tatcttcact ggaaaatact cg |
#atggttag 1200 |
aatatgtaag ggcattcctt aagcattcag cagaacttgt atacatgcta ga |
#aagcaaac 1260 |
atctctctgt agtcctacaa gaggaggaag gaagagactt gagctgttgt gt |
#agcttctc 1320 |
ttgttcaagt gatgctggat ccctatttta ggacaattac tggatttcag ag |
#tctgatac 1380 |
agaaggagtg ggtcatggca ggatatcagt ttctagacag atgcaaccat ct |
#aaagagat 1440 |
cagagaaaga gtctccttta tttttgctat tcttggatgc cacctggcag ct |
#gttagaac 1500 |
aatatcctgc agcttttgag ttctccgaaa cctacctggc agtgttgtat ga |
#cagcaccc 1560 |
ggatctcact gtttggcacc ttcctgttca actcccctca ccagcgagtg aa |
#gcaaagca 1620 |
cggaatttgc tataagcaaa aacatccaat tgggtgatga gaagggctta aa |
#attcccct 1680 |
ctgtttggga ctggtctctc cagtttacag caaaggatcg cacccttttc ca |
#taacccct 1740 |
tctacattgg aaagagcaca ccttgtatac agaatggctc cgtgaagtct tt |
#taaacgga 1800 |
caaagaaaag ctacagctcc acactaagag gaatgccgtc tgccttaaag aa |
#tggaatca 1860 |
tcagtgacca agaattactt ccaaggagaa attcattgat attaaaacca aa |
#gccagatc 1920 |
cagctcagca aaccgacagc cagaacagtg atacggagca gtattttaga ga |
#atggtttt 1980 |
ccaaacccgc caacctgcac ggtgttattc tgccacgtgt ctctggaaca ca |
#cataaaac 2040 |
tgtggaaact gtgctacttc cgctgggttc ccgaggccca gatcagcctg gg |
#tggctcca 2100 |
tcacagcctt tcacaagctc tccctcctgg ctgatgaagt cgacgtactg ag |
#caggatgc 2160 |
tgcggcaaca gcgcagtggc cccctggagg cctgctatgg ggagctgggc ca |
#gagcagga 2220 |
tgtacttcaa cgccagcggc cctcaccaca ccgacacctc ggggacaccg ga |
#gtttctct 2280 |
cctcctcatt tccattttct cctgtaggga atctgtgcag acgaagcatt tt |
#aggaacac 2340 |
cattaagcaa atttttaagt ggggccaaaa tatggttgtc tactgagaca tt |
#agcaaatg 2400 |
aagactaaaa tagggtgttt tctgaacatt ttgagggaag ctgtcaactt tt |
#ttcctctg 2460 |
aattaacatt gctaacctag gcgtttgaat ctctaataac tttatatgta ag |
#aataatag 2520 |
ttggaatttg cactaatatt taaaaacatg ttgaatcatg cttctttcac ac |
#ttatttta 2580 |
agagagatgt aaattttgtt cctgtcctct ttctgtcatt acaggtctgg ct |
#cttgtaac 2640 |
cgtgatcaaa ctgttcatgt tgtctgctac atttttgtct ccatccattt tt |
#cctaccac 2700 |
ctcctgaagg ctatctgata gtcagtcaca ttagcagccc caggcagcag ac |
#aacaggaa 2760 |
agttaggaaa tttgtgtttc gtgtcatttt taggagcatc tgataaaacc tc |
#cagcaggt 2820 |
tttaggaagt attcatgtat ttttctggtt actttctgtc atctctaatt ga |
#actcacct 2880 |
gatgaaggtt cagtgttctg gggccagaat ttatgatttt agatcacctt ct |
#ttggaacc 2940 |
ttagatcact gtgttttgaa atcatgagtt tgcttttaac ttcatagggt ca |
#actttaaa 3000 |
atgatatgca ctgttaattt taaagcattt gctgcagata attaaactta ga |
#agtgcctt 3060 |
tgactttagg atacaaatat tacagaagaa aatataattt cactttttaa aa |
#ttggggtg 3120 |
ggaaaatccc attgcatatt tgaaataggc ttttcatact aagcttcata gc |
#caggagtc 3180 |
cccagagtct tgttcctctg aaagccactg gggagtggcc tctggggtgc tg |
#attccaca 3240 |
gaggtgtatg ctgtagacag gagagtgcca tctatgccaa aactcgccct ca |
#aaaacaaa 3300 |
caaggcttgc tgggaggcgt gctgggcttg gccatcagta tttccagtgt gg |
#taaactat 3360 |
tgctggcact tccccctgga aataactaat gaggttacga gttgggcacc tg |
#cacagatg 3420 |
tccttctctc atagttccta atgcttagga atagaggaga aataaaaaaa tg |
#gattctct 3480 |
caaaacactg ccatttgaat agcgacagaa gtgctccccc agcccccaac tt |
#tggacagc 3540 |
aaagttgagg agaatgagca gacacagttg tttgcttgat ctgaatctct ct |
#aaagtaaa 3600 |
gtatttccaa actgtgtgac aagagcctac ctaccactgt agcggtcaaa gc |
#tgaagctt 3660 |
cttacagcag tgaaacgggg caccacctcc cccacactcc tcattccccg ct |
#taaaacat 3720 |
ggatactttc aaatttgact gtttcttaaa ctgccatcct aagatatgga aa |
#atttttat 3780 |
agtaaagtgt ctagttagct tatttccttt tctaaaacaa gtgttttcaa ga |
#taactgta 3840 |
ttttaccttt atatgtactg aatagctgtt tctttttgaa ttatttgcct tt |
#taaaattt 3900 |
gataatgtct ctggatataa caggacagga gttcttaaaa aatatcttaa ga |
#aattcact 3960 |
ttatgggtaa acccaaggtt tttgccaact tgttgcctag aaaataaggg ct |
#agtttcag 4020 |
tttatacaaa tagaattatt aaacatttta cagtccttga ttagaaacca ga |
#cccaatct 4080 |
ccttataaca ccacagcgta tcctgccatt gacagtgtaa tcacaattct cc |
#ctttttca 4140 |
tttagctgct tttttattat tactaaatgt tttggattga gcatttttcc ct |
#ctgtaatt 4200 |
ttcttccttc acgtttattt tattttaact cttgtagtat tttattgttg tt |
#aatttaca 4260 |
agtttaaaaa tattaggtac tattaataat ggttaaaaat agaaaaatgc at |
#atttttgt 4320 |
atgataatca aatgtaaaat acttttattt ttgctggaca gttgttatat ca |
#tgattatt 4380 |
gtgctacagt ttattgtgca taatatgaaa aacaactatg acagccttca gt |
#cgggccag 4440 |
ggtgaagctg cttatacc |
# |
# |
#4458 |
<210> SEQ ID NO 2 |
<211> LENGTH: 777 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 2 |
Met Phe Ser Leu Lys Pro Pro Lys Pro Thr Ph |
#e Arg Ser Tyr Leu Leu |
1 5 |
# 10 |
# 15 |
Pro Pro Pro Gln Thr Asp Asp Lys Ile Asn Se |
#r Glu Pro Lys Ile Lys |
20 |
# 25 |
# 30 |
Lys Leu Glu Pro Val Leu Leu Pro Gly Glu Il |
#e Val Val Asn Glu Val |
35 |
# 40 |
# 45 |
Asn Phe Val Arg Lys Cys Ile Ala Thr Asp Th |
#r Ser Gln Tyr Asp Leu |
50 |
# 55 |
# 60 |
Trp Gly Lys Leu Ile Cys Ser Asn Phe Lys Il |
#e Ser Phe Ile Thr Asp |
65 |
#70 |
#75 |
#80 |
Asp Pro Met Pro Leu Gln Lys Phe His Tyr Ar |
#g Asn Leu Leu Leu Gly |
85 |
# 90 |
# 95 |
Glu His Asp Val Pro Leu Thr Cys Ile Glu Gl |
#n Ile Val Thr Val Asn |
100 |
# 105 |
# 110 |
Asp His Lys Arg Lys Gln Lys Val Leu Gly Pr |
#o Asn Gln Lys Leu Lys |
115 |
# 120 |
# 125 |
Phe Asn Pro Thr Glu Leu Ile Ile Tyr Cys Ly |
#s Asp Phe Arg Ile Val |
130 |
# 135 |
# 140 |
Arg Phe Arg Phe Asp Glu Ser Gly Pro Glu Se |
#r Ala Lys Lys Val Cys |
145 1 |
#50 1 |
#55 1 |
#60 |
Leu Ala Ile Ala His Tyr Ser Gln Pro Thr As |
#p Leu Gln Leu Leu Phe |
165 |
# 170 |
# 175 |
Ala Phe Glu Tyr Val Gly Lys Lys Tyr His As |
#n Ser Ala Asn Lys Ile |
180 |
# 185 |
# 190 |
Asn Gly Ile Pro Ser Gly Asp Gly Gly Gly Gl |
#y Gly Gly Gly Gly Asn |
195 |
# 200 |
# 205 |
Gly Ala Gly Gly Gly Ser Ser Gln Lys Thr Pr |
#o Leu Phe Glu Thr Tyr |
210 |
# 215 |
# 220 |
Ser Asp Trp Asp Arg Glu Ile Lys Arg Thr Gl |
#y Ala Ser Gly Trp Arg |
225 2 |
#30 2 |
#35 2 |
#40 |
Val Cys Ser Ile Asn Glu Gly Tyr Met Ile Se |
#r Thr Cys Leu Pro Glu |
245 |
# 250 |
# 255 |
Tyr Ile Val Val Pro Ser Ser Leu Ala Asp Gl |
#n Asp Leu Lys Ile Phe |
260 |
# 265 |
# 270 |
Ser His Ser Phe Val Gly Arg Arg Met Pro Le |
#u Trp Cys Trp Ser His |
275 |
# 280 |
# 285 |
Ser Asn Gly Ser Ala Leu Val Arg Met Ala Le |
#u Ile Lys Asp Val Leu |
290 |
# 295 |
# 300 |
Gln Gln Arg Lys Ile Asp Gln Arg Ile Cys As |
#n Ala Ile Thr Lys Ser |
305 3 |
#10 3 |
#15 3 |
#20 |
His Pro Gln Arg Ser Asp Val Tyr Lys Ser As |
#p Leu Asp Lys Thr Leu |
325 |
# 330 |
# 335 |
Pro Asn Ile Gln Glu Val Gln Ala Ala Phe Va |
#l Lys Leu Lys Gln Leu |
340 |
# 345 |
# 350 |
Cys Val Asn Glu Pro Phe Glu Glu Thr Glu Gl |
#u Lys Trp Leu Ser Ser |
355 |
# 360 |
# 365 |
Leu Glu Asn Thr Arg Trp Leu Glu Tyr Val Ar |
#g Ala Phe Leu Lys His |
370 |
# 375 |
# 380 |
Ser Ala Glu Leu Val Tyr Met Leu Glu Ser Ly |
#s His Leu Ser Val Val |
385 3 |
#90 3 |
#95 4 |
#00 |
Leu Gln Glu Glu Glu Gly Arg Asp Leu Ser Cy |
#s Cys Val Ala Ser Leu |
405 |
# 410 |
# 415 |
Val Gln Val Met Leu Asp Pro Tyr Phe Arg Th |
#r Ile Thr Gly Phe Gln |
420 |
# 425 |
# 430 |
Ser Leu Ile Gln Lys Glu Trp Val Met Ala Gl |
#y Tyr Gln Phe Leu Asp |
435 |
# 440 |
# 445 |
Arg Cys Asn His Leu Lys Arg Ser Glu Lys Gl |
#u Ser Pro Leu Phe Leu |
450 |
# 455 |
# 460 |
Leu Phe Leu Asp Ala Thr Trp Gln Leu Leu Gl |
#u Gln Tyr Pro Ala Ala |
465 4 |
#70 4 |
#75 4 |
#80 |
Phe Glu Phe Ser Glu Thr Tyr Leu Ala Val Le |
#u Tyr Asp Ser Thr Arg |
485 |
# 490 |
# 495 |
Ile Ser Leu Phe Gly Thr Phe Leu Phe Asn Se |
#r Pro His Gln Arg Val |
500 |
# 505 |
# 510 |
Lys Gln Ser Thr Glu Phe Ala Ile Ser Lys As |
#n Ile Gln Leu Gly Asp |
515 |
# 520 |
# 525 |
Glu Lys Gly Leu Lys Phe Pro Ser Val Trp As |
#p Trp Ser Leu Gln Phe |
530 |
# 535 |
# 540 |
Thr Ala Lys Asp Arg Thr Leu Phe His Asn Pr |
#o Phe Tyr Ile Gly Lys |
545 5 |
#50 5 |
#55 5 |
#60 |
Ser Thr Pro Cys Ile Gln Asn Gly Ser Val Ly |
#s Ser Phe Lys Arg Thr |
565 |
# 570 |
# 575 |
Lys Lys Ser Tyr Ser Ser Thr Leu Arg Gly Me |
#t Pro Ser Ala Leu Lys |
580 |
# 585 |
# 590 |
Asn Gly Ile Ile Ser Asp Gln Glu Leu Leu Pr |
#o Arg Arg Asn Ser Leu |
595 |
# 600 |
# 605 |
Ile Leu Lys Pro Lys Pro Asp Pro Ala Gln Gl |
#n Thr Asp Ser Gln Asn |
610 |
# 615 |
# 620 |
Ser Asp Thr Glu Gln Tyr Phe Arg Glu Trp Ph |
#e Ser Lys Pro Ala Asn |
625 6 |
#30 6 |
#35 6 |
#40 |
Leu His Gly Val Ile Leu Pro Arg Val Ser Gl |
#y Thr His Ile Lys Leu |
645 |
# 650 |
# 655 |
Trp Lys Leu Cys Tyr Phe Arg Trp Val Pro Gl |
#u Ala Gln Ile Ser Leu |
660 |
# 665 |
# 670 |
Gly Gly Ser Ile Thr Ala Phe His Lys Leu Se |
#r Leu Leu Ala Asp Glu |
675 |
# 680 |
# 685 |
Val Asp Val Leu Ser Arg Met Leu Arg Gln Gl |
#n Arg Ser Gly Pro Leu |
690 |
# 695 |
# 700 |
Glu Ala Cys Tyr Gly Glu Leu Gly Gln Ser Ar |
#g Met Tyr Phe Asn Ala |
705 7 |
#10 7 |
#15 7 |
#20 |
Ser Gly Pro His His Thr Asp Thr Ser Gly Th |
#r Pro Glu Phe Leu Ser |
725 |
# 730 |
# 735 |
Ser Ser Phe Pro Phe Ser Pro Val Gly Asn Le |
#u Cys Arg Arg Ser Ile |
740 |
# 745 |
# 750 |
Leu Gly Thr Pro Leu Ser Lys Phe Leu Ser Gl |
#y Ala Lys Ile Trp Leu |
755 |
# 760 |
# 765 |
Ser Thr Glu Thr Leu Ala Asn Glu Asp |
770 |
# 775 |
<210> SEQ ID NO 3 |
<211> LENGTH: 83450 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<222> LOCATION: (1)...(83450) |
<223> OTHER INFORMATION: n = A,T,C or G |
<400> SEQUENCE: 3 |
aaaaacagaa aaatgggtga agcaggacaa aacagtgaca ttagagccaa aa |
#gcaggggg 60 |
taggcaataa caccaaacat acagcgtagt caagggcatc agggtctgag aa |
#gaggttat 120 |
aaaactagtt ctacggactg aattgtgttc ctccaaaatg ctaatgttga aa |
#ccctaacc 180 |
cctggtatgg ctacatttgg agattttagg aggtaattaa agttaaataa gg |
#tagtaaga 240 |
gtggggctct aatctgatag gattagcgtc cttacaagaa gagacatcaa ga |
#gatcccag 300 |
agagcatgtt atataccctc cccgcactgt gtgaggacat ggtgagatgg ca |
#gccatctg 360 |
caaatccggc agagagccct cacctgtctg cctgccacaa gttaggcaga tc |
#cctacctt 420 |
gccaacacct ggatcttgga cttcctatac tccagaattg tgagaaatta at |
#gtctgctc 480 |
tttaagccat caacctgtgg tattttgtta tggcagcctg agcagactaa ta |
#caaccaga 540 |
tatttgggaa atgccataaa atttagtgtt aagacaataa taaatgctgg aa |
#atagagtt 600 |
tttccacttt tcagttgtat ggtcacatat tagaattgca gatcctaaga aa |
#acctgtac 660 |
agaaaaaccc aaatcacaga gtcatttaag tgtaaagaaa aagccaatta tt |
#gcttaaag 720 |
agtatttgta gaaaatatcc gttgaatata gaggaataac agcatattca ta |
#aaaatttt 780 |
ttaaaaagtg tgcacgacag tgattttaac acttctaatc caatggaact aa |
#cattttaa 840 |
agtacaatta tggccaggca cggtgcctca tgcccatagt cccggctact tg |
#agaggcta 900 |
aggcacgtgg atcacttgag cccaggaggt ggaggcagca gtgagccctg at |
#catgccac 960 |
tgcacttcag cccaggtgat ggtgtgagac cctgactcta aaaaatacaa tt |
#atggttac 1020 |
ggttcttggg cagagtggaa ttcaaacagg ttaacctgaa agatcagtag gg |
#ttctaaat 1080 |
ccaggataaa ttattttcag aaaaagaata actttttgaa tctttattta aa |
#ttgttaaa 1140 |
tgttcctgtg agtaacactc atcagcgtga ttgtgactgg tatggctgca tg |
#gaagcttc 1200 |
cctgtggcat taatcataaa atgctggatt ggggtttgat tcttcaaggt at |
#aagaagga 1260 |
cctagtctca agtaatagat tcaccaaaat gtaacaccac tagccccctc cc |
#accaaaat 1320 |
ctgctccagt cagaattacc gtaagagctc agaagtgacc tgtgcttggc gg |
#caccggcc 1380 |
cactttccca gtgccggttc ctcgcatcct gggcgcagac ggggtgaccg cc |
#tgacccct 1440 |
ggacccgagt cacctttccc tgccctgagc tcctccttga gagcttcaaa ac |
#aatgctcg 1500 |
cccaggccgg agggcgaagt cggcccatgt gtaagtcaag ggaactgtcc ca |
#ggactgca 1560 |
gcccggccag aagacgcccc gcgccgccgt cccaggcagc caccgctgcc gc |
#catggccc 1620 |
ccgcaggccg ccgtaggccc ccgcgggccg cctgacccct gcgggccgcc gt |
#agaaggac 1680 |
cctccagagg ccgcgctctt gagatggccg tcgggctccg ctccccgcgg gg |
#ccccggct 1740 |
gagggcccgc cagcgggcac ctggcgccac cgctgcgttc cggcactagc ac |
#gggacacg 1800 |
gtcagggagc ggcgggccgc ggccttgcgc gcgccgtctc tcggggcggg gc |
#accgggcc 1860 |
ccttccgggg atgggccccg gcgcccgcgt cggcctggct gtgcccggcc cc |
#tccccgct 1920 |
cgggcgggcg ctgcgccgta tccccgcccg tcagtccgcc cggctcggct gg |
#ccgcagaa 1980 |
agggcctggg cggccgcact gagagcttta cgcccggagg cgtcggcgct gc |
#cactggcc 2040 |
cgcgacggga acggggcgaa aaggcggcgg caccatgttc tccctcaagc cg |
#cccaaacc 2100 |
caccttcagg tcctacctcc tgccaccgcc ccaggtaaac aacccctccc cg |
#cgagcgcc 2160 |
cgactctcct ctgcgcttcc gtggagcctc caggccgacc cccgggaact gg |
#aggacccc 2220 |
aggaggctgc gcgcgtctcc ctgcccacag cagcgcggct gcctgattcc cg |
#gcgccgcg 2280 |
aaatgcgcct tctcgggagc ccccactggc tcggcgaaaa cttgtaaaac tc |
#ttctgcag 2340 |
ccattctctg cccgaagttc tgtcgtccgt agttttgcgg agtgttgagg cc |
#caggggag 2400 |
ccttgggagc tggggttttc tttagtttcc aacccatcga ccctccctcc ta |
#tgaccgcc 2460 |
agcatgattg cagcgcttgg ggtcactggt cgaggcggtt acccgtctgt ca |
#taaatgtg 2520 |
aacacctgga agcgacactg gcagtttaaa cattttttat tattaggctt cc |
#aagtcgat 2580 |
aatgagcaga tcttaaaaac agctcagtta atatgcgaaa gaatttaaat gg |
#ggggctgt 2640 |
gtgtctttcg catgtgtcat cacttagaaa acaacatttg ctgtagcatt tt |
#acggaggg 2700 |
tggggggatt gagattttga tttattttgc taatgtattt cagactgacg at |
#aagatcaa 2760 |
ttcggaaccg aagattaaaa aactggagcc agtccttttg ccaggtaaac at |
#tagttagg 2820 |
attctaacag atactttagc aacgtatttt ggtttaagat tattctgccg ac |
#tagtatca 2880 |
tgtggttaac ttcccttctc tcattaaact ttctccagtt aaaagtctag tg |
#actgagag 2940 |
gagaaaaagg aactgtcaag aatgtcatta cctcatttcc ttttttgtct cc |
#cgaatttc 3000 |
tttttgaaaa gatgtatatg tttaattgct tgggtagtaa aagtactctt tg |
#ctgacgtg 3060 |
tttgccactt attgcattaa tgattaatca ttttaatgca ttttgatagt at |
#aaaaagac 3120 |
gcctttatta tgtgtgtgtc tctataccaa taacagagct tagtgaactt tg |
#aattactt 3180 |
gcttggcaat tgttttttga agttgtcagc tgtatttgca aatttgcttg tt |
#tcagttta 3240 |
gaaccaggct tttcccagca gagacactta attgacattt ggggccagat aa |
#ttcatagt 3300 |
tggacgggca ggctgtcctg tgtatagcaa caaagatggc ctccacccac ta |
#gatgccag 3360 |
tagtagtacc cttatccccc accacctagt tgcgacctag ttgccacacc aa |
#aatgccac 3420 |
cagtcattgc caattttttt ttgtccccta cctctggggg acaaaaatct ca |
#cagttgag 3480 |
aatcactgct ttagaacaaa atttgctata ggtgacctta gagatggaag ta |
#gggattgg 3540 |
tggtagaaag gggtttgttt tagagcatac agaatattgg tatggtattt tg |
#aattgtat 3600 |
aacaattgta taataattag gaaaagtcag ttgtttaatg cgattattag gg |
#gaagtagc 3660 |
cagatactta ggaaagcctg ttttaaacct gaaatcggcc gggcacggtg gc |
#tcatgcct 3720 |
gtaatcccag cactttggga ggccgaggcg ggtggatcac gtggtcaaga ga |
#ccgagacc 3780 |
atcctggcta acacggtgaa accccgtctc tactaaaaat acaaaaaaaa tt |
#agccaggc 3840 |
atggtggcgg gcgcctgtag tcccagctac tcgggaggct gaggcaggag aa |
#tggcatga 3900 |
actcgggagg cggagcttgc agtgagccga gatcctgcca ctgcagtcca gc |
#ctgggcgg 3960 |
cagagtgaga caccgtctca aaaaaaaaaa aaaacctgaa atcaaatact ag |
#tttgtgtg 4020 |
gctactatca gcattgtaaa atctgactca ttacttaaag ccaaatcggt aa |
#aataatta 4080 |
gaattttgta ggtaaaaatt gaacaaatgt ggaaacttta aaattttaaa ta |
#ttatatag 4140 |
ggacaaaata ttaaaaacac caaactttgg ttccatatga aagtttaaaa ag |
#tgtttttt 4200 |
aaactttact atgggagtca taaatatttt cccttgattt tgttagtgct tt |
#tcactcaa 4260 |
cagtgtgtac taattaatca tttgtacttt tcctcagagt gaacagtaga at |
#tactaagt 4320 |
aacccttgct ccctgtgtgc tctgttttag tcttagtcac tctgagcatt ta |
#aaatgcag 4380 |
ggacgaggaa acagtactca tcttgaatga gtgcctatga gctattgaac tt |
#tgacttcg 4440 |
tttactctga acaggcctgg ttcttaggct ttgattcctc cactctgcat ac |
#tatgattt 4500 |
cacactcaga aacaacatgg tcttagctgt aaatgtcagt gcttgctttt ta |
#atttttta 4560 |
aaattttttt taaatttttt tttttttttt tttgagacag agtctcactc tt |
#acttgggc 4620 |
tggagtgcag tggcgtgatc tcggctcact gcaacctctg cctcccaggt tc |
#aagcgatt 4680 |
ctcctgcctc tgtctcccaa gtagctggga ttacaggagc ccaccaccac ac |
#ctggctaa 4740 |
tttttcgtat ttttagtaga aatggggttt ctccatgttg gccaggctgg tc |
#ttgaactc 4800 |
ctgccctcag gtgatccgcc cgccttggcc tcccaaagtg ctgggattac ag |
#gcgtgagc 4860 |
cactggcgcc tggccacttt tttaaaatta gcttttaaat ttaagatatg tg |
#ctaagaaa 4920 |
aggtgttact aagtatgcat aaacttgaag aactttctca ctgagggtta tc |
#aattctat 4980 |
aaaatggcta aaagtcagag ttttctgggg aagttgtaaa ccaagtttct ga |
#ctgtgctt 5040 |
ttcttgtccc agaaatggca gctaaattcc gtattatttt tagagaaatt ct |
#aaaagagc 5100 |
tgtaacacta agtctgaacc ttttagttgc ccattaagga attctctgac ct |
#gtgttaat 5160 |
ttttattgca ttggcggcca aatcatagct gaaatctgta catgcataca tg |
#acggctct 5220 |
atcacccagc attctgtttg tacctgactt atccttaccc aacatttagc cg |
#gtcctgaa 5280 |
ttaggatgtc ttttgccccc ttcctctccc cttctgttct taccctctca tt |
#ctggcctt 5340 |
cctgcaccca tcctggctgt gttctgtctg gctgccctgt tgtggtctct gt |
#ttcctgct 5400 |
ttacctcgcc tgtcacatct ctcactgcta ccatttgctc tttgttggcc tg |
#tagcctac 5460 |
tgctctaccc atgaaatctg gaagacaagt ggaaagttac cgaactattg gt |
#gatctaaa 5520 |
gacctagact aggctagagc ttttactaag agggagtgaa taatatagtt ct |
#tgcctttg 5580 |
tgactatcag aatcaataga aaacctggcc acatcacnnn nnnnnnnnnn nn |
#nnnnnnnn 5640 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 5700 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 5760 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 5820 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnntgttggg ggtgggggat ga |
#gggaaggg 5880 |
agagcattag gacaaatacc taatgcgtgc ggggcttgaa attcccggcg tc |
#atccctaa 5940 |
agacggggtt gatgggtgca gcaaaccagc atggcacgta tatacctatg ta |
#acaaacct 6000 |
gcacattctg cacatgtatc ccagaactta aaaaaaaaaa taaaaaaaga at |
#taattgtt 6060 |
agagatatgg tattgcatgc tttgctttgg cataatgcct tgggtccaag gg |
#tatcctac 6120 |
ttcagttgcc caaagtttga acttctaatt caataagcag atgaaaatta ga |
#acacaaaa 6180 |
tgagttgttt atttgtgtgc tgtcaccatg tgcactgttg gaacttaagc ct |
#aatttcaa 6240 |
aatgatcctc atcttttatt aagtaaagaa aacagaagaa aatgactagt aa |
#tttaattt 6300 |
agattgtggt ttatgttagt aattttcagc tttcctgata catgaaactc tg |
#agatgggt 6360 |
attgtgccta cttcaacttt gtggtcttga tgtctcacaa agtgccagga at |
#gtggtaga 6420 |
cactgagatg tttactgagg gactgaacga aaggacctct cagaccacct gg |
#cttaaact 6480 |
gttaccttac ccaggcacac acacagacta actttcagat ttaggagtaa ag |
#ggaagact 6540 |
gtgttatttt atgccagaca tttcaagaga tttatgtcgg agcctggaat tg |
#aaatagag 6600 |
tactctgtca aagtagtcag cttttgtgta ggctttctct ttatcttcct ct |
#cattatgt 6660 |
gaatttcatt ctttcagtga ttatattgta tatgtgtaaa atcactccaa ta |
#cttgaaaa 6720 |
ctgagtttga cttttaaagt gtgtgtgtgt atatatgttt gtgttccagt at |
#atatttgt 6780 |
taagagcatg taatgccaga ctctgtcctg tttagctgct ggactggtgg at |
#cggttcgg 6840 |
tgaggatgtg agtatctcct gggtgccagg tctgtcctgg atagcgagaa tg |
#ctggaggt 6900 |
gtcatgtgcc tgtatcgcag aaaggcgtgg ggtgagccct aagctgcctg tt |
#gacaaggt 6960 |
agaagactgt gacctggatc actggtaccc agattccagc cagggcctgg ta |
#tcagattt 7020 |
ggatgaagtt tttaccagcc cttggtcaaa gtgagaaaat taagaaaagt gc |
#agttttct 7080 |
ttaataaaga taaatttatt tgatttaaaa gattgtcttt tattctgaga tt |
#atgttctt 7140 |
ctaacttact tggaatagat actttttttg ttaaatgttg gtgataatag ct |
#gtagcttt 7200 |
aaaaaagttt ttaagttaac aaaattaaaa agttaaaaac tctttattgg tc |
#ctttaaat 7260 |
tagttttgca ctatacctgg tttggaatct aaactagaac ctactagatg ag |
#attattat 7320 |
aatactatag atacaatttt gtgagcactc acacagagaa cattaattat tt |
#tgtctgcc 7380 |
taggagtact gccatttttt tgtttgtgtt ttgagacagg gtctcgctct gt |
#cacccagt 7440 |
ttggactgta gtggtgtgat cacggcttac tgcagcttca acctcctggg ct |
#cgagtgat 7500 |
cctcacagct cagcctccca agtagctagg actacagacg tgcgccacca ca |
#cctggcta 7560 |
atttttgtat tttttgtgga gatggggtcc aactatattg cccaggctgg tt |
#tcgaactc 7620 |
ctgggctcaa gcaattggct caccttggcc tcccaaagtg ttgggattat ag |
#ccgtgagc 7680 |
caccacaccc agcccccttc caccatcctc tgaaaaatgc atcctccctc tt |
#ttgacaaa 7740 |
ttatcctttc ctgactaact ccacccaacc ttgggttcca gtgtggccag ca |
#aggttaat 7800 |
aacccaccct ggactgcaag catgaacaca ggtctgcctc tggatgttgt ta |
#ggttggta 7860 |
ctaagggaag aggtcctctt tggtaatgct gcaagtggcc acagttccag aa |
#gaatctgt 7920 |
tgaaaagagt gaagaacccc aaggaagtgc actaatgtgt gttgaagtcc ct |
#gggtttca 7980 |
ttgtccttgc aggccaggtg acacaaaagc cttgtattct tctttttgct aa |
#gctattac 8040 |
caggcatgtt tctgaacata ctttgaacga ggatccttaa ctaatatagc tt |
#gcagatta 8100 |
atcatcataa cagtcttgtc agctaggata ccagtttatc tccatttgac ag |
#atgtgaaa 8160 |
actatagttt gctgaggtta agtaacttgc ccagtgtcac acagctagca ag |
#gcagagcc 8220 |
agagttctct gtccagctcc caggctgtgc cactaactgc taagtagcac gg |
#cccacctg 8280 |
gctgcactgg tgacactagg gtacagattt atgctttgga actgttgggg ag |
#tagattgg 8340 |
atgtcagcct agagggagtt ctctagtgaa gtaaaaagag ctctgtcctt gt |
#ctttgccc 8400 |
ttttcacaac agtgacagat tttgacccag cgtgcagaag aactttcaga ga |
#atttcagc 8460 |
tgccagaaaa tggaatgtct tagggaggta gtggacttcc tgttgctggc tg |
#tgccgaag 8520 |
cacagtctgg tgaaatgcca gcagctttgt attgaggatg taagatttgc ag |
#tgagtggg 8580 |
gcttgatggc ctttgctctc ttctcacccc agggcatgct cttttttaag gg |
#agaagagt 8640 |
tgaaatgcca agactaacga taatgaattt gttctgcagg tattgagtgt gt |
#gcttgatg 8700 |
cagtttggca gaagggtaaa atgctgagga gatgggatcc tgttcttaga ca |
#gtttcagt 8760 |
tcactggaga gatgcttcag tagaggagag aaaaagtagt aagagctcag ag |
#gaaggtca 8820 |
cctaagccag atttggagta gggcaggggt gtcaagaaag atctctggaa ac |
#aaatgctt 8880 |
gtgctctgaa tcttgagtgc ccgttgagcc tgggcccctg tgctgaggct gt |
#gcgtcagc 8940 |
tcagttcttt cccctgttcg catctacagt gctcacagca ctttcattct tg |
#agattaac 9000 |
tattagataa tgaatgcagt gattgtcaga gtcttttgta atcggatcag aa |
#aagcatac 9060 |
aaccatgggc catctgggaa atgaaaatag ccattgttgt atagatgtct tg |
#tttatttt 9120 |
ttacaagctc actggcccgt actgttcttg ttttctgtct caccatacgt ct |
#tatttcct 9180 |
cagttgggtt gttaattcct taaaggcaaa gactttatct ttcaagtgtt tt |
#atgtaatt 9240 |
cctttttgta ggtaggcttc ataaatgatt gtagactgat ttttgtagta tt |
#ttaatttg 9300 |
tgaatgcatt gtttttgaaa gaccaaagga cttgtaacac accctcagaa ca |
#gtgaacag 9360 |
tgtaactgta ctatcttagc attagcttta taccttaccc gtagagcctt ag |
#gaatgttt 9420 |
ggagctgtcc attccttagg cttttgctgc agtaccttag gccagcattt tc |
#ttacccct 9480 |
ccaaactact cactatcgtt gtcaacaccg ttcatgaacc tccataaata aa |
#atcctact 9540 |
taagcaggat aaaatccaaa ttctttaacc ttgtaatttg ctaacactgt ac |
#ctcactga 9600 |
cttcatttct cagtatttcc caatattgat atttgcttca atcatgccgc tt |
#ccttggtc 9660 |
tcttccagat gccttattcc ttatttagga ccttgttact gttattatca ca |
#cattctct 9720 |
actatctcaa tgctcttctt ccttcaagat ttcattctac aatttttcct ga |
#gatcggca 9780 |
ctataccctt cctcctgccc catcctatcc tgagtgctac tcactggact tg |
#gtacttgc 9840 |
ttttttacat tgtgtgttag taccagcatt aaagatttgt gtttatcttc ca |
#catagttt 9900 |
caatttcctg tgataacttt tgagccactt taattcctga atttacctaa ag |
#ctagggtg 9960 |
accagcttgt cccagtttgc ttgagactgt cctggtttta gtgctaaaaa ta |
#ccacatcc 10020 |
cagggaaacc cctctgtccc agacaaactg gggcagtcac cctactgtta aa |
#agcccaag 10080 |
ttaagttatg cttttggcct ctacacatcc cacaggttaa ttagccacgt gt |
#gccgtgag 10140 |
actttgcctt aaactgtgtt ccaacctaaa atgtatggga aacattattt ct |
#gtccatca 10200 |
aacgtgatga atttctaaat gtataaggtg ttaggaaaga taatacaaca tg |
#gttttgag 10260 |
gtcctcaggg agttaaaaac tttcctagcc atatcatttg gaggtttatt aa |
#ctgtaatt 10320 |
gcatttccct tcttatttat atttacagat gaaagggtct tgagaaaata aa |
#cttggatt 10380 |
tcttgatttc ttcccaggtg ttagtagaaa cctttggctc atcatcctct aa |
#tttagaag 10440 |
gtttttgctt accgcacact gaagctaatt tcctgctttt tctggcttca tg |
#aggcttcc 10500 |
ttgtggcatc ctgggaagtg cttggtgctg taaatggtcc caccgtggct ga |
#tggcatag 10560 |
cacagagctg ggagagagga gtctggtggg ttctcacaag caggccagcc ag |
#ccgtctct 10620 |
agcacaccac ccttttactg cataaaaagc acaggcgtat agtctccctg aa |
#aacttcag 10680 |
atcctctaga gctttgaagc ttttattcgg agttttctct tcaaggtcac tt |
#aatttaac 10740 |
atgtgaacaa gagcagtctc agtaccttct ttttatatat cctatctggg aa |
#gaggccac 10800 |
tttgtgtctt ctttttcttc cctgtgtata agctagtttt ctggcccaca gt |
#gtttcagt 10860 |
gcatggcagg agcttatgac agctcctctt cagcattcct tttttttaaa at |
#tatgaaca 10920 |
aatgacttac gtgagcagac agctgtgcta catgatccaa atattttaaa ga |
#ctggttct 10980 |
gcatgaacaa aatttagcat tatcaaataa aactcatgtc actaactcga ca |
#cttaatta 11040 |
ttgtaatagg aagacccaat tgtagcatat cctcagaagt gcccttcttt tc |
#tttcttct 11100 |
tcccctgtat ccctctgtac ttctgttctt tgctctcttc caagggctca tt |
#tccattct 11160 |
gtaagaaaag gctgtgtggc gcttaaaaga ccctggccca gagagtcctt ct |
#ttcacttt 11220 |
ttttttcttt tttctttttt ttggctgttg ttaatgttgt gtctcttgtt ta |
#ttttcttc 11280 |
tttagtagtt ttattttgga atgaatttga atttgtaaga gttgtacaaa ag |
#aggataga 11340 |
gttaatgtga actcttcagc cagcttccgc taatgttaat agcttatgta ac |
#cttggtga 11400 |
atttagctca actgagaaac caacaatact attagctaaa ctgcaggttt ta |
#ttcgtatt 11460 |
tccctagttt ttccacaaat gttctttacc tgtttcaggt tcacatccag ga |
#tactacat 11520 |
agcatttagt tgtcgtgtct ccttattctc aatgtctcag tctgtgacag ct |
#ttttcatc 11580 |
tcatctttca agaccttgac gtgttttttt ctattgaatt tgattttctt tt |
#ttttcttt 11640 |
ttcttttctt tttttttttg agatggagtc ttgttctgtc acccaggctg ga |
#gtgcagtg 11700 |
gcgtgatctc cgctcaccgc aacctccagc tcccgagttt gagcgattct cc |
#tgcctcag 11760 |
cctgttgagt agctgggagt acaggtgcgc accaccaggc ccagctaatt tt |
#ttgtgttt 11820 |
ttagtagaga cggggtttta ccatgttggc caggctggtt tcgaactcct ga |
#cctcaagt 11880 |
gatctgcctg cctcagcctc ccaaagtgct aagattacag gcatgagaat ga |
#gattttta 11940 |
ttttgcctca aataatacat attaaagctc tttaaacata gaaatatact ac |
#tacaaaag 12000 |
gaaaaatttt ataattacta gatttctgtt ctaacaaacc accccctaga aa |
#cgtcatca 12060 |
aattgactta aaaatgtaga cgtaatttca gacttagaga aaagttgcaa at |
#aacagaag 12120 |
aatctgtgga taccctttcc ttagattccc caataaaacc ttgacgcttt gg |
#aagattat 12180 |
tattcaggta gtgtcttgta gtatgcctct tggtttggat ttgtccgatg tt |
#ttcttttg 12240 |
attaagcaga ggttatggat tttgggaaag acccacagag gtggtatcct tt |
#gcccttgt 12300 |
gtcatgtgag caggcacaag acatcaacat gattggttat tggtgaggtt aa |
#cctcgatc 12360 |
acttcaggtt aaagtgatat ctgtcaggtt tctcctctag aaagtgactg tt |
#tttccttt 12420 |
tctgtactgt ttgttagaaa caaatcacta agtgcagccc acattcaagg ga |
#ttgggaat 12480 |
taagctccac ttcctggaga gaggagaatc acgaatttat gggcatacct ta |
#aaactacc 12540 |
acagtaatta gtcaatactt ttgggaagat agctttgtgc ttatacaaat aa |
#cctgtttc 12600 |
tccttaaagt ttggctctct gaatttagca ttcatcaatg catgttgcac ac |
#agcagtca 12660 |
ttcagtctat gacattgagt ccatgatagt ttcttgatct ttactgtaat gt |
#tctaatca 12720 |
tgattttgtt tccttattcc tcctacattt attaattgga attcttctgt ga |
#ggaagatt 12780 |
tgtctcttct ccgccattta tttatttatt attcagtcat ctgttgacaa ca |
#gtatggat 12840 |
tcacagatac tttttaattt actttctaat ccggcatttt tgttatttct tt |
#tgttgctc 12900 |
agattgttcc agctttggcc attgagagtt atttcatctt ggctcttgta tc |
#ctttggaa 12960 |
atgccgtccc cccgcttttc ttcaccccca cttccatatt ttctggtatt ct |
#ggcattac 13020 |
cagaggctac agactcatct tctgtttccc ctgccccagc cttggaatca gc |
#catttctc 13080 |
taaagagccc tagttctttt tattggaaaa tggtatttta aaagcaagag ct |
#gggtactg 13140 |
agtgtgtatg ttgttgctgg agcgtcactg cttttagcac tttcagaggg ca |
#gagctaga 13200 |
aaacatacac acatgtacca acccaggtgt acacacatct gttactgcat gt |
#ctatttgt 13260 |
atatttatta aggcaagcat aagttcattc tgctatctca aactcttaat ct |
#agcccctc 13320 |
ggggttcatt tccaaattct tgcttttgct ttttgttgat ggagtatggg ca |
#gtacagca 13380 |
gttaaacctg gtttccatat ttactttctg ctgagtgctg tagctcattg gt |
#gagaaagg 13440 |
gatcttttga cttgacttgc atggacacat tctagtagga aggttgtctg tc |
#ctcatcac 13500 |
tcctgtgagt ggtcctctag agctctttga aatggctaca acattgcaga tc |
#aaaaacac 13560 |
ctgcttttca ggtgcttcac ttctcacctt tcagatggga catgcccagt tg |
#tgtcttct 13620 |
aaaccttgtt tcagataatt ttaagagttg tcgcttcagt aactatctct aa |
#cacaggga 13680 |
tcagcaaacc ttttctgtga agtgcagtaa atattttagg ctttgcggac ca |
#taaggtat 13740 |
ttgtttcaag tactcagctc tgtctttgtc ctgtgaaagc agccatagat gg |
#cacatgaa 13800 |
caaatgagta tggctatgtc ttactaaaat ttcatttaca aaaacaaggt tt |
#tgtatttg 13860 |
gcccgtgggc catggtttac catccgttgg acccattaag tatattctcc tc |
#ctcttctt 13920 |
tgtctcattc tcactgcgtt cataggcttg atacgttaac attcgtgcat ca |
#gtaaaaga 13980 |
atctggcttc tagagaagaa gggctgtcca tgggcgtttg actcctaaat ac |
#agtttgtt 14040 |
tatggtacta gtgtggccac aaggctctgc cacacaagct ctgtctcttc ct |
#tcctgtta 14100 |
ttacttctgc ttcccttctc aggaacctga aatcatatgg tagtttgttt gt |
#ttaagtga 14160 |
tttttttttt tgagatggag tctagctctg ttgcccagtc tggagtgcac tg |
#caacctcc 14220 |
acctcctggg ttcaagcagt tctcctgcct cagcctccca agtagctggg gc |
#tacaggtg 14280 |
cgcaccacca cgcctggcgc accaccacgc ctggctaaat tttttttttt tt |
#taatagag 14340 |
atgggtttca ccatgttggc tcaggtggtc tcaaactgac ttcaggtgat cc |
#acccgcct 14400 |
cagccaaagt gttgggatta tagatgtgag ccaccacgcc cagcctttaa gt |
#gaattttt 14460 |
atttgagtat aacatgcata acaagtttgt gtggatcata agtcttagaa gt |
#ggatgaat 14520 |
ttttgtagca aggtttgaag agtctgtttt tagatgagtt tgctaaggtg gc |
#acagtatg 14580 |
tgatgattcc gtgtaaagaa gtcattgtta cagggctgtg tcctctatct ga |
#actggcat 14640 |
ggttagttta gttgtttaaa ttgagggcct gcttacaatt catatctaag at |
#ttactgga 14700 |
gaggagaaag ggttgagtat tcagtggccc agaatctgat atgggaattg gt |
#aaggttta 14760 |
tgttcaagga gccaaagaag atttaaattt tatgtatttg aattactcag tg |
#cgtctata 14820 |
tatatatata tttggtcatc ttaaattttt tttctcgtta gaattcagtt aa |
#ggccaata 14880 |
tttgaacttt aataagtttt ggtacttgct acactgcagt acatttaatt gt |
#atgtaatt 14940 |
atagggaaag actatgggaa ttgaagtcag aacacttggt tataagtgcg aa |
#gtccacta 15000 |
cttcttttta agatcttagg aaagtgattt aacctctttg ggtgcaaatc ct |
#ttatctgt 15060 |
gtattaagga aaccatctgc cttcctcacc ttacaggttg ttgaaagaat ca |
#gacaggac 15120 |
agatgtccta tttatagctc tttaatgcat atgtaggcaa gcagtggcag tt |
#ctgtgact 15180 |
cttctctaac ttacatatca tttacccaaa cagcccttat cttccagcca gc |
#ttggctgc 15240 |
ttagccatat tgaattacta gtttctctta tctagaacaa cttctgccca ac |
#tcatggtg 15300 |
gacagaacca agtgtcatga agtgatttta ttcattcttg cattcagcac tc |
#ttttcaca 15360 |
ggcacctacc ctgtgccaga cactgttcta ggcactaaca tttcagcagt ga |
#ataaagtc 15420 |
agtccatctt ctaccctcat ggagcatata atcctgaggg taatgcaggc at |
#taatttaa 15480 |
aaatatataa atataattgt agctatcatg agtgctggaa atacaatgct tc |
#gatatgtg 15540 |
aatgtaaact agataggaag atttttttaa agaggcattc cctagacagt gg |
#ttggacta 15600 |
aggtagaaga aaagaatatt ccatgaaatg ggaagaagca tggtcccatg ag |
#ggattaat 15660 |
aggccaccac tgtgggcaga gcagtgaggg tgaggaaggc tggtagctgg ct |
#gggtatgc 15720 |
agggctccca gccatgagag ggaggcttgt cttcaaagtg gaagttaact ca |
#agctgttg 15780 |
gcactgtgaa tttgacatga gcagatttta ggtaaatgtt aaggggcagt ta |
#ctaaaact 15840 |
agccttgtac atttttaaga acttcgaata aaagttattg cagctcaaat tt |
#gttataac 15900 |
ctatttgtta aagagaggat tgttttgaga ctatagttcc attcttcatg aa |
#ttggtagg 15960 |
agtttggagt ttgtcagcaa acattctatc gggctaaagg tttttataat ga |
#aagaaata 16020 |
ggcaaagtgg atcagtacac tcacttttct accattgacc ctggagacag at |
#ggcttaaa 16080 |
atgttctgcg tctagttgac ttttagatct tgaaattaag gtttaatgat ga |
#ccaagctt 16140 |
taaataaatt gtagaaaagt attctttcaa aagtacatta taacttttat at |
#tggtttct 16200 |
tatatttatt tcttttaatc ttttctttta actcaaacta cgttttaagg tt |
#ttgttgcc 16260 |
tactaagtta taatctgagt gcagaaggaa acttgatttg gctttatgga at |
#acatttta 16320 |
cattcagtga agctgagctc tgtttctcat tccttacaaa aggaatcaaa gg |
#cattggtt 16380 |
tgagagatca agtcatgtgt taataaaaca caaatattcc atcaagtaat ac |
#tctgaagg 16440 |
agcaggtgta gtttatttct tctccagaaa gtcttccagc agataaataa tg |
#agaggtag 16500 |
tatggcatag gaaaaaagta cactgaagtc agcctttctg gttcaaccag ct |
#cagacccc 16560 |
tgagctattt ttgcctcagt tttacgcctt ggagaacaat gccttgtcat ta |
#ctattcac 16620 |
tttatgacca tacagtgcct ggcacctggt gggcaattgg tgaatgtttt ca |
#ctatcctc 16680 |
atccttgccc tcatgaaaca ctccttctag gtcccacaaa gaccgttggt at |
#tttatgac 16740 |
aaagtacctt acaaatattt ttcttttttt aaaggagaaa ttgtcgtaaa tg |
#aagtcaat 16800 |
tttgtgagaa aatgcattgc aacagacaca agccagtacg atttgtgggg aa |
#agctgata 16860 |
tgcagtaact tcaaaatctc ctttattaca gatgacccaa tgccattaca gg |
#tgtgtttt 16920 |
attagtacac tgtttcattc tatcaggctt tcaactctaa gtggtacata tt |
#attatata 16980 |
aaacataggt atggaaaagt tatagtagaa gtattaggta atgcaatgtt tg |
#ggataaat 17040 |
tatattaaga tttaaagtaa agtttaagaa gaatgttgga acttgctaga gg |
#agtattag 17100 |
tgagaggatt gtaagtcacc ttgctttatt tatcctctgt gatcgttcat ta |
#tatgtcct 17160 |
tttcattaag gaagttattc cctctgttgc agatctttta acctgcttat aa |
#aaatgaca 17220 |
taaagagaaa aggttgtttg ctaaatgatt ttataaatgc cacacatttt ag |
#tgatttca 17280 |
taggtttttt tgttgttggg tttttgattt ttttgttttg agcctggatc tc |
#gctctgtc 17340 |
ttgtctccca ggctggagtg cagtggcatg atgtcggctc actgcaacct ct |
#gtctgctt 17400 |
cctgggctca agctatcctg ccacctcagc ctcctgagta gctgggacta ca |
#ggtgcatg 17460 |
ccaccactcc cggctaactg ttgtattttt ttgtagagat ggggttttgt ta |
#tgatgccc 17520 |
ggattggtct tgaacttctg agcccaagca atctgcctgc ctccccctcc ca |
#aagtgcca 17580 |
gagtacaggc cactgcaccc agctaccttt tttttttttt tttaaactaa tt |
#agagttat 17640 |
tttcctaaaa agttaaattc taatttctag gaagagtgaa gaatagtatc ga |
#tttaaaaa 17700 |
ttttcagtag ccctcttgct attttatgtt cttactggaa agtaatagtt cc |
#atgtaatt 17760 |
ttggttttta gaagttcagg cattcatttg attaacttaa aaaccctgga ct |
#tttctgtc 17820 |
agccattttg tattttgttt tataaagtat tatacacact tacccctaga tc |
#tttcttta 17880 |
tagtaattgt tctttaatga aatattggta tatgaactgt aaacttttaa at |
#ttaaggat 17940 |
ctaatagttt agtgtaagta tatttcatgt agtcactcac taatttacca ta |
#attattat 18000 |
actgtacaaa tatttattgt actgtatatt tgtgtgttca ttacagtctt at |
#gtaggtat 18060 |
atttagacta aatttaaggc acttaaagat acccactgtg tagggacagt ag |
#cttatttg 18120 |
gatataggct tgtgtgtttc tctttgtttt tagcttcata atgatcattg gc |
#cccagact 18180 |
tcactgtaaa tgagaagcag atacctggaa cagcttaaat ccagtaccac ta |
#ttaggaaa 18240 |
aagtaaacca gtgccctact gacagcagat tgatagtgtt aactacgtcc tt |
#agtttgaa 18300 |
catgcaaaac cttttctaat ggtttttatt tctagtagac tttgtgcttt aa |
#aaagatag 18360 |
ttattttgca ctttaaaatc ttcagtgtga aaatcaaaca tgattttacc ca |
#cttaaaat 18420 |
ctgatgacct aagagccctt ttttctttaa tatgttgtgg ccagcttatc ca |
#gatctaga 18480 |
catgcaaatg cttgctggta aggtgattga tgatattccc tatcttaggt at |
#tataataa 18540 |
gattgttgtg tacattttaa cctaatttct atctgtcaac attggaatgg cc |
#ctagctac 18600 |
ctagacaaaa gctttttgtg ctttttagag ataactgtca cagtttatca tc |
#acagttta 18660 |
aggcttatac taccattgtg agattattgg gaaaagaatt aatatgaaca ta |
#atttttta 18720 |
ttccagaaat tccattacag aaaccttctt cttggtgaac acgatgtccc tt |
#taacatgt 18780 |
attgaacaaa ttgtcacagg tacgtagtat tccgtacata ctctaaaagt ca |
#attccact 18840 |
ctggaagtat tatttgaaaa gtcatacctc tcaaaatact tggattggcg tt |
#ttatttct 18900 |
gtaagtttac ttttgccgtt tttttgagtc ccgggaacat aaagagggat at |
#gttaataa 18960 |
attattttaa aaggaagata taaaatgtat aacttttcat agtttctagg tt |
#ttttgtcc 19020 |
tctttttaat taaaattaat cattaaatgt atctagatgg tggttttatg ca |
#aataatca 19080 |
tttaaaatat cttccaaagc aaagttaaaa ccaaccccca agttctagga at |
#tacaagta 19140 |
tgaaacattc tagacaagca gagctcaaat gttgggtgac cttccaatta tt |
#ttcactaa 19200 |
gaatttgtat taaagggtga gtaacaaata actgttacgc attttatttt ct |
#ctattttt 19260 |
ttttcttttt tagtaaacga ccacaagagg aagcagaaag tcctaggccc ca |
#accagaaa 19320 |
ctgaaattta atccaacaga gttaattatt tattgtaaag atttcagaat tg |
#tcagattt 19380 |
cgctttgatg aatcaggtcc cgaaagtgct aaaaaggtaa tactgttaag gt |
#ttatcaag 19440 |
ttctgggttc tgtactgtgt ttactgattt caattccgta tggcagtttt ca |
#tttctcaa 19500 |
ttgctcagat gttttttagg ggaagttatc agacatcttc ttaagtaaag tc |
#aaagccaa 19560 |
gaatattaat agaactattt tcttggattg gtttatggct gttttaaagt gt |
#tctatata 19620 |
actttttatc agcttctcaa atattaaaga ctcttacgtg gaaattagca tt |
#tttttaca 19680 |
taaagatcat tacttgtcag tttcttggtt aaaaggttga aaagttggtg at |
#atactgta 19740 |
attaaggttt ggttaggctt ttaattcagt actgcagaac tttaccaaca aa |
#ctgtaagc 19800 |
tagacttatg ttacataaga tttaggtaaa tatataatta cgggaaaggc ct |
#agtaatta 19860 |
ttagtggttt aaagaaatat tatgaattga gtgacactca acaggggcaa ca |
#caaagcta 19920 |
gtaacttttt aactgcctta tttttccacg gccttccaga taatgactta tt |
#accctact 19980 |
tgtaagagtc aagggcatgt tttccatgtt ttgctttgcc agaggagtga ag |
#ctggtaga 20040 |
cctaatatgg cccccgttcc agtctgtgct gcagcaaatg cagagtcaca ga |
#ctttccag 20100 |
taggaagctt gcgcgtgtgt atgggaatag ggcaacagta tcttagtata at |
#aggacgtg 20160 |
gctttctctc agaatggagg cagtctttgc accaccaagc aatgagtgcc tt |
#tgttttcc 20220 |
atggttagtc aactgactgc agtaaatctt ctgttgatac caaaacaagg ct |
#ggcaaaaa 20280 |
tactgtaagg cagctgtctt catatacttt ggtgaagagg tggtagattt gt |
#ttttagat 20340 |
tgagaaccaa cagtttcttc acaggaaggc aagcaggaga tgaatatatg aa |
#aatacatc 20400 |
tgaaaatatg tgactgtcta gcagagtaga gtggttgtag gctcctctat gg |
#gtaaaagt 20460 |
tttcaaatgg tctgtataac catctctcag caagctgcat tattgaaaat tc |
#aactagat 20520 |
aactcttaaa gcctctttca cctgttcgat tgtgctgttt gtgattttgg ca |
#ttttacta 20580 |
atttaaagtg cctattatat agaaggactt tagaattcat gatgtattag ac |
#tgtacata 20640 |
aaatatttca gacaggttaa ttcctcaagc ttatttatat ttgtaattta at |
#tgatcaaa 20700 |
gcatcaaaga cctgcttatg aaaaccttaa gatgtgtagc atctcaagat ta |
#gggacatc 20760 |
acagaacttg ctagattgag ttaggacagc atattcctaa ggaagaaatt ga |
#tgcaattg 20820 |
accggatctc tttcggaaag ttcaattctc cctcttttac tgtatttttc ag |
#tttacact 20880 |
attttaatga gtggaaataa taattatttg gcctagttct tgaaccatct gt |
#agtacttg 20940 |
ttggtcattt ttcatgttga ggcagtgtgc taaattttgc aagtagaaag aa |
#gggtaaga 21000 |
tgcagtttct tgccctagag aacttaaatc tagtgaagaa gataaagcat ga |
#acaaatga 21060 |
aaagtaatgg tacaaagtgg cagcataaaa tcaactacac aaatagttga tt |
#tccagatg 21120 |
aacagagcat aataagtgct gtggaaattc agaatatccc ctatgtgttg tg |
#ctgctggt 21180 |
tcatgaagag ggccttacta aaccgtctgc acaaaacaag ccagtccctc at |
#atgccctt 21240 |
tcctaagacc aagtttcaga caaaaatctt ttccccagta tcctaaaata ta |
#aaaagcat 21300 |
gtgagtctct gtcttttgta tagccacggg ggttgcaggg caggggaggg tg |
#caggaaaa 21360 |
aaaaatagat gcaatgagaa tataaatagt ttttttggga tttacgcatt tc |
#aaacaggg 21420 |
ttaagttgta tatggctacc aaagcttgac ggctttgtga gttaaaaaca aa |
#aattatgg 21480 |
catattcttt tatttcaagt gaaaagtttt catctaaaat tcggtagcag tt |
#aggaaatt 21540 |
atggctcatt tttacctcct ggaagcttgg aatactgttt tctctggaaa at |
#gctttgct 21600 |
attttatcag ttgctttaaa atgatgaaat gcatgtttgg agttctctgg tg |
#ggtaaacc 21660 |
gttgattcat tttgaaatac ctaagccatt tatgtttttg ttttgaaaaa tg |
#aaattcaa 21720 |
gaatactaaa ttggttcaca ttttgttaaa tgttctgaac ccttctggtt gt |
#cttgttgg 21780 |
tgttgtttca attgtattat gacaaaatta gattgctttg ggcacttgta ct |
#cattaata 21840 |
ttcatcctca ttatcctcga gctgtcacag gaaaatagtg atatttggga aa |
#ggtctgta 21900 |
taaagaaaga aggaatttga tggtgcagaa ttggacatct aacctcatag ca |
#acttagaa 21960 |
ccaccatttt cttttgcaga acctttgctc aaaactgaag ggcaaaataa ta |
#aaggttgt 22020 |
ttttaatgat ttatctatat atctgtctgt gtagataaag ataaatatat ag |
#atacacat 22080 |
gagtgacaag tgaaatacat gccttttgtc tccactttgt tctctgatta gt |
#gggttgtg 22140 |
aatcacttct tcaggaatac tttatagaag tgaattccat tcatctgatt aa |
#ggaacaag 22200 |
ttggcctttt catgaactgt catttttgac ttgaatctgg tactgttttt tg |
#gtggcttt 22260 |
caggccacag aaataaacca cttttgtttg caaatgagat agaacttaat ga |
#ggtttgag 22320 |
tgtttcctgg atttgagttt cttcagtact gcaccccagg tgatcttagg aa |
#agaaacca 22380 |
tccactgtgg gtacttctgg cttctgtcca gagaagatta tcagctttgg tc |
#caaaaatt 22440 |
gatttaaaag tagtttactt ctttttctcc aataaaatat ttgccataat tt |
#aatgtctt 22500 |
taataccaac attttcttca tttcctgtgg tagccaggac aaatgaagta tt |
#tcagatct 22560 |
ttcaaaaact cttaggatga aaggtaggaa tttggactta ggtttttaaa at |
#agtgtgta 22620 |
tgtaaaagtg caaagaatgg ggccctggct ttctcttctc ggagtgttcc ac |
#agtaacaa 22680 |
catgaagaca atccaggtac acaagtttgt atgtgcctta gtctgtgtgt cc |
#aaagaggc 22740 |
ctcttactta ggtcatatga acataagtta tacacttgaa attcactact ga |
#aaaacaat 22800 |
gtatttagtt cgagttctgc caccccaaaa aaatcaacga gtaattcaac tg |
#acttgcag 22860 |
ttttacaata tttttataga cttctttcag cgtagatgct tttggacata ct |
#catttgtt 22920 |
tcctaacctg atgtgatatt gtgctatttt taaggggctt ttaaaaaata cg |
#ctgtgttg 22980 |
ggttttgcct tgaaaatagg ctttatttct tttttgcctc atggccacaa aa |
#aaaggatg 23040 |
tccatgatca atgatctgtg aatttctttt ctgtaaacag aaagagcatg ta |
#actgcttt 23100 |
ctaattgttt tggagaatgt gatagacatt agtattatta ttattggctt gg |
#agcatttt 23160 |
ccttaatatg ttggtaacta cttttgtcag tgaatattag tgtagccact gt |
#tggacaca 23220 |
gagcaccgtc agaaagctac tgaagtggtg ctgcaaagtg cagacatctt ca |
#gatcttta 23280 |
ctcaagtctg tgcagagagg tctttcttgg tctccttctc tactttttag cc |
#tgtctccc 23340 |
tcttctcact gtaacacttc atattcccct tccctgctct attatttttc tc |
#ttttagca 23400 |
ttcatagtta tctaactttc tgtatttttt ctctttatct tgtttagtgt ct |
#gtcttccc 23460 |
actagaatgt aagcttcatg aggacaggga ttagtgtctg ttttgttcac tg |
#catctcta 23520 |
gggcttacaa cattgtaggt actcagtaaa tatttgttaa atcaatgtga aa |
#tgtgtcat 23580 |
ttatccttaa ggaattgacc ttcatggtag aagtgtaaca gaaccaccta ta |
#tcctactt 23640 |
ttcatccaca tcataactat tatgtgaata ccttggaagt aaagcaaaat aa |
#gcacttaa 23700 |
ctaaagagac gctttatatt gaaactgttg ttctgggttt ctggaattag ta |
#ctctgaaa 23760 |
ttggctccct ctaggaaggc ttgtgaagag agtagtgttg aacagacatg ac |
#agtttcca 23820 |
agaaagcata gttggctaag aggagtagga ttttccaagc aaagagtgtg ac |
#agtggaga 23880 |
tggctggggc taagtcaggc agaatgtgtt caaacctgtt tttctctgac ct |
#gagattgc 23940 |
ggagggaata ttgggaaggt atagttacct ggtgaggaga gccagttttg tg |
#aagaatca 24000 |
agaatgagga gatttaattt gttatgcaga tgtctgggaa ccacagcaga tt |
#atcaggag 24060 |
agcaaaattg ttagtcagaa ttacatcgtt agaaggtaat ccttaagttt tg |
#tagatttc 24120 |
tagaatgtaa ggaagctctc agaggtgcca taaggtgagt atggcctaag ga |
#tgtggcta 24180 |
tggcagtgta gcaaaatgga caactatgaa aaatgtctag agaaaagtgc aa |
#catagctt 24240 |
atcaacggtg cccaaacaaa taggaaggat gagaactttt tcaagctaca ga |
#tttcagta 24300 |
gttttgctgc tagaaatgct ttaaggaaaa ctgttaaaaa gattaggaat gg |
#gaatatag 24360 |
ataaccggct cctaaatttt gcaagtggga ccgtcataga aagctctcct at |
#aggtattg 24420 |
agaaatcgag ataccacgta agtttcaaga agcagttttt tttttctttt tg |
#gtcaaaac 24480 |
taatgacaaa ttctgtcccc ttgtttgtat attttaactt agtgagacag ga |
#aacattta 24540 |
ttctatagaa gacttttaaa atgtagttta aacaagttga cacatgctta ct |
#ggttaatg 24600 |
aaatgtgcat caacccactc caaacaccac taatttgaca tgaactaaca at |
#taactttt 24660 |
cttactcact gtcaaaagta tatcattctg ccttaactta acgctttacc tt |
#ctaaataa 24720 |
aatttaatct tttaaataag tttttctgct atgttttcct tgcatatgtc tt |
#aaatttct 24780 |
tctttcgtct ttgctcactg aagagcattt tctcccacat tctagtgact ac |
#cagggttt 24840 |
gtaagcctag agcaccatcc ttcattctat ctagcagcag ttgagaataa ta |
#acagccat 24900 |
atttctatat atggagctcc tccaaaggcc tagcctgcat taagcttgtt aa |
#ttcttacc 24960 |
acagcctagg tattactttt gttttacaag tgagcaaact gaggctagaa aa |
#gaggaaat 25020 |
gacttcacac atgttatgta gcaagtactt gacagagcta ggattcaagc cc |
#cctgatct 25080 |
gtttgattct aaagcccgca cgttttccac cacagggcac acagtcccaa ac |
#cattttac 25140 |
ttaaacacag tttgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tg |
#tgtgttgt 25200 |
ttttttgatg tacctctttg agccacccat gcatttttgg agtttcttgc ta |
#attttaat 25260 |
tttttgtaat tatgtttctc tatttagatg tttaaatcca tgaggcgtaa ac |
#tttaaagt 25320 |
ttcatgcctt atattaatcc tttatagtcc accaaaaatg aaactttttt ct |
#tccttttt 25380 |
tggagtggac atgtagtcac tgcctttttg gagaatgctt ctttagtttg aa |
#gctttctt 25440 |
tattggacta aaattacttt ccaattaaaa tttaactcag caaatactta ct |
#gaatactt 25500 |
gccatgtgct agctaaagat aaacaatgtc ttgagggcat gaaagtgaat ga |
#gatacctg 25560 |
gccttaagga gctcttttat attctaggtc aacagaaaaa catgtaaata gt |
#atctataa 25620 |
tcactgcccc aagatgatgc tcccagtgcc caaggcctta ttgtacattt ca |
#tttaacta 25680 |
agtgtgttaa aatcaaattc taaatgtaga atttttccta ggtatgcctt gc |
#aatagctc 25740 |
attattccca gccaacagac ctccagctac tctttgcatt tgaatatgtt gg |
#gaaaaaat 25800 |
accacaattc aggtaaatat gaaaatatta aatattgtga ctaattttac at |
#gtgtaaat 25860 |
tttactctta tgtttaccgg aagcctccaa gtacatgagc tttaatgatt gt |
#agaattac 25920 |
tagcttcata ccttagagaa gtaagcacta catgctaaaa gagccaatag tt |
#tgtcagat 25980 |
tatttcttga caagttacca ggaagaacct ttaatgctat gaatatgggc tt |
#ataagtta 26040 |
tgtcagatat ttaatctcca gtcactggct tgtattttat gatgaagaat at |
#ataaccca 26100 |
ccctttttaa ttgatagctt gagttaaagt aatcttatct tttaagaaaa ct |
#ggcagaaa 26160 |
actaaaagat atattaaaag cataatcttt tctggcaagg tgtgatttca tg |
#caaaagct 26220 |
aaagtgatta aaaacttttt gtggacttca ttaagattct cagaatactg ag |
#tttctatt 26280 |
tctgagtaat actgatgaaa ggaagatgag catttttcca aggacaagta ta |
#ttactaga 26340 |
cagcttttgt gaaagtaaat agttttgtct atatatctga cagtcatgac at |
#gaccaggg 26400 |
aagattccag atgatcatgc aannnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26460 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26520 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26580 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26640 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26700 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26760 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26820 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26880 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 26940 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27000 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27060 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27120 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27180 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27240 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27300 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27360 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27420 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27480 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27540 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27600 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27660 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27720 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27780 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27840 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27900 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 27960 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28020 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28080 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28140 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28200 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28260 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28320 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28380 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28440 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28500 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28560 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28620 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28680 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28740 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28800 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28860 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28920 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 28980 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29040 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29100 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29160 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29220 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29280 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29340 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29400 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29460 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29520 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29580 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29640 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29700 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29760 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29820 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29880 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 29940 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30000 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30060 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30120 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30180 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30240 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30300 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30360 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30420 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30480 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 30540 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnncagtg at |
#ggaaagta 30600 |
gggcagccca ctagaagcca ctagccacat gtggctgtta agtacttgaa at |
#gtggctag 30660 |
tgcaaactga tggactgaat ttttaatttt atttaatttt catttcagtt ta |
#aatttaaa 30720 |
tgggcttgtg tggctagaag ttacgttttt gggaaacata ctagagtcta gg |
#ccctattt 30780 |
gatttcccgc ctctcttcca ccacctgttg aatccctatg ctctagctgt at |
#ttagttac 30840 |
ttgatattat acagttatac catcttttta aagttcttct ctgtctagca tg |
#cctacctc 30900 |
ctcctcacca gctacctggc aacttttgac ttgttcctta gaactctctt ta |
#gttgtggt 30960 |
caagtcatga agcttttcct gccccggcct ctctctgcag cgagagttag gg |
#gacttctc 31020 |
ttttgcatct tcattgcact cagacatctg gtactctgtg attatcacac tt |
#attaatgc 31080 |
tctcaagata gagataaaat cttattcatc tttttgctct caggcattag ca |
#catgggga 31140 |
gttctcagaa aatacctgtc ttataccagg aattaatgaa taatcagtag ga |
#atgagcat 31200 |
gacatgttca tgggacgttg gagggtagtg catggctgca gaggagaatg gg |
#aaatgaag 31260 |
gtcagataag ttacgtgagg gatctctaag gccaagagaa gccatttagg tt |
#tgatttgg 31320 |
ttggaaaatg agcttattga aagtttaagg caagggacta gcatcatgaa ca |
#catctttt 31380 |
tagggaagtg tgtcttgtgg taagctgctg gctggtttaa atgcagcaga at |
#attccatt 31440 |
ggggatgcca gctgggagac ttgccacagt tgcagcctgc agcagaaaga cc |
#ctgggcca 31500 |
gaatgggttg tgccatctgt caccagatat tgccaaggta gatctggctg ac |
#tttgtggg 31560 |
acagcttgtt tctcaataat cactttgcag gcactcttga ggctgtgagc at |
#gctcccag 31620 |
aagatagcat tacttctctc tcagagcagg ctcctttcta aggaaatgca ag |
#tctaggcc 31680 |
tgccctgctg taatcttcat gtggaaacag cactctagca aagaacaagg aa |
#cctgatga 31740 |
gcttttcaaa ggaaaatcga gtagatacag gaaaccaaga attttctaat ga |
#gcagatag 31800 |
aaaagagcag gtaggtgaga agttggtatt agaaaaatta aagatttgaa gg |
#gcttgagg 31860 |
acagagatga ttgttggatg tttcattttt ccaggcaaaa tatgtggagc aa |
#ataatcaa 31920 |
atgacatgga cttaccccac aattagggac ggagatgagg aagggttagg aa |
#tagtttct 31980 |
gttagaatgg tagggatgga agacaattga aaattaaaga gaaaataaat gg |
#agaggaaa 32040 |
tctaggcagc agccattctt cattctgggg gaaggtggtc aggaaaagga ag |
#gaagaaaa 32100 |
atgtatagca tagtagctag agtggtccgg cgtgatcaaa gtgttttcaa ta |
#tcatgttg 32160 |
actgacctgt ttacgtttga aggcagagaa gatagagcca gtagaaggag ag |
#aaaaatca 32220 |
aagctgtttt acggagttgt gaaagagctg gataaggaca agactaaatg ag |
#ttattttt 32280 |
aggccaggca tggtggctca tgcctgtaat cccagcactt tgggaggcca ag |
#gcaggtgg 32340 |
ggcacctgag gtcaggagtt caagagcagc ctggccaaca tggtgaaacc ct |
#gtctctat 32400 |
taaaaataca aaaattagct ggacatggtg catggtggca ggtgcctgta at |
#cccagcta 32460 |
ctcaagaggc tgaggcagga gaatagcttg aacccggggg gcggaggttg ca |
#gtcagccg 32520 |
agatcatgcc agtgcattcc agcctgggcg acagaacgag actccgtcaa aa |
#aaaaaaaa 32580 |
aggagttatt tttaaatgga aagggcaaga cagttactcg gagagacttg ga |
#aggtgaag 32640 |
caggttagag acagcacatc agagtatgca tgtgacagga ggctcagaga ag |
#agggaatg 32700 |
ctggggaaaa tgtgactgtt aaaattcata atgttgcttt ttcctacagc aa |
#acaaaatt 32760 |
aatggaattc cctcaggaga tggaggagga ggaggaggag gaggtaatgg ag |
#ctggtggt 32820 |
ggcagcagcc agaaaactcc actctttgaa acttactcgg attgggacag ag |
#aaatcaag 32880 |
aggacaggtg cttccgggtg gagagtttgt tctattaacg agggttacat ga |
#tatccact 32940 |
tggtaagtac aattttagca atgttatata tggctggaag tcacttccct at |
#gaataatc 33000 |
atcaaactct gttgtcattg atgactttca agttgtggtt aatggaatat tt |
#gtttttaa 33060 |
taatgtttta ataaatattt tattttaaag atcaaggctt attaatataa at |
#tacggtat 33120 |
cccttaaaag aagttgatag taattcctta ctgtcatcag tagtcagtgt tt |
#attgcatt 33180 |
atatcttgta actggtgttt tacagttggt ttgttcatat caggatctaa ag |
#tcttcaca 33240 |
ttgaatttgc ttaatatgtc tcttaggcct tttaatctac aacagtctcc tc |
#ccacctct 33300 |
tttttaccta ctatttgttg acaaaccagg tcatttgttc cctagaattt tc |
#cacattgt 33360 |
agatattgct tgttttatcc ccagggtgtc ccgtaatgtg ttcctctgtc tc |
#taatattt 33420 |
cctttaaaat gttagcaaca gaggcttaat cggattcagg ttcagtactt tt |
#ggcaagaa 33480 |
tgtttcatta ggtggttctg tgttctcctg tggagtcaca tcccatctca gg |
#ctggctgg 33540 |
ctgtgtctct ctcattgtaa tcctgacgac cagtgggctt agagggtgtc aa |
#cctgatcc 33600 |
acccagtaaa agttcccctc ttatatcatg gtttgagctc ccaaaaatag tt |
#ttgcactg 33660 |
ggagggagga tcattgctca gatcgttatt tcactaagga ttgctattgt tc |
#accttcta 33720 |
attctatcat ctttctgctt ttatcgaact tttctctcac cagctcttta gt |
#gccctgta 33780 |
acacagttcg tacaagaaaa gcaatataaa tatctacatt ttctccttta ct |
#taacattt 33840 |
ttccaaatag tgagctggtt ccctagggga tctttctaga agtgactagg aa |
#tttgtttt 33900 |
tttaatttgt ttaatgtcat ttagttatta tgaatttttt ggaatgcctt at |
#tttaaggt 33960 |
cattgaagtc ctcattagtt cacgcacata agcagctttt tagaaaaagg aa |
#gaaaagca 34020 |
ctactgtgtt attactggtt aatccagtac caggaacttc tagtacagtt ct |
#agaaaggt 34080 |
gctttgcagc atgtagcttg tatgcttttg cttcccctgg aatttaagct tc |
#aaggccag 34140 |
cacactctgg tatatgtgct gagaaacatg tgatggggct gccnnnnnnn nn |
#nnnnnnnn 34200 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34260 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34320 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34380 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34440 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34500 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34560 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34620 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34680 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34740 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34800 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34860 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34920 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 34980 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 35040 |
tggtaaaacc ccgcctctac taaaaataca aaaatttagc caggtgtggt gg |
#cgggtgcc 35100 |
tgtaatccca actactcggg agggtgaggc aggagaatcg cttgaacccg gg |
#agggggag 35160 |
gttgcagtga gccgagatgg tgccactgca ctccagcctg ggcgacagta tg |
#agactccg 35220 |
tctcaaaaag aaaaagaagg aaatgatcta atttgttctg tgcactgcac gt |
#gggggtgg 35280 |
cagtgaggtg aatggcagca ttctgcagta gtcaaagcca gatgggtggg ag |
#aagttggg 35340 |
tgctaagagg gaaacaaagt ttacctgtct tctccttgat ttcactctca gt |
#tttatgag 35400 |
aatacagaaa aatcatgcag agaaacctga tggaatagtc tctaaaacta aa |
#aaataaga 35460 |
taagcaatgg ttctgtctta aaaaaaaaaa agtaaactcc atgaaggcag ag |
#accttacc 35520 |
tgtctcattc ctctctctat cccctggtct atagtaaggg ttaaataaat at |
#atgctgaa 35580 |
atgaatgagt aatgactaaa gtatttttgt ctttattagg atttgtaatg ca |
#ataactaa 35640 |
aagtcaccca cagagaagtg atgtttacaa atcagatttg gataagccct tg |
#cctaatat 35700 |
tcannnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 35760 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nncagctcaa at |
#ttgttata 35820 |
acctatttgt taaagagagg attgttttga gactatagtt ccattcttca tg |
#aattggta 35880 |
ggagtttgga gtttgtcagc aaacattcta tcgggctaaa ggtttttata at |
#gaaagaaa 35940 |
taggcaaagt ggatcagtac actcactttt ctaccattga ccctggagac ag |
#atggctta 36000 |
aaatgttctg cgtctagttg acttttagat cttgaaatta aggtttaatg at |
#gaccaagc 36060 |
tttaaataaa ttgtagaaaa gtattctttc aaaagtacat tataactttt at |
#attggttt 36120 |
cttatattta tttcttttaa tcttttcttt taacacaaac tacgttttaa gg |
#ttttgttg 36180 |
cctactaagt tataatctga gtgcagaagg aaacttgatt tggctttatg ga |
#atacattt 36240 |
tacattcagt gaagctgagc tctgtttctc attccttaca aaaggaatca aa |
#ggcattgg 36300 |
tttgagagat caagtcatgt gttaataaaa cacaaatatt ccatcaagta at |
#actctgaa 36360 |
ggagcaggtg tagtttattt cttctccaga aagtcttcca gcagataaat aa |
#tgagaggt 36420 |
agtatggcat aggaaaaaag tacactgaag tcagcctttc tggttcaacc ag |
#ctcagacc 36480 |
cctgagctat ttttgcctca gttttacgcc ttggagaaca atgccttgtc at |
#tactattc 36540 |
actttatgac catacagtgc ctggcacctg gtgggcaatt ggtgaatgtt tt |
#cactatcc 36600 |
tcatccttgc cctcatgaaa cactccttct aggtcccaca aagaccgttg gt |
#attttatg 36660 |
acaaagtacc ttacaaatat ttttcttttt ttaaaggaga aattgtcgta aa |
#tgaagtca 36720 |
attttgtgag aaaatgcatt gcaacagaca caagccagta cgatttgtgg gg |
#aaagctga 36780 |
tatgcagtaa cttcaaaatc tcctttatta cagatgaccc aatgccatta ca |
#ggtgtgtt 36840 |
ttattagtac actgtttcat tctatcaggc tttcaactct aagtggtaca ta |
#ttattata 36900 |
taaaacatag gtatggaaaa gttatagtag aagtattagg taatgcaatg tt |
#tgggataa 36960 |
attatattaa gatttaaagt aaagtttaag aagaatgttg gaacttgcta ga |
#ggagtatt 37020 |
agtgagagga ttgtaagtca ccttgcttta tttatcctct gtgatcgttc at |
#tatatgtc 37080 |
cttttcatta aggaagttat tccctctgtt gcagatcttt taacctgctt at |
#aaaaatga 37140 |
cataaagaga aaaggttgtt tgctaaatga ttttataaat gccacacatt tt |
#agtgattt 37200 |
cataggtttt tttgttgttg ggtttttgat ttttttgttt tgagcctgga tc |
#tcgctctg 37260 |
tcttgtctcc caggctggag tgcagtggca tgatgtcggc tcactgcaac ct |
#ctgtctgc 37320 |
ttcctgggct caagctatcc tgccacctca gcctcctgag tagctgggac ta |
#caggtgca 37380 |
tgccaccact cccggctaac tgttgtattt ttttgtagag atggggtttt gt |
#tatgatgc 37440 |
ccggattggt cttgaacttc tgagcccaag caatctgcct gcctccccct cc |
#caaagtgc 37500 |
cagagtacag gccactgcac ccagctacct tttttttttt tttttaaact aa |
#ttagtgtt 37560 |
attttcctaa aaagttaaat tctaatttct aggaagagtg aagaatagta tc |
#gatttaaa 37620 |
aattttcagt agccctcttg ctattttatg ttcttactgg aaagtaatag tt |
#ccatgtaa 37680 |
ttttggtttt tagaagttca ggcattcatt tgattaactt aaaaaccctg ga |
#cttttctg 37740 |
tcagccattt tgtattttgt tttataaagt attatacaca cttaccccta ga |
#tctttctt 37800 |
tatagtaatt gttctttaat gaaatattgg tatatgaact gtaaactttt aa |
#atttaagg 37860 |
atctaatagt ttagtgtaag tatatttcat gtagtcactc actaatttac ca |
#taattatt 37920 |
atactgtaca aatatttatt gtactgtata tttgtgtgtt cattacagtc tt |
#atgtaggt 37980 |
atatttagac taaatttaag gcacttaaag atacccactg tgtagggaca gt |
#agcttatt 38040 |
tggatatagg cttgtgtgtt tctctttgtt tttagcttca taatgatcat tg |
#gccccaga 38100 |
cttcactgta aatgagaagc agatacctgg aacagcttaa atccagtacc ac |
#tattagga 38160 |
aaaagtaaac cagtgcccta ctgacagcag attgatagtg ttaactacgt cc |
#ttagtttg 38220 |
aacatgcaaa accttttcta atggttttta tttctagtag actttgtgct tt |
#aaaaagat 38280 |
agttattttg cactttaaaa tcttcagtgt gaaaatcaaa catgatttta cc |
#cacttaaa 38340 |
atctgatgac ctaagagccc ttttttcttt aatatgttgt ggccagctta tc |
#cagatcta 38400 |
gacatgcaaa tgcttgctgg taaggtgatt gatgatattc cctatcttag gt |
#attataat 38460 |
aagattgttg tgtacatttt aacctaattt ctatctgtca acattggaat gg |
#ccctagct 38520 |
acctagacaa aagctttttg tgctttttag agataactgt cacagtttat ca |
#tcacagtt 38580 |
taaggcttat actaccattg tgagattatt gggaaaagaa ttaatatgaa ca |
#taattttt 38640 |
tattccagaa attccattac agaaaccttc ttcttggtga acacgatgtc cc |
#tttaacat 38700 |
gtattgagca aattgtcaca ggtacgtagt attccgtaca tactctaaaa gt |
#caattcca 38760 |
ctctggaagt attatttgaa aagtcatacc tctcaaaata cttggattgg cg |
#ttttattt 38820 |
ctgtaagttt acttttgccg tttttttgag tcccgggaac ataaagaggg at |
#atgttaat 38880 |
aaattatttt aaaaggaaga tataaaatgt ataacttttc atagtttcta gg |
#ttttttgt 38940 |
cctcttttta attaaaatta atcattaaat gtgtctagat ggtggtttta tg |
#caaataat 39000 |
catttaaaat atcttccaaa gcaaagttaa aaccaacccc caagttctag ga |
#attacaag 39060 |
tatgaaacat tctagacaag cagagctcaa atgttgggtg accttccaat ta |
#ttttcact 39120 |
aagaatttgt attaaagggt gagtaacaaa taactgttac gcattttatt tt |
#ctctattt 39180 |
ttttttcttt tttagtaaac gaccacaaga ggaagcagaa agtcctaggc cc |
#caaccaga 39240 |
aactgaaatt taatccaaca gagttaatta tttattgtaa agatttcaga at |
#tgtcagat 39300 |
ttcgctttga tgaatcaggt cccgaaagtg ctaaaaaggt aatactgtta ag |
#gtttatca 39360 |
agttctgggt tctgtactgt gtttactgat ttcaattccg tatggcagtt tt |
#catttctc 39420 |
aattgctcag atgtttttta ggggaagtta tcagacatct tcttaagtaa ag |
#tcaaagcc 39480 |
aagaatatta atagaactat tttcttggat tggtttatgg ctgttttaaa gt |
#gttctata 39540 |
taacttttta tcagcttctc aaatattaaa gactcttacg tggaaattag ca |
#ttttttta 39600 |
cataaagatc attacttgtc agtttcttgg ttaaaaggtt gaaaagttgg tg |
#atatactg 39660 |
taattaaggt ttggttaggc ttttaattca gtactgcaga actttaccaa ca |
#aactgtaa 39720 |
gctagactta tgttacataa gatttaggta aatatataat tacgggaaag gc |
#ctagtaat 39780 |
tattagtggt ttaaagaaat attatgaatt gagtgacact caacaggggc aa |
#cacaaagc 39840 |
tagtaacttt ttaactgcct tatttttcca cggccttcca gataatgact ta |
#ttacccta 39900 |
cttgtaagag tcaagggcat gttttccatg ttttgctttg ccagaggagt ga |
#agctggta 39960 |
gacctaatat ggcccccgtt ccagtctgtg ctgcagcaaa tgcagagtca ca |
#gactttcc 40020 |
agtaggaagc ttgcgcgtgt gtatgggaat agggcaacag tatcttagta ta |
#ataggacg 40080 |
tggctttctc tcagaatgga ggcagtcttt gcaccaccaa gcaatgagtg cc |
#tttgtttt 40140 |
ccatggttag tcaactgact gcagtaaatc ttctgttgat accaaaacaa gg |
#ctggcaaa 40200 |
aatactgtaa ggcagctgtc ttcatatact ttggtgaaga ggtggtagat tt |
#gtttttag 40260 |
attgagaacc aacagtttct tcacaggaag gcaagcagga gatgaatata tg |
#aaaataca 40320 |
tctgaaaata tgtgactgtc tagcagagta gagtggttgt aggctcctct at |
#gggtaaaa 40380 |
gttttcaaat ggtctgtata accatctctc agcaagctgc attattgaaa at |
#tcaactag 40440 |
ataactctta aagcctcttt cacctgttcg attgtgctgt ttgtgatttt gg |
#cattttac 40500 |
taatttaaag tgcctattat atagaaggac tttagaattc atgatgtatt ag |
#actgtaca 40560 |
taaaatattt cagacaggtt aattcctcaa gcttatttat atttgtaatt ta |
#attgatca 40620 |
aagcatcaaa gacctgctta tgaaaacctt aagatgtgta gcatctcaag at |
#tagggaca 40680 |
tcacagaact tgctagattg agttaggaca gcatattcct aaggaagaaa tt |
#gatgcaat 40740 |
tgaccggatc tctttcggaa agttcaattc tccctctttt actgtatttt tc |
#agtttaca 40800 |
ctattttaat gagtggaaat aataattatt tggcctagtt cttgaaccat ct |
#gtagtact 40860 |
tgttggtcat ttttcatgtt gaggcagtgt gctaaatttt gcaagtagaa ag |
#aagggtaa 40920 |
gatgcagttt cttgccctag agaacttaaa tctagtgaag aagataaagc at |
#gaacaaat 40980 |
gaaaagtaat ggtacaaagt ggcagcataa aatcaactac acaaatagtt ga |
#tttccaga 41040 |
tgaacagagc ataataagtg ctgtggaaat tcagaatatc ccctatgtgt tg |
#tgctgctg 41100 |
gttcatgaag agggccttac taaaccgtct gcacaaaaca agccagtccc tc |
#atatgccc 41160 |
tttcctaaga ccaagtttca gacaaaaatc ttttccccag tatcctaaaa ta |
#taaaaagc 41220 |
atgtgagtct ctgtcttttg tatagccacg ggggttgcag ggcaggggag gg |
#tgcaggaa 41280 |
aaaaaaatag atgcaatgag aatataaata gtttttttgg gatttacgca tt |
#tcaaacag 41340 |
ggttaagttg tatatggcta ccaaagcttg acggctttgt gagttaaaaa ca |
#aaaattat 41400 |
ggcatattct tttatttcaa gtgaaaagtt ttcatctaaa attcggtagc ag |
#ttaggaaa 41460 |
ttatggctca tttttacctc ctggaagctt ggaatactgt tttctctgga aa |
#atgctttg 41520 |
ctattttatc agttgcttta aaatgatgaa atgcatgttt ggagttctct gg |
#tgggtaaa 41580 |
ccgttgattc attttgaaat acctaagcca tttatgtttt tgttttgaaa aa |
#tgaaattc 41640 |
aagaatacta aattggttca cattttgtta aatgttctga acccttctgg tt |
#gtcttgtt 41700 |
ggtgttgttt caattgtatt atgacaaaat tagattgctt tgggcacttg ta |
#ctcattaa 41760 |
tattcatcct cattatcctc gagctgtcac aggaaaatag tgatatttgg ga |
#aaggtctg 41820 |
tataaagaaa gaaggaattt gatggtgcag aattggacat ctaacctcat ag |
#caacttag 41880 |
aaccaccatt ttcttttgca gaacctttgc tcaaaactga agggcaaaat aa |
#taaaggtt 41940 |
gtttttaatg atttatctat atatctgtct gtgtagataa agataaatat at |
#agatacac 42000 |
atgagtgaca agtgaaatac atgccttttg tctccacttt gttctctgat ta |
#gtgggttg 42060 |
tgaatcactt cttcaggaat actttataga agtgaattcc attcatctga tt |
#aaggaaca 42120 |
agttggcctt ttcatgaact gtcatttttg acttgaatct ggtactgttt tt |
#tggtggct 42180 |
ttcaggccac agaaataaac cacttttgtt tgcaaatgag atagaactta at |
#gaggtttg 42240 |
agtgtttcct ggatttgagt ttcttcagta ctgcacccca ggtgatctta gg |
#aaagaaac 42300 |
catccactgt gggtacttct ggcttctgtc cagagaagat tatcagcttt gg |
#tccaaaaa 42360 |
ttgatttaaa agtagtttac ttctttttct ccaataaaat atttgccata at |
#ttaatgtc 42420 |
tttaatacca acattttctt catttcctgt ggtagccagg acaaatgaag ta |
#tttcagat 42480 |
ctttcaaaaa ctcttaggat gaaaggtagg aatttggact taggttttta aa |
#atagtgtg 42540 |
tatgtaaaag tgcaaagaat ggggccctgg ctttctcttc tcggagtgtt cc |
#acagtaac 42600 |
aacatgaaga caatccaggt acacaagttt gtatgtgcct tagtctgtgt gt |
#ccaaagag 42660 |
gcctcttact taggtcatat gaacataagt tatacacttg aaattcacta ct |
#gaaaaaca 42720 |
atgtatttag ttcgagttct gccaccccaa aaaaatcaac gagtaattca ac |
#tgacttgc 42780 |
agttttacaa tatttttata gacttctttc agcgtagatg cttttggaca ta |
#ctcatttg 42840 |
tttcctaacc tgatgtgata ttgtgctatt tttaaggggc ttttaaaaaa ta |
#cgctgtgt 42900 |
tgggttttgc cttgaaaata ggctttattt cttttttgcc tcatggccac aa |
#aaaaagga 42960 |
tgtccatgat caatgatctg tgaatttctt ttctgtaaac agaaagagca tg |
#taactgct 43020 |
ttctaattgt tttggagaat gtgatagaca ttagtattat tattattggc tt |
#ggagcatt 43080 |
ttccttaata tgttggtaac tacttttgtc agtgaatatt agtgtagcca ct |
#gttggaca 43140 |
cagagcaccg tcagaaagct actgaagtgg tgctgcaaag tgcagacatc tt |
#cagatctt 43200 |
tactcaagtc tgtgcagaga ggtctttctt ggtctccttc tctacttttt ag |
#cctgtctc 43260 |
cctcttctca ctgtaacact tcatattccc cttccctgct ctattatttt tc |
#tcttttag 43320 |
cattcatagt tatctaactt tctgtatttt ttctctttat cttgtttagt gt |
#ctgtcttc 43380 |
ccactagaat gtaagcttca tgaggacagg gattagtgtc tgttttgttc ac |
#tgcatctc 43440 |
tagggcttac aacattgtag gtactcagta aatatttgtt aaatcaatgt ga |
#aatgtgtc 43500 |
atttatcctt aaggaattga ccttcatggt agaagtgtaa cagaaccacc ta |
#tatcctac 43560 |
ttttcatcca catcataact attatgtgaa taccttggaa gtaaagcaaa at |
#aagcactt 43620 |
aactaaagag acgctttata ttgaaactgt tgttctgggt ttctggaatt ag |
#tactctga 43680 |
aattggctcc ctctaggaag gcttgtgaag agagtagtgt tgaacagaca tg |
#acagtttc 43740 |
caagaaagca tagttggcta agaggagtag gattttccaa gcaaagagtg tg |
#acagtgga 43800 |
gatggctggg gctaagtcag gcagaatgtg ttcaaacctg tttttctctg ac |
#ctgagatt 43860 |
gcggagggaa tattgggaag gtatagttac ctggtgagga gagccagttt tg |
#tgaagaat 43920 |
caagaatgag gagatttaat ttgttatgca gatgtctggg aaccacagca ga |
#ttatcagg 43980 |
agagcaaaat tgttagtcag aattacatcg ttagaaggta atccttaagt tt |
#tgtagatt 44040 |
tctagaatgt aaggaagctc tcagaggtgc cataaggtga gtatggccta ag |
#gatgtggc 44100 |
tatggcagtg tagcaaaatg gacaactatg aaaaatgtct agagaaaagt gc |
#aacatagc 44160 |
ttatcaacgg tgcccaaaca aataggaagg atgagaactt tttcaagcta ca |
#gatttcag 44220 |
tagttttgct gctagaaatg ctttaaggaa aactgttaaa aagattagga at |
#gggaatat 44280 |
agataaccgg ctcctaaatt ttgcaagtgg gaccgtcata gaaagctctc ct |
#ataggtat 44340 |
tgagaaatcg agataccacg taagtttcaa gaagcagttt tttttttctt tt |
#tggtcaaa 44400 |
actaatgaca aattctgtcc ccttgtttgt atattttaac ttagtgagac ag |
#gaaacatt 44460 |
tattctatag aagactttta aaatgtagtt taaacaagtt gacacatgct ta |
#ctggttaa 44520 |
tgaaatgtgc atcaacccac tccaaacacc actaatttga catgaactaa ca |
#attaactt 44580 |
ttcttactca ctgtcaaaag tatatcattc tgccttaact taacgcttta cc |
#ttctaaat 44640 |
aaaatttaat cttttaaata agtttttctg ctatgttttc cttgcatatg tc |
#ttaaattt 44700 |
cttctttcgt ctttgctcac tgaagagcat tttctcccac attctagtga ct |
#accagggt 44760 |
ttgtaagcct agagcaccat ccttcattct atctagcagc agttgagaat aa |
#taacagcc 44820 |
atatttctat atatggagct cctccaaagg cctagcctgc attaagcttg tt |
#aattctta 44880 |
ccacagccta ggtattactt ttgttttaca agtgagcaaa ctgaggctag aa |
#aagaggaa 44940 |
atgacttcac acatgttatg tagcaagtac ttgacagagc taggattcaa gc |
#cccctgat 45000 |
ctgtttgatt ctaaagcccg cacgttttcc accacagggc acacagtccc aa |
#accatttt 45060 |
acttaaacac agtttgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tg |
#tgtgttgt 45120 |
ttttttgatg tacctctttg agccacccat gcatttttgg agtttcttgc ta |
#attttaat 45180 |
tttttgtaat tatgtttctc tatttagatg tttaaatcca tgaggcgtaa ac |
#tttaaagt 45240 |
ttcatgcctt atattaatcc tttatagtcc accaaaaatg aaactttttt ct |
#tccttttt 45300 |
tggagtggac atgtagtcac tgcctttttg gagaatgctt ctttagtttg aa |
#gctttctt 45360 |
tattggacta aaattacttt ccaattaaaa tttaactcag caaatattta ct |
#gaatactt 45420 |
gccatgtgct agctaaagat aaacaatgtc ttgagggcat gaaagtgaat ga |
#gatacctg 45480 |
gccttaagga gctcttttat attctaggtc aacagaaaaa catgtaaata gt |
#atctataa 45540 |
tcactgcccc aagatgatgc tcccagtgcc caaggcctta ttgtacattt ca |
#tttaacta 45600 |
agtgtgttaa aatcaaattc taaatgtaga atttttccta ggtatgcctt gc |
#aatagctc 45660 |
attattccca gccaacagac ctccagctac tctttgcatt tgaatatgtt gg |
#gaaaaaat 45720 |
accacaattc aggtaaatat gaaaatatta aatattgtga ctaattttac at |
#gtgtaaat 45780 |
tttactctta tgtttaccgg aagcctccaa gtacatgagc tttaatgatt gt |
#agaattac 45840 |
tagcttcata ccttagagaa gtaagcacta catgctaaaa gagccaatag tt |
#tgtcagat 45900 |
tatttcttga caagttacca ggaagaacct ttaatgctat gaatatgggc tt |
#ataagtta 45960 |
tgtcagatat ttaatctcca gtcactggct tgtattttat gatgaagaat at |
#ataaccca 46020 |
ccctttttaa ttgatagctt gagttaaagt aatcttatct tttaagaaaa ct |
#ggcagaaa 46080 |
actaaaagat atattaaaag cataatcttt tctggcaagg tgtgatttca tg |
#caaaagct 46140 |
aaagtgatta aaaacttttt gtggacttca ttaagattct cagaatactg ag |
#tttctatt 46200 |
tctgagtaat actgatgaaa ggaagatgag catttttcca aggacaagta ta |
#ttctagac 46260 |
agcttttgtg aaagtaaata gttttgtcta tatatctgac agtcatgaca tg |
#accaggga 46320 |
agattccaga tgatcatgca attctgtaca ttctgtttcg tacaaatgta at |
#tttaataa 46380 |
acaattttta aaaatatctt gatagagaaa aacaaagagc cgtgtctcct gt |
#tagcccca 46440 |
ttgtcagtta gtgactgcaa gtcagttaac tgagcgaagc ctgtgttctt tt |
#atttaagc 46500 |
aagaaaaata aatcagctgt gtatttataa tgaaaaatcc attcacccag ca |
#tgctctgg 46560 |
gccatacaaa ttattaattg tactgaaatt ttatattttg ttaccacgaa ac |
#atggtagt 46620 |
aatttaaata actggcataa taaaagtata ttccagcaac actatattgt aa |
#atacatta 46680 |
aaatgtatca gtgtacggta tctgaagatg catgtgtata agtaaatttt cc |
#ttagttta 46740 |
aaagataact acctttctgt taagcactga gaggaccaaa aaaaaaaaaa aa |
#agaaaata 46800 |
cagtagagat aatatatgaa aataatgctt tgcagagcag cttttatcat ac |
#agtattat 46860 |
atttatagaa attgtataac aaaagtattt gtaacttaat ttttcttatc ga |
#tatataca 46920 |
taattgtaac tgaggcttaa gcaatacagt tattttttga agtttattaa ta |
#ttaagtaa 46980 |
attcacttac tgtctaaaaa taaagtatac agatcctgca ctattaggta aa |
#cactcctt 47040 |
gggatcatcg tcaagctaca gaacagtgat caaggttatc ttcaataaga tc |
#ctcaccca 47100 |
gagttgcaag ggttgtagga gtgagtcttt gattcctgct caactgttta tg |
#atacagac 47160 |
cagttcttca tgctgctgtt tttccaatag aaatgattca tttcagttta ca |
#gatccata 47220 |
acttctacag taatgtagtg acttgggctc agcaaagaca gtaaacttca tt |
#atacagtt 47280 |
ggtaacctga tgcctgcttc agttactttc cacatttttc ttcattcata cc |
#ttgtgggc 47340 |
atctctggtt tacagtactt tagtttatcc acccataggt cttctactac tg |
#gaatttta 47400 |
aaatctacat cattcagttc cactatttct tcttatatag cttattgata aa |
#atttgatg 47460 |
attaatactg aaaatattca gggatgcttt tttatattac atccttcaga ct |
#cctccttt 47520 |
gacaagtacc tcataaacat aacactggcc atagttttgt taagattcct cg |
#tagggtaa 47580 |
catcctttaa tatccttcca tgctgttaca gaagcataaa tactgcatct tt |
#aagatcaa 47640 |
aaggagcctg aaatttccac acactgcagt cagaattcat taatttgtga gt |
#gaaagatg 47700 |
cccactcatc cactcttgaa cttctggatg acaccttgat tcattggctg ga |
#ttaaagaa 47760 |
gtcctttttg caggcaggta ggtgacaaag ctgtttccac aaataagatc ca |
#aagttgga 47820 |
ggagctcccc tgcagttatc tgagaaaatg atattttagc tggccttagt ca |
#ctcaggtt 47880 |
ttcattcata ttcagtatca catgaggaaa agccatctct gaaaggtcct gc |
#agtcatcc 47940 |
caacacttct gtgaatatcc tggagtaaag taagatgtgt agcacccagg ct |
#ttggaaca 48000 |
tcgctttgca caaacacccc aggagatatt actagcacaa acaagaacaa tg |
#attctgtt 48060 |
ttttctcttt taactttaaa gaaaccatga ggactctgtt ttcatcagtc ag |
#attattat 48120 |
tgggcaaata acgtcaaaaa agtacagatt catctttctt atagaattga ta |
#agatgtca 48180 |
gattatgctt ctggaccaaa aatattgaaa gtttcatgaa gttatctgca gc |
#ctagtgtc 48240 |
agcaactgct tcatgacaga catcctgctt acagatgctg tgatgtaatc tg |
#aagttgta 48300 |
atgaaatttc acatcagaag ttgtacattt tcagtgacat ttaattttat cc |
#tttttatt 48360 |
aacatagatc ttgttattag attttcctta aaatgcctat ttgaaaaaca ca |
#aggtacac 48420 |
aatccatttg aaacagtata ggaattttta aactttgttg cttaagattc tc |
#agaatagc 48480 |
tataaatgat tgttgaatat tggtggttcc agccagctgt atacatcagg at |
#tactggag 48540 |
gaacctttag aaatgcagcc atgttggctc cagcacaggt cagaatctcc ca |
#gttaagaa 48600 |
ccactttgtt gactcatgct tttgaactga ttaatactca cagtcctctt tt |
#taccttat 48660 |
tcctttgtga cttctaattt ctgcagtatc atcagagtgg tgggctttct tt |
#tcatatat 48720 |
tgatgacttg tattttctgt tgcttgaagc cattctagat atcaattggc ca |
#attcagtg 48780 |
gaaattatct aaaataaccc caacagtata ggattagact tttgtactgt ca |
#cagaagat 48840 |
agccaaggtc aggagcatat aatatctatt tcacgcttag tctgctgtgg ag |
#gcatgtca 48900 |
taaaacctca gtcaggtagc ggtcagcgga gccaggtctc cctgagatga cc |
#cacctttc 48960 |
actgtgttgg tccagcccct catagcgatc cactcataga gcaggccact gg |
#tatcaggt 49020 |
cttttgaact ttggaaagca ttcaaatttc tggactataa aaccagattg ag |
#tatacatt 49080 |
acacattctg taatgagctc taactgaaga tgatatagaa catataaaag ac |
#ctagtccc 49140 |
agttgtttag aaaagtacag gatttgaacg agagaaatgg caaaaataac aa |
#acgataga 49200 |
ggatctcact ttatgcttag aaaatataga tgttctcatt ttacgtttag aa |
#aaatttgt 49260 |
gtaagttaga tcttgaaaca aaatttggcc agagaaacaa tctcataaac aa |
#tagcacat 49320 |
tcttagccta gcttattaaa gtctgcaacc caaaacacta aaaagtattc ag |
#tgctgctg 49380 |
gactcagtca ccaaactgtt ttacataact gttaaaattt tgagtgtgtt tt |
#ttataatt 49440 |
cttttttggt ggtggtggtt ttattgtttg gctaggactg ctggttcagt gt |
#tgaatagc 49500 |
agtaatatta gcaggcataa tttcacttcc cgcttttaat gaagatgctc tt |
#agctatgt 49560 |
ctttttgata aacaccctct atccagttaa ggaaattccc ttttattcca aa |
#cttgctaa 49620 |
cgttgttggg tttttttttt taagtcataa acaggtatct atcatatgtt tt |
#tctgcact 49680 |
tacagagcta gtcattcata tagccttttt cgtgtttaat gtagtcatat ga |
#tgaattac 49740 |
ttagattttc taatattgaa tagctttctt tgttttggtg cactggaaca ct |
#gtatagat 49800 |
tgggctttgc caaaaattcc atatgcaggt tttgtgttct ggagagatca ta |
#actcctaa 49860 |
gtcttccttc tcacagacac gctttttagt tgtgttactc cagagaaggc cc |
#tgagatgg 49920 |
agtgggactc taggatgtgg gcttagaatg agcattttac tatctatcta tc |
#tatctatc 49980 |
tgtctgtcta tctatctatc tgtctattta tttttgagac agagtctcgc tg |
#tgtcgctc 50040 |
aggctggagt gcactggtac gatctcggct cactgcaagc tctgcctgcc ag |
#gttcacac 50100 |
catctcctgc ctcaccctcc caagtagctg ggactacagg cacgtgccgc ca |
#cacccggc 50160 |
ttattttttt ttttttagta tttttaatag agacagggtt tcaccgtgtt ag |
#ccaagatg 50220 |
gtctcgatct cctgaccttg tgatccgccc acctcggcct cccaaagtgt tg |
#ggattaca 50280 |
ggcatgagcc accgcgccca gcaacatttt actttttaat gagctttgtt aa |
#aatcagaa 50340 |
tcactggata attctgatac cacttaagag gagtccaaat tcctaacata gc |
#ccctccgt 50400 |
aatctagagc agcaccgtcc agtgatggaa gtagggcagc cactagagcc ac |
#tagccaca 50460 |
tgtggctgtt aagtacttga aatgtggcta gtgcaactga tggactgaat tt |
#ttaatttt 50520 |
atttaatttt catttcagtt taaatttaaa tgggcttgtg tggctagaag tt |
#acgttttt 50580 |
gggaaacata ctagagtcta ggccctattt gatttcccgc ctctcttcca cc |
#acctgttg 50640 |
aatccctatg ctctagctgt atttagttac ttgatattat acagttatac ca |
#tcttttta 50700 |
aagttcttct ctgtctagca tgcctacctc ctcctcacca gctacctggc aa |
#cttttgac 50760 |
ttgttcctta gaactctctt tagttgtggt caagtcatga agcttttcct gc |
#cccggcct 50820 |
ctctctgcag cgagagttag gggacttctc ttttgcatct tcattgcact ca |
#gacatctg 50880 |
gtactctgtg attatcacac ttattaatgc tctcaagata gagataaaat ct |
#tattcatc 50940 |
tttttgctct caggcattag cacatgggga gttctcagaa aatacctgtc tt |
#ataccagg 51000 |
aattaatgaa taatcagtag gaatgagcat gacatgttca tgggacgttg ga |
#gggtagtg 51060 |
catggctgca gaggagaatg ggaaatgaag gtcagataag ttacgtgagg ga |
#tctctaag 51120 |
gccaagagaa gccatttagg tttgatttgg ttggaaaatg agcttattga aa |
#gtttaagg 51180 |
caagggacta gcatcatgaa cacatctttt tagggaagtg tgtcttgtgg ta |
#agctgctg 51240 |
gctggtttaa atgcagcaga atattccatt ggggatgcca gctgggagac tt |
#gccacagt 51300 |
tgcagcctgc agcagaaaga ccctgggcca gaatgggttg tgccatctgt ca |
#ccagatat 51360 |
tgccaaggta gatctggctg actttgtggg acagcttgtt tctcaataat ca |
#ctttgcag 51420 |
gcactcttga ggctgtgagc atgctcccag aagatagcat tacttctctc tc |
#agagcagg 51480 |
ctcctttcta aggaaatgca agtctaggcc tgccctgctg taatcttcat gt |
#ggaaacag 51540 |
cactctagca aagaacaagg aacctgatga gcttttcaaa ggaaaatcga gt |
#agatacag 51600 |
gaaaccaaga attttctaat gagcagatag aaaagagcag gtaggtgaga ag |
#ttggtatt 51660 |
agaaaaatta aagatttgaa gggcttgagg acagagatga ttgttggatg tt |
#tcattttt 51720 |
ccaggcaaaa tatgtggagc aaataatcaa atgacatgga cttaccccac aa |
#ttagggac 51780 |
ggagatgagg aagggttagg aatagtttct gttagaatgg tagggatgga ag |
#acaattga 51840 |
aaattaaaga gaaaataaat ggagaggaaa tctaggcagc agccattctt ca |
#ttctgggg 51900 |
gaaggtggtc aggaaaagga aggaagaaaa atgtatagca tagtagctag ag |
#tggtccgg 51960 |
cgtgatcaaa gtgttttcaa tatcatgttg actgacctgt ttacgtttga ag |
#gcagagaa 52020 |
gatagagcca gtagaaggag agaaaaatca aagctgtttt acggagttgt ga |
#aagagctg 52080 |
gataaggaca agactaaatg agttattttt aggccaggcg tggtggctca tg |
#cctgtaat 52140 |
cccagcactt tgggaggcca aggcaggtgg ggcacctgag gtcaggagtt ca |
#agagcagc 52200 |
ctagccaaca tggtgaaacc ctgtctctat taaaaataca aaaattagct gg |
#acatggtg 52260 |
catggtggca ggtgcctgta atcccagcta ctcaagaggc tgaggcagga ga |
#atagcttg 52320 |
aacccggggg gcggaggttg cagtcagccg agatcatgcc agtgcattcc ag |
#cctgggcg 52380 |
acagaacgag actccgtcaa aaaaaaaaaa aggagttatt tttaaatgga aa |
#gggcaaga 52440 |
cagttctcgg agagacttgg aaggtgaagc aggttagaga cagcacatca ga |
#gtatgcat 52500 |
gtgacaggag gctcagagaa gagggaatgc tggggaaaat gtgactgtta aa |
#attcataa 52560 |
tgttgctttt tcctacagca aacaaaatta atggaattcc ctcaggagat gg |
#aggaggag 52620 |
gaggaggagg aggtaatgga gctggtggtg gcagcagcca gaaaactcca ct |
#ctttgaaa 52680 |
cttactcgga ttgggacaga gaaatcaaga ggacaggtgc ttccgggtgg ag |
#agtttgtt 52740 |
ctattaacga gggttacatg atatccactt ggtaagtaca attttagcaa tg |
#ttatatat 52800 |
ggctggaagt cacttcccta tgaataatca tcaaactctg ttgtcattga tg |
#actttcaa 52860 |
gttgtggtta atggaatatt tgtttttaat aatgttttaa taaatatttt at |
#tttaaaga 52920 |
tcaaggctta ttaatataaa ttacggtatc ccttaaaaga agttgatagt aa |
#ttccttac 52980 |
tgtcatcagt agtcagtgtt tattgcatta tatcttgtaa ctggtgtttt ac |
#agttggtt 53040 |
tgttcatatc aggatctaaa gtcttcacat tgaatttgct taatatgtct ct |
#taggcctt 53100 |
ttaatctaca acagtctcct cccacctctt ttttacctac tatttgttga ca |
#aaccaggt 53160 |
catttgttcc ctagaatttt ccacattgta gatattgctt gttttatccc ca |
#gggtgtcc 53220 |
cgtaatgtgt tcctctgtct ctaatatttc ctttaaaatg ttagcaacag ag |
#gcttaatc 53280 |
ggattcaggt tcagtacttt tggcaagaat gtttcattag gtggttctgt gt |
#tctcctgt 53340 |
ggagtcacat cccatctcag gctggctggc tgtgtctctc tcattgtaat cc |
#tgacgacc 53400 |
agtgggctta gagggtgtca acctgatcca cccagtaaaa gttcccctct ta |
#tatcatgg 53460 |
tttgagctcc caaaaatagt tttgcactgg gagggaggat cattgctcag at |
#cgttattt 53520 |
cactaaggat tgctattgtt caccttctaa ttctatcatc tttctgcttt ta |
#tcgaactt 53580 |
ttctctcacc agctctttag tgccctgtaa cacagttcgt acaagaaaag ca |
#atataaat 53640 |
atctacattt tctcctttac ttaacatttt tccaaatagt gagctggttc cc |
#taggggat 53700 |
cttctagaag tgactaggaa tttgtttttt taatttgttt aatgtcattt ag |
#ttattatg 53760 |
aattttttgg aatgccttat tttaaggtca ttgaagtcct cattagttca cg |
#cacataag 53820 |
cagcttttta gaaaaaggaa gaaaagcact actgtgttat tactggttaa tc |
#cagtacca 53880 |
ggaacttcta gtacagttct agaaaggtgc tttgcagcat gtagcttgta tc |
#ttttgctt 53940 |
cccctggaat ttaagcttca aggccagcac actctggtat atgtgctgag aa |
#acatgtga 54000 |
tggggctgcc cagccacgtc ggggaaagaa ggaagatgtc ttgaggtgca gt |
#gagcttgc 54060 |
ccactagtaa ttattgtctg atcagtgtcc tagagtctga ctgtgccttt ta |
#ggcatggg 54120 |
gaaaggtaga agagggactt aagaagagag ctaaagctcc tggtagattt gt |
#ggggtttt 54180 |
cttttgtttg cctggtgtcc ttaaccatag cctgtcaaga gaacaaaggt gg |
#atatattt 54240 |
ttcagtgaac acatacatgt ttaatagtca ttctggaaaa tatttctaat ac |
#cttctttg 54300 |
gaattttctc atgctataaa tttagatttt taagaattgg tcatatcgca cc |
#aattttag 54360 |
actaagaggt gtaggatcgt cactgccccc ccatggtgcc caccatgtgg ct |
#actaagtg 54420 |
gggtgcacat taaatgcgga caacttgctt aattatttat agggtctgca gg |
#agcacact 54480 |
attcctgctt ttagcacagc actcatataa tttttttttt cccctccagc ct |
#tccagaat 54540 |
acattgtagt gccaagttct ttagcagacc aagatctaaa gatcttttcc ca |
#ttcttttg 54600 |
ttgggagaag gatgccagta agtgatttct gttggatttt atgaatgctg ac |
#gtccattg 54660 |
tttctacaca gtgaagtaag gattctacct ctcccctagc tctggtgctg ga |
#gccactct 54720 |
aacggcagtg ctcttgtgcg aatggccctc atcaaagacg tgctgcagca ga |
#ggaagatt 54780 |
gaccagaggt aattgagaaa tggtcattgt cactttagat agttttactt gt |
#tgtgtaac 54840 |
tacagtgagt tccctactaa ttgaaaataa caaaatgcat agtcttacta at |
#tagttagc 54900 |
accatgtttt atataagaat tgccattttg aaaagaatgt gataatatta aa |
#attaactg 54960 |
acattggagt tacactaaat ataatttaat tatttggttt gtaagacact tg |
#tggatctt 55020 |
acattgctga catcttgcta tagcatttcc tataacatac tttcaaagtg ca |
#gtgatatc 55080 |
cagttgagac acttcaggat aaatcaaact tttcttgtag atctgatgtg tc |
#ttatttag 55140 |
gtctacacat ttgcaaatag cctagacagt gcttttaatt agccaccaca ga |
#cgagtctg 55200 |
gcatcatctg ctgtgggtca tagtaactcc ccgtcattaa agtaggaggc ct |
#ttctcagt 55260 |
tgtgctcata gcagtgagca atactattga tcactctctc cttaaacccg cc |
#tgggccct 55320 |
cagcctctgc tcctctccac tctcctgaag ctcctcttcc tcactggcac tc |
#cgtgcctt 55380 |
ctgcagaccc atcctcttct ctccagacat tacacagatt ctaaggccgc tt |
#cctcatgt 55440 |
tctgtattct tttcctaaag aagtttcccc aagaatgtgg ctttagtgac ca |
#acacattt 55500 |
atatcttcag tctaccttga cttctacatg gaggtctcaa agacccctta aa |
#ctcattat 55560 |
gtccaaaacc aaactcaagg atatggcctc catgccctcc cccagcctgc tc |
#tcagaaac 55620 |
cggggggtca tcctggatgc cttcctcttt ctttcccttc cccatcacca at |
#ccctcctc 55680 |
aggttttctc acttcacttt tcagacacct tgcaaaccca tgtgcttcca ca |
#aacccagc 55740 |
tccacctctg cctgtgtgtt ataagtgcta tcatttcctc cttccatgtc tc |
#ctccaccc 55800 |
ctgggctcca gccccctgga ctttccctgg tgttttcaac ctcctgacat tg |
#tccagcgc 55860 |
tcttcccttc tggactgcct tctttgcact catctgggaa cactctccac gc |
#ttacccac 55920 |
ttggcactcc ttgtttcttt ttttttgaga cagagtctca ctctgtcacc ca |
#tgctggag 55980 |
tgcagtggta cgatctcggc tcccgggttc aagtgattat catgcctcag cc |
#tcctgagt 56040 |
agctgggatt acaggcaccc accaccacat ccagctgatt tttgtatttt ta |
#atagagac 56100 |
aagatttcac catgtcggcc aggctggtct cgaactcctg acctcaggtg at |
#ccacccgc 56160 |
ctcggcctac cgaagtgctg ggattacagg cgtgagccac tgcacccggc tc |
#actcattc 56220 |
tttatatctc aattcaaaca tcatttcctc aagataagcc ttctctcccc tc |
#taaagttt 56280 |
gatcagacct caaaagtcta tgttcttaga gctcctgagt ttttaacatt ta |
#tttcagtt 56340 |
tttaattata tatgtgtgtg ttacagtttg attaccgcct gtcgttttta ct |
#ccatgaga 56400 |
tgagggacta tgtctgtttt gcacaccgtt atatatttag cacccaggaa gc |
#atatatga 56460 |
tatttattca atacttgttg aataaatgag gagtaaatga acagatctta ta |
#aaacaggc 56520 |
ttatggagcc tcagaaattg tgtatcacag tcctttttgg tacagccaga gt |
#gtagggtt 56580 |
tttccactgt accgtaactg acagagccat attcactgaa gcaaataacc at |
#caagtgac 56640 |
cctcaaatga ccttcagttt tctggaaagg aaggtgacta tagttcacac ga |
#gtccgtat 56700 |
tctctgtgga ttttgattta cctgaactcc atttggaatt aactgtctgc tg |
#tgtcatac 56760 |
tccaagcctt gttttcatta gcatacatgc tgatgaagtg cacagttagg aa |
#ttttgctg 56820 |
ttaaagggac aattgtagca ttgttgggtg agagttagtt ataaaacctt at |
#aatcagtg 56880 |
gcagtttcag tgatttatta agctgaaaat tactttaatg ccttttgtgt tt |
#tcagctat 56940 |
cctattcttc ataagtagaa cagatcctct tttttgtcca acctcgtctc ct |
#aacctttt 57000 |
tccctcaggt gtgtcatcta gccccactgg ccttctttag gtttctcagc ag |
#ccatgctt 57060 |
gttacctgcc acagggccct tgcactagct gccctctgcc tagaacattt tc |
#accccaga 57120 |
tctttacatt gcttctctat tcatttaggt ttcggcttca gtaccatctt ca |
#cagagcag 57180 |
ctgtttttca ccatgtgacc taaagtagcc tgtaatctca tgattacatc at |
#ccatggca 57240 |
ttcaccacag cccatttatc ttatcatcta ccccacccca cgaagaatgt ca |
#acccccca 57300 |
cttgcttggg caacaccagt agtaaaattg gaatgataca gggaaggtta gc |
#atagccct 57360 |
tgcacaaaga tgacatgcag gttcatgaca cattacatat tttaatgaaa tg |
#ggagcata 57420 |
ttcttgttat ttaattttta aaaatcagtt tatcaagcaa atgtacagcg cc |
#attttatt 57480 |
tttcatgcct acattaaatt ccatacacat aaaggtgcat agaggaaacc ta |
#gaaagatt 57540 |
gcaccaaaat tttagaattc tgagtgattt tgtttttctt atcttttcta gg |
#tgttttta 57600 |
aacattccac actaatttat attacttttt ctattcagga aaaaaaaaaa ca |
#acagcagg 57660 |
gttttgtttt gtttttttaa agtggtgtgg aagttaccca ttgaatatag at |
#gggaatcc 57720 |
cagtcctggc tgtttccttt gaaaagatct agagacccca tggcacatat tt |
#atagtagc 57780 |
ccattctctc ctaagaatag aggaagggtg ggaggaattt tggtgaatgt ct |
#gtacttgc 57840 |
agtttatcct acagcaaatc gttaagactg tgggaatagg tgctttgcat tc |
#tctagagc 57900 |
tggagaatgt gcatctggtt tgccatcctt ctgtctacat catgtggaaa ga |
#tgtgggag 57960 |
tgtagggtct ccttaatcta aatgcagtgc tgccccgccc cccccttggc ag |
#tgtttctg 58020 |
tttcccaggc aagtgttcca atggatgtgc tttattttct cccatcagaa at |
#aagggaat 58080 |
gagcccgggc gcggtggctc acgcctgtaa tcccagcact ttgggaggcc aa |
#ggggggtg 58140 |
aatcacaagg tcaggagttt gagaccagcc tggccaacat ggtgaaaccc cg |
#cctctact 58200 |
aaaaatacag aaatttagcc aggtgtggtg gcgggtgcct gtaatcccaa ct |
#actcggga 58260 |
gggtgaggca ggagaatcgc ttgaacccgg gagggggagg ttgcagtgag cc |
#gagatggt 58320 |
gccactgcac tccagcctgg gcgacagtat gagactccgt ctcaaaaaga aa |
#aagaagga 58380 |
aatgatctaa tttgttctgt gcactgcacg tgggggtggc agtgaggtga at |
#ggcagcat 58440 |
tctgcagtag tcaaagccag atgggtggga gaagttgggt gctaagaggg aa |
#acaaagtt 58500 |
tacctgtctt ctccttgatt tcactctcag ttttatgaga atacagaaaa at |
#catgcaga 58560 |
gaaacctgat ggaatagtct ctaaaactaa aaaataagat aagcaatggt tc |
#tgtcttaa 58620 |
aaaaaaaaaa gtaaactcca tgaaggcaga gaccttacct gtctcattcc tc |
#tctctatc 58680 |
ccctggtcta tagtaagggt taaataaata tatgctgaaa tgaatgagta at |
#gactaaag 58740 |
tatttttgtc tttattagga tttgtaatgc aataactaaa agtcacccac ag |
#agaagtga 58800 |
tgtttacaaa tcagatttgg ataagacctt gcctaatatt caagaagtac ag |
#gcagcatt 58860 |
tgtaaaactg aagcagctat gcgttaatgg taatttcatt cttatttcat at |
#atataatg 58920 |
aacacaggat acagagttgc atgagatgtc aggaaaagtg atgttcttaa aa |
#atgtagaa 58980 |
atagatatat ttaaggagtc tatggaacta tttgtacaaa ttatatatta tt |
#gtatgaga 59040 |
acttcagaac ctcctaagga attaagttta aactactttt tgttttagag gg |
#ggaaaaat 59100 |
gagtgtatta aatttccttc agatgatgaa aggtatagga gaatactttt at |
#aaaagcat 59160 |
ttgctgagta gaacactgta ttaccttaca gacaaactta ttaagattgt aa |
#tacataca 59220 |
gttatacttt gagataggtg acttgacatg ggtatcaaac agctgtgtta ta |
#tctgtagc 59280 |
atcagaattc tgatatatct gagcaaacgt accaggtggc tttcatgtgt cc |
#tgcgggat 59340 |
gagtcacatg aaagcatctt tggtgtaatg tgggtcctcc tcaagagatc ct |
#ctaagtca 59400 |
ccagggagtc agcaaaggca gccttgcagc agatcttgag caatgagtaa gc |
#acttccct 59460 |
gggggagggc cttgcagggg cggggcaggg gcaagttgtt gaaaaaacta gt |
#gtcctgaa 59520 |
tgattatgtg cactctgggc agggcagtga ggatgcctgt cctcatgcag tg |
#gctagccc 59580 |
tcggccacgt gagccatgca cagaggcacc actggcagca ggggtggggc ag |
#ggaagcag 59640 |
gagggcaagg cttgcagtga gaaagccaag ggctagggcc tgggcagctg ac |
#ctcacagg 59700 |
tcaggagggc caggatcaag gcataggctg agcagggacg gctggaattc tt |
#agctgttg 59760 |
ggagtcagag ttggttggac tccaagattt ccctgaaaga gcgagagaga ag |
#atgatgga 59820 |
gccccagggg aatgctttgt tttgctttgt tacagaattg taatgtcttc tt |
#aaatgctt 59880 |
attccatgtt attaaagtga aaatgcatga tatttactta aagctaactt tt |
#aaatatta 59940 |
gaaactgatg tatctcttta ctctgatagg gatcgtataa aataaaaagt aa |
#aaatgtgt 60000 |
atgtatataa tttattacag agccttttga agaaactgaa gagaaatggt ta |
#tcttcact 60060 |
ggaaaatact cgatggttag aatatgtaag gtttgtactt ctttactttc tt |
#ttccttta 60120 |
actttttatt ttgagataac tacagactca ctggaggtac aaaaatagca ca |
#gagggcca 60180 |
tgtacttact cttcatccaa cttcccccaa tagtaacatc tcgtaactag ag |
#tacagcat 60240 |
ccaaaccagg aagctgacac tgggacactg gatagctctt actcaccagt tc |
#atacatgc 60300 |
tgtcgtctgt gtgcatgccc ttaacacagc tgtgcgattt tatcacgtgt gt |
#aggttcac 60360 |
gtaaccacca ccacagggag atacagacct gttccatgac aaggctcccc tg |
#tgctagcc 60420 |
ttcttatagg tgcaccctca tcgccatctg tgtctgttga ctaccactaa tc |
#tcttctca 60480 |
atctctatag ttttgtcata agtcaacccc ttccttttca taaagggttt at |
#gaatttcc 60540 |
ctgatgaaaa agtacaaaat gaggccaggc gtggtggctc atgcctgtaa tc |
#ccagcact 60600 |
ttgggaggcc aaggcgggtg gctcacctga ggtcaggagt tcaagaccag cc |
#tggccaac 60660 |
atggtgaaac cttgtctctg ctaaaaatac aaaaattagc caagcatggt gg |
#cacgcacc 60720 |
tgtagtccca gctactcagg aggctgaggc aggagaatca cttgaacctg gg |
#aggcagag 60780 |
gttgcattga gtcaagatca cgccactgca ctgcagcctg ggtgatagag ca |
#agtctcca 60840 |
tctcaaaaaa aaaaatttac aaagtggggc cggttgtggt agctcatgcc ag |
#taattcca 60900 |
aagctctggg gaggaagatc acttgaggcc agtagttcac aaccagcctg ag |
#caacacag 60960 |
tgagacccca tctccacaaa aaagttggaa actagccagg catggtggca tg |
#tgcctgct 61020 |
gtcctaggga gcctgaggca ggaggatcac ttgaggccag gagttcacaa cc |
#agccgagg 61080 |
aacatagtga gatgcccatc tccacaaaaa aattttaaaa ctaggcaggc at |
#ggtggctc 61140 |
gtgcctgtgg tcctagctgc tcaggaggtg gaggcaggag gatcacttga gg |
#ccaggagt 61200 |
tcagggttac aatgagctgt gatatgccac tgcactctag tgtgggtgac aa |
#aatgagag 61260 |
cctgtctctt aaaaagaaaa caaaaattac aaaatatact cctttgagaa at |
#cgtataag 61320 |
taactaaaga aactttacgg taatgcgaaa gctatgtgca ttcagtagaa ag |
#cagtcaat 61380 |
cctctcttgt gatgctgagt agcagcaggg agccacagct gccagtcagc ca |
#cacagtct 61440 |
cagtttaggg tattttcagc ttacagtggg ttatcatggg tcatgagtta tg |
#ggaatatc 61500 |
atgatcagag agcatctgta aagtgagaaa ttagatttgc ttgatttcaa gt |
#actttatg 61560 |
tatttgtagt ggaaatttga tttttaacac tgcttttcct tttctctctt ca |
#gggcattc 61620 |
cttaagcatt cagcagaact tgtatacatg ctagaaagca aacatctctc tg |
#tagtccta 61680 |
caaggtaact aaagtaactc ctgaaagcac catgaccacc ataccagcca gc |
#cttggttt 61740 |
actgcttgtc cccattcaag taaatcacat cagttttagc tatttcttat tt |
#actacagt 61800 |
accatcaaat acattacaga ttttgcacat catttgagta aaacagtggc ac |
#aggctggg 61860 |
cgcagtggct gaagcctgta atcccagact ttgggaggtc gaggcgggcg ga |
#tcacttga 61920 |
ggtcagaagt ttgagatcag cctggccaac gtggtgaaac cttgtctcta ct |
#aaaaatac 61980 |
aaaaattagt caggagtggt ggtgtgcgcc tgtagtctca gctactcggg ag |
#gccgaggc 62040 |
aggagtatca cttgaaccta ggaggcggag gttgcagtga gcagagatcg ca |
#ccactgca 62100 |
ctccagcctg ggcaacacag caagactcaa aaaaaaaata aataaaaacc ag |
#tggcacaa 62160 |
ggactgcaaa tagaagaata gaaagtagtc cagtttttac cctttattaa at |
#tatccttc 62220 |
ctattttatg ggaagggtgg gtcccatccc ctaatggatt aatacttagt gt |
#taattttg 62280 |
acagggcatt ctctctctgt aattttgctg tctaatttgt acaaatttgt tt |
#tagtttaa 62340 |
ataccttctg gctcatgcta gattatgact ctaaggaagc agtttgagat ga |
#agaaattt 62400 |
agactgaact gctgaatagc tagtaatgta atatttggta ggaataaacg gt |
#gatgtaaa 62460 |
aatctttcag ttaagcaaag gataattaca tattaaataa cttacagcta at |
#agaatttg 62520 |
taagtttgca gataaagttc aatagactaa aaactacctt cgtataatac ag |
#tagtaggt 62580 |
cctttgtacc catggcttcc ccatctgtgg tcaaccaacc caggactgaa aa |
#tattggcg 62640 |
ggggaaagct ttggccgtaa tgaacatgaa cagacttttt ttttgttgtc at |
#tattctct 62700 |
aaacagtata gtataacaac tgtttacata gcatttacat tgtattaggt gt |
#tataagta 62760 |
atctagaggt aacttaaagt gtacaggagg atgtgcatag gttatatgca aa |
#tattaaca 62820 |
tcattttata tccaggactt aagcatttgt ggatcttggt atccaaagga gg |
#ccctggaa 62880 |
tgagttcccc atggatactg agggaagact atatactcat gttgcatagt at |
#atgaatac 62940 |
aaaatgttgc ttaagcttgc agaagtactt tttttttttt tgagatggag tt |
#tcgctcct 63000 |
gtcacctagg ctggagtgca gtggaacgat ctcagctcac tgcaacctcc ac |
#ctcctggg 63060 |
ttcaagcgat tctcctgctt cagcctccca agtagctggg attacaagca tg |
#caccacca 63120 |
cgcccggcta atttttgtat ttttactaga gatggggttt caccttgttg gc |
#caggctgc 63180 |
tctcgaactc ctgccctcag gtggtctgcc cacctcagcc tcccaaagtg ct |
#aggattat 63240 |
aggcgtgagc caccgtgcct ggccaggctt gcagaagtac atttaacaac tg |
#ccaaactt 63300 |
gattgacttt aacaaggcaa aaatctttaa gactcttaga aaaaaatcaa at |
#agtaatgt 63360 |
gtcatataaa gtaatcctga actgatacag tcagagtgtg tgtttaactc ac |
#aaatgcat 63420 |
gcagagccta ataatcacaa tttctctcat ccagtgggtg ttctcatcgt at |
#tggagaac 63480 |
cctactcatc ctccatttct ccatgcattt gtaatagaaa aggcctcaga ag |
#tagcactg 63540 |
aaccttcatt ttactagcat ttttatatac gtttattttt aaacagtttg tt |
#aaaaattt 63600 |
acatactatg gaattcaccc atttttaatt tgtaattcag taaattttag ta |
#aatataca 63660 |
gagtctagtt ttggaaattt ttcatcaccc caaaagtccc agctccaggc ag |
#ccactaat 63720 |
ctttctgtct ctagattttc cctttctggg catttcatat aaatggaatc at |
#acaatatg 63780 |
tggccttttg ccgctggctt ctttcattca acatacatgt ttttgaggtt ca |
#ttcatgta 63840 |
gtgtgtatca gcaatctttt cctttttatt tctgaattgt attccactgt tt |
#gtaaatgc 63900 |
attttgctta cccatttacc tgttgatgga catttgggtt gtttccactt tg |
#tggctgtt 63960 |
atgaattatg ctgcttcatt tatttagatc tttcatttta tcagcagtgt tt |
#tattatgt 64020 |
aagtcttata tttattttgt taaatctctt aagtatttta tttttatgtc ac |
#tgtgaata 64080 |
taattgttaa tttcattttc aggtttacta tgtactcaga ttgttgtgta ca |
#gaatttct 64140 |
gtaaccttac tgacctcatt tattaattct agtagttatt ttgtggattc cg |
#taggagtt 64200 |
tttacataca ggatcatatt gtcttcaaag acagttttta cctttttctt tc |
#tgatctga 64260 |
atgcctttta ttttcttttt cttgcctaat tgctctggct agattctcca gt |
#tcaatgag 64320 |
atggagaagt gtagagaaca gacatcctta tcatcttcct gatcttaggg ag |
#agagtatc 64380 |
cagtctttca ccagtgaaat gggaataaca ttaattgtag gtttttgtgg at |
#gtctctga 64440 |
tcagtttaaa tatgtttact tttattccta atcaggaatg aaggtagaat tg |
#tatcagat 64500 |
gctttttccg catctaatga gataatcgtg ttggttttgt cctttattac tg |
#tggtacgt 64560 |
tactacaatt gacagatgtt aaaccaactt tgcattcctg gataatttgg tt |
#tactcata 64620 |
tttttattga tttttacatc tgtaatcata agggatattg gtcaatagtt gt |
#cttctgat 64680 |
ttccctggct gactttgata gcgtggcaat tctggcctta ttggaaagga ca |
#acaactat 64740 |
aaaagacagg agggaatcgt ttgccacagc ttcagttggt agtgaacagt cc |
#cactctcc 64800 |
ccattcactt ctcagtattg ccatgtggcc tgtcagtaga aagattacct ta |
#tacttaat 64860 |
accttgacaa aagagcagta gaatggagtc tagacggatt ttctaccaca aa |
#ccattcga 64920 |
atgtaaaaag tatgagtgat gagcttctat tatctggcaa atatccatgt at |
#aaaagacc 64980 |
atctcctatt aaatgctaat ttagtttatc tacaagtctg taatatttta ga |
#gttgctgg 65040 |
aatccagtaa aatttcctta tacagatttg gaaggcagcc taggtgtgca ga |
#atactaaa 65100 |
ttatctagtt tacctttcct tccctttctc tctcagcatt tttctatgtt gt |
#aatcattt 65160 |
tctttccatt ttattaacag aggaggaagg aagagacttg agctgttgtg ta |
#gcttctct 65220 |
tgttcaagtg atgctggatc cctattttag gacaattact ggatttcaga gt |
#ctgataca 65280 |
gaaggagtgg gtcatggcag gatatcagtt tctagacaga tgcaaccatc ta |
#aagagatc 65340 |
agagaaagag gtaacaaaat cttgatgcct ttttatcagt ctttaaggat ac |
#acaaaata 65400 |
aaatttgtgt cattaaaaga tgaaggggct tttaaaaaat actgtattta gt |
#acaactta 65460 |
atttccttag tccaaagcta actaatggat tagagttcaa attgatgtac tt |
#attataaa 65520 |
gattatcgta actatgaagg tgaaattttt aaaagttgtc tattgaattt gt |
#ctaagtgg 65580 |
aaaactactg aaaaaattct gaataaaata ctgaaaaaca gataacaagc ac |
#attggcta 65640 |
ttttgaaaaa tcacttttgg aatatcatat tttcttaaaa tgggatacat ag |
#gttaagat 65700 |
gaaaagtttg agagggccac ctttgcaaca gctgtggagt tagtggctgc ct |
#cggatctc 65760 |
tagttaggct gcggaaggcc ttacaaatat cttaccggcc aggcaggtca gt |
#cagatcag 65820 |
tttttagaag gttgtttcag agagcgccat ttgacttgtg gtgtctcata aa |
#aaatagtg 65880 |
gtcacccgct actgcacttg gggacacacc acgtgaccta ggctcatccc aa |
#agtgtttt 65940 |
ctgaaatatg gggatgtttt ctggatgctg agcctacagg atcaaccaaa ca |
#ttagagaa 66000 |
gtttggttga tggttttgtt ttgttatata atctaaagaa ttgtttctaa ga |
#catgctta 66060 |
aacacatatt ttgctcttcc cccttcatat agtggcaacc cgctcaactg tg |
#tgctttgc 66120 |
tgtttcaact tgttacatgt actgggcaaa taagggttgt gatgtttatc ac |
#ggttgaat 66180 |
gttacttctt gggtttgata gatgtgtata gctcagctta gaaggcaagt gt |
#tttaggct 66240 |
tcgatgtttt ctcattcatc tcttctttaa catcagcagt acattttgaa gt |
#aaatgtga 66300 |
acggctgaag gataacatta aatgatccca ttgtctcttt gtatttgcca gt |
#ctccttta 66360 |
tttttgctat tcttggatgc cacctggcag ctgttagaac aatatcctgc ag |
#cttttgag 66420 |
ttctccgaaa cctacctggc agtgttgtat gacagcaccc ggatctcact gt |
#ttggcacc 66480 |
ttcctgttca actcccctca ccagcgagtg aagcaaagca cggtaagcaa cc |
#ctgtggct 66540 |
gtggctacgt tttccctgtt tttacaactt tatcgaggca taattgaagt at |
#aattcact 66600 |
gcctatttaa aatcttatga tttaaaattc ttactgccat tttcagctga aa |
#tttctgaa 66660 |
tggattattt tgaagacaca aaaatctagg aaattatttt tatgaatgaa ca |
#ttttttgt 66720 |
tttactctaa tgtaaatgtt ttgtagtaaa cccctttaaa gatgtaaatt ac |
#tttaacca 66780 |
ccttaaatgt catgcttttg tatttatatt tcacatttgg gctattgggt ag |
#taaaaaac 66840 |
aaaagccctg ttacacgaca tttatttcct aggtcagtag gataaaaagt tg |
#tacaaaac 66900 |
aagattattt tccttcacga gtttgaagtt tctggtcaca attcattgat gt |
#agaggatt 66960 |
tatgactaag cagggtctca agccaaactt gaaaccattc tgaaccaaag tg |
#ccatttca 67020 |
cccacctcga accaacaaca gaagctgaca aatgccgtgg agaccattga ga |
#gaaacaga 67080 |
aaggggcagc tcttgtggac cttcaggaag cctttctagg aagaggattg cc |
#ctcatagt 67140 |
gagctccggg gtcttcagcc tcagccgtaa ggccctgggc taggcagtgt ga |
#cctaggga 67200 |
gcgggaaacc tgagttctgg ccctggtctg ggaaaagtgc taggcccatg tt |
#ccactcag 67260 |
gcttcagcct gagagtccag gttgctaacc tgtaaaatgg atctgtcaaa ct |
#aacactta 67320 |
tgcctttagt ctcattgtat gaggtgaaac attttgtaaa ctgtgaatca tt |
#atgcaaat 67380 |
tttcctaaag acatatgaat tattctggat ttgttggtat aaaagacaaa ac |
#acactggt 67440 |
cagttaagga gctgatttta tttaggctat tgcaggaggg agaacttaat ta |
#atgggcat 67500 |
cccaaagaaa aggacaaggc ctgggatttt atagtcagaa gacaggggaa tc |
#aggaggga 67560 |
gggcagtctc agtccacagg agccagttct caggacacaa aaggcaggag ag |
#attgtcca 67620 |
gcattgccac ttttggggaa cccagggctc aaagaaactc aacaccgtca gc |
#ctgtctct 67680 |
acaaaaaata caaaaattag ccagacatgg tggtgcgcac ctgtggtccc ag |
#ctactggg 67740 |
gaggctgagg tgggaggatg gcttaagccc aggaggcaga gattgcagtg ag |
#ctgagact 67800 |
gtgccactgc actccagcct gggtgataga gccagagtct gtcccctgcc ca |
#ccccacca 67860 |
ggaaagtttg acctttccag atactgtgct gagaaccagt gatacaggct ta |
#gaggctcc 67920 |
tgaggcatgg aacgctcatt tgttcctaaa atacatgctc tcccagttgc tt |
#gtttttat 67980 |
ttttcgtcac cataatcatt cttggggccc ctctctgcct cgagctaggc tt |
#tccccctg 68040 |
gccttgtttg cctccttcag ctcttcccca ttgtctcccg tcactacccc gt |
#gcgcacac 68100 |
agtgtgagcc tgcaaaaggt gcgtgaggcg aggacaaaga ctttggggtc tg |
#gggactgg 68160 |
gcagtgcatg ggtgggtatc tgcgtggagg actcccagcc cccagacacc ac |
#tgcctctg 68220 |
ctgcttggct gatgctgtgt gtgcggacag acttctcacc aggaatgaac at |
#tactgaat 68280 |
tgtattgagg gagctgtaaa aaatactttc tacaagtatt tcctctgctt tc |
#cctgttca 68340 |
tgttctagtg ctctttttaa tttggctctt tcaaaagcct tttctgacaa at |
#actaacat 68400 |
gaatccccct ctcccttcct ccctagcagg aactggtcat tgtctaaggg tc |
#gtgattct 68460 |
taaccgttct cagccccttc cacacaggca aaagcccaaa gcatttcttc ct |
#tttttttc 68520 |
cattctgagg ccaccttagg tgctagtggc caggtagtgt ttatagaaaa tc |
#tggtctct 68580 |
cttgggataa atatttttaa tttttacctt ttaaaaaaga gaacatcttt tt |
#tttttttt 68640 |
ttaagacagt ttggctctgt cacccaggct ggagtacagt ggtacaatat ca |
#gctcactg 68700 |
caacctctgc ctcctgggtc caagcactgc tctcgcctca accacctgag ta |
#gctaggac 68760 |
tgcaggcgca tgccaccacg cctagctaat ttttgtattt ttttgtagag tc |
#agggtttc 68820 |
gccatgttgc ccagtctggt cttgaactcc tggactcaag caatccgccc ac |
#ctcagctt 68880 |
cccaaagtac tgggattaca ggcgtgagcc accgtgcttg gccaagagga ca |
#ttttctat 68940 |
atacttactg aagggccatt aaaacacgtt tgggttcatg ttttactaga tt |
#tcagctct 69000 |
taacagtgtt tgaagcaaat ggattgtttt taatccatgt acatgatgaa at |
#gtcaagta 69060 |
actaaaattt tttttttttt ttttttgaga cagagtcttg ctctatcacc ca |
#ggctggag 69120 |
cacagtggca tgatctcggc tcactgcaac ctctgccttc caggttcagg tg |
#attctcct 69180 |
gccacagcct cccgagtagc tgggactaca ggtgcacacc accatgcctg gc |
#taattttt 69240 |
gtatttttag tagagacggg gtttcaccat attggccagg ctggtcttga ac |
#tcctgacc 69300 |
tcgtgatccg cctgccttcg gcctcccaaa gtgctgggat tacaggcatg ag |
#tcaccact 69360 |
gcgcctggcc aaaactgtta agagtatgtg tatttggtgc ttaatgaatt tt |
#tacttatt 69420 |
tgaaatagaa aattttgtaa aactttacaa aatgccctgt gctgttacac ag |
#cttagcca 69480 |
tttcttgatg attcaagccg ccactgtgcc agggaatgcc acctggctgt ga |
#tgtagtca 69540 |
tggcctcctg actgctatat tcttgtccta ataacattca ttgtttgcct tt |
#ttaataat 69600 |
ttccaaataa attcttgggg gttttttttt ggtagaaaat ttggagagta ct |
#gaaaggta 69660 |
cagaacaaag aatcagacat ttcccatcat ccagcgactt tgtgtctgga gt |
#tatttcct 69720 |
ccagcgaact gttgtgtata cactgctgtg gtagcctgct gccatcaatc ag |
#ctgagatg 69780 |
agagtccttt ctccacattg ctaaatgtga ctgtgcttca tagaaatggt ct |
#gggctgcc 69840 |
ttccagagga gctccatgtc ttcctcacaa tgcggtggtt ggctgtcacc ct |
#gtagcctt 69900 |
gtgttgcctc agtttactgt ggtgggaagc cagataacta ggctgcaccc gc |
#ccagagtc 69960 |
cgggctagag gtggactcct gtgaaggagg ggtctcctgt gtacatggtc tc |
#catggttt 70020 |
tagccacatg ctaggaccac agggagttga tcccttcctt cctaccctga gt |
#ctgtggtc 70080 |
tgtgatttga gatcactggc tcagtgaagt gtagctcccc acttacgaag ta |
#agttataa 70140 |
aattggtggc agtgatttcc atccaaagat tttgttaatc cacttaccaa ca |
#ggtaacta 70200 |
cttaaatgta ctgaccgtgt gctcataaaa gtaaaatact gtaattatag aa |
#ataaattc 70260 |
aacatgttta agactttcta gtatcatgtt agtgaaactt ctcttaataa ca |
#ttcttatt 70320 |
gcccaaaggg cacggcttcc ttggggtcct aaggcagagg gcacctgaaa ag |
#cacactcc 70380 |
ttgttcatgg ggactgtggg gccctctgag ctcaaaggcc aggagcgtct cc |
#tctcttga 70440 |
agtgaaagtg ccactctggt gggttttgag ggctgcagta cagaacattt aa |
#cctgtgta 70500 |
atgatgagtg gctcatctga aaaaaggcat tcatgagaga atctttagtt tt |
#gcaaatat 70560 |
ttatttattt attttgcagg aatttgctat aagcaaaaac atccaattgg gt |
#gatgagaa 70620 |
gggcttaaaa ttcccctctg tttgggactg gtctctccag tttacagcaa ag |
#gatcgcac 70680 |
ccttttccat aaccccttct acattggaaa gagcacacct tgtatacaga at |
#ggctccgt 70740 |
gaagtctttt aaacggacaa aggtaaatca cagctaacaa aacgtgatgt tg |
#gctcacac 70800 |
gtaaccaaac acctcttttt cagaacagag agcgttaaaa gtaaaggcac tt |
#ccaagagt 70860 |
aacactgcta atgcgggttt ctgaggggtc attccctttt taactcaaat ga |
#ctgtatcc 70920 |
cagctttctt cctggtgtct gaggcccaca aagtctcagt acctgagagt gg |
#gcagattg 70980 |
cagctttgag cctgcaagcc tgatttacta aagccccatt tatccatttc tt |
#gatgattc 71040 |
aagccgccac tgtggcaggg aatgccgcct ggctgtgatg tagtcatggc ct |
#cctgactg 71100 |
ctatattctt gtcctaataa cattcattgt ttgccttttt aataattccc aa |
#ataaattc 71160 |
ttgggatttt ttttggtaga aaatttgcag actactgaaa ggtacagaac aa |
#agaatcag 71220 |
acatttggcc tcctgactgc ctctgttcag tttgccattg ttcttgatag aa |
#tcggccag 71280 |
gtctagtgtt ttttctagcc cgtcttagaa cttatcctta agcaaattag tg |
#gataggag 71340 |
gtactctcat cccgccccca ttcaggctga tagtaacagc ctaggtagag tc |
#aacacata 71400 |
aaaaagtgta attccagggg aggaggatta gaataaggac acaaaggaag gg |
#aggaaaat 71460 |
gttctttgag gctgaaattc cattaatttt tcatagtatt gagtttatat tt |
#gccattgc 71520 |
atccttcaat ctttctaaaa agggaatccc cggaacataa taaaatctct tc |
#tgtataga 71580 |
aaagctacag ctccacacta agaggaatgc cgtctgcctt aaagaatgga at |
#catcagtg 71640 |
accaagaatt acttccaagg agaaattcat tgatattaaa accaaagcca ga |
#tccagctc 71700 |
agcaaaccga cagccagaac agtgatacgg agcagtattt tagagaatgg tt |
#ttccaaac 71760 |
ccgccaacct gcacggtgtt attctgccac gtgtctctgg aacacacata aa |
#actgtgga 71820 |
aactgtgcta cttccgctgg gttcccgagg cccagatcag cctgggtgct cc |
#atcacagc 71880 |
ctttcacaag ctctccctcc tggctgatga agtcgacgta ctgagcagga tg |
#ctgcggca 71940 |
acagcgcagt ggccccctgg aggcctgcta tggggagctg ggccagagca gg |
#atgtactt 72000 |
caacgccagc ggccctcacc acaccgacac ctcggggaca ccggagtttc tc |
#tcctcctc 72060 |
atttccattt tctcctgtag ggaatctgtg cagacgaagc attttaggaa ca |
#ccattaag 72120 |
caaattttta agtggggcca aaatatggtt gtctactgag acattagcaa at |
#gaagacta 72180 |
aaatagggtg ttttctgaac attttgaggg aagctgtcaa cttttttcct ct |
#gaattaac 72240 |
attgctaacc taggcgtttg aatctctaat aactttatat gtaagaataa ta |
#gttggaat 72300 |
ttgcactaat atttaaaaac atgttgaatc atgcttcttt cacacttatt tt |
#aagagaga 72360 |
tgtaaatttt gttcctgtcc tctttctgtc attacaggtc tggctcttgt aa |
#ccgtgatc 72420 |
aaactgttca tgttgtctgc tacatttttg tctccatcca tttttcctac ca |
#cctcctga 72480 |
aggctatctg atagtcagtc acattagcac cccaggcagc agacaacagg aa |
#agttagga 72540 |
aatttgtgtt tcgtgtcatt tttaggagca tctgataaaa cctccagcag gt |
#tttaggaa 72600 |
gtattcatgt atttttctgg ttactttctg tcgtctctaa ttgaactcac ct |
#gatgaagg 72660 |
ttcagtgttc tggggccaga atttatgatt ttagatcacc ttctttggaa cc |
#ttagatca 72720 |
ctgtgttttg aaatcatgag tttgctttta acttcatagg gtcaacttta aa |
#atgatatg 72780 |
cactgttaat tttaaagcat ttgctgcaga taattaaact tagaagtgcc tt |
#tgacttta 72840 |
ggatacaaat attacagaag aaaatataat ttcacttttt aaaattgggg tg |
#ggaaaatc 72900 |
ccattgcata tttgaaatag gcttttcata ctaagcttca tagccaggag tc |
#cccagagt 72960 |
cttgttcctc tgaaagccac tggggagtgg cctctggggt gctgattcca ca |
#gaggtgta 73020 |
tgctgtagac aggagagtgc catctatgcc aaaactcgcc ctcaaaaaca aa |
#caaggctt 73080 |
gctgggaggc gtgctgggct tggccatcag tatttccagt gtggtaaact at |
#tgctggca 73140 |
cttccccctg gaaataacta atgaggttac gagttgggca cctgcacaga tg |
#tccttctc 73200 |
tcatagttcc taatgcttag gaatagagga gaaataaaaa aatggattct ct |
#caaaacac 73260 |
tgccatttga atagcgacag aagtgctccc ccagccccca actttggaca gc |
#aaagttga 73320 |
ggagaatgag cagacacagt tgtttgcttg atctgaatct ctctaaagta aa |
#gtatttcc 73380 |
aaactgtgtg acaagagcct acctaccact gtagcggtca aagctgaagc tt |
#cttacagc 73440 |
agtgaaacgg ggcaccacct cccccacact cctcattccc cgcttaaaac at |
#ggatactt 73500 |
tcaaatttga ctgtttctta aactgccatc ctaagatatg gaaaattttt at |
#agtaaagt 73560 |
gtctagttag cttatttcct tttctaaaac aagtgttttc aagataactg ta |
#ttttacct 73620 |
ttatatgtac tgaatagctg tttctttttg aattatttgc cttttaaaat tt |
#gataatgt 73680 |
ctctggatat aacaggacag gagttcttaa aaaatatctt aagaaattca ct |
#ttatgggt 73740 |
aaacccaagg tttttgccaa cttgttgcct agaaaataag ggctagtttc ag |
#tttataca 73800 |
aatagaatta ttaaacattt tacagtcctt gattagaaac cagacccaat ct |
#ccttataa 73860 |
caccacagcg tatcctgcca ttgacagtgt aatcacaatt ctcccttttt ca |
#tttagctg 73920 |
cttttttatt attactaaat gttttggatt gagcattttt ccctctgtaa tt |
#ttcttcct 73980 |
tcacgtttat tttaactctt gtagtatttt attgttgtta atttacaagt tt |
#aaaaatat 74040 |
taggtactat taataatggt taaaaataga aaaatgcata tttttgtatg at |
#aatcaaat 74100 |
gtaaaatact tttatttttg ctggacagtt gttatatcat gattattgtg ct |
#acagttta 74160 |
ttgtgcataa tatgaaaaac aactatgaca gccttcagtc gggccagggt ga |
#agctgctt 74220 |
ataccacctc tgccgtcaga gggacatgtg gtgacagcag tggtgtggct gc |
#acagggcg 74280 |
cactagagag agctcagcac ccctgctgcc cgccagcaga gcccgtgctg ag |
#ggaatgcc 74340 |
gcacagatgc tgatgcactg ggtgaaattt ctagtattga acgtaaaggt gt |
#acagtgtc 74400 |
ttgctgttat tttatgatgg aaactgattt tgaaaccaaa aatagctaac ta |
#actttatt 74460 |
taaggaaagg atattaattt gtactaacag agggtgaaag ctgttcacat tt |
#gtcaacaa 74520 |
aatctgcttg ctgcagtagt aacctcaagt ggttaaaact tgatttcccg ag |
#aaaactaa 74580 |
aacctttgtg cctaaaattg atgacttgag ttcaagtggg atgagcaaga ag |
#atgtgtta 74640 |
tcttgttgtt caacagtatt gaatgtgaag gaaattttga tggcttaata aa |
#attccaca 74700 |
gcgactgttt gttgttgtca gtatgaaatc atctactgga acacagtgat tg |
#atagaaga 74760 |
ggtgaaggca tcttctccta cccatacttc tgtgtcatcc atgggatgtt tc |
#tgcttgcc 74820 |
ctctaaagcc aggtagtgat cagtaacttt ttttaacagc aattcggaag tg |
#gctaaagt 74880 |
taaagccatg tggatattga tagatcatgc cctaactggt ccttccattc aa |
#taaataaa 74940 |
tataaaaact ggggagtaat attcccccaa gaaggcttca aagaagtcaa ga |
#gacagact 75000 |
ggggttccag tccctgactc ccgggcctgg cgcatggata aatcaccttt ct |
#accacacc 75060 |
cccttgccca gcctgagacc ctcccacaat ggtgatgagc agccgatttg ac |
#tgtactgt 75120 |
caacagagaa aataccccta tctagttatt agggatggtc ccagggagat gg |
#acaatgaa 75180 |
ggacaactgc ctctgataaa gacttcattc ctttcatgat ccgggcccaa tc |
#agtagaac 75240 |
aagcatttac atgttataaa tcaacacaac ttcatgagaa tgttttgatt cc |
#taaagaaa 75300 |
ttggaatttc aactgtttca gcccttctta gataatcata aaagtttaac ag |
#ctaaatgt 75360 |
gtatagggca gtaaagaaaa acttaattca agaatctcgg tttcccatat aa |
#ttaattac 75420 |
ttgaaggaaa cactggttat gctagttttt aaattttttt ttttttgaga ca |
#gagtctcg 75480 |
ctctgtctcc caggctggag tgcagtggtg caatctcggc tcactgcaag ct |
#ccacctcc 75540 |
cgggttcacg ccatcctcct gcctcagcct cctgagtagc tgggaccaca gg |
#cgtgtgcc 75600 |
accaagccca cccaattttt tgtattttta gtagagatgg gtttcaccat gt |
#tggccagg 75660 |
atggtctcga tctcttgacc tcatgatgcg cctgcctcgc tcagcctccc aa |
#agtgctgg 75720 |
gattacaggc atgagccact gtgcccagcc actacttttt tataaaaaaa ac |
#ctaaagat 75780 |
gaatcatcac ttgtttttga gttttccagc tttttgcaca tctaatcata ta |
#gatgcatc 75840 |
cagctccaat aatggtcaac aaaatttttc tcttttaaaa aagttcatta tg |
#agctgggt 75900 |
acagtggctc aatgcctgta atccccagca ctttgggagg ccaaggtgag ta |
#ggtcagtt 75960 |
gaggtcagaa gttccagacc aacctggcca accaacatgg tgaaaccccg tc |
#tctactaa 76020 |
aaatacaaaa tttagccagg cgtggtggcg cacacctgta gtcccagcta ct |
#ggggaccc 76080 |
tgaggcagga gaatcacttg aacctagcag gcggaggttg cagtgagccg ag |
#atcacacc 76140 |
actgcactcc agcctgggtg acagagcgag actctgtctc aaaaaaaaaa aa |
#aaaaaaaa 76200 |
aagtttatta cccactgtgt ggaatcaatg agtgtattca agcaaacact gt |
#tttgtgat 76260 |
atgcagacac tgtaaaatga caagtcaaac tatcaggttt ataatgcacg at |
#aacaaaat 76320 |
taaataaaac atgttttata ctcttgaaaa tcttacatta atgtatgacc aa |
#atatcccc 76380 |
aattccatac cttttagcta aggctttggc tcttagctcc aactgcaacc ac |
#atggcaga 76440 |
cttctacttc agcccccagc ttctgcagtt cagccagcca gatcatctgc tt |
#atgtgaaa 76500 |
gacgatcatt ggggccttta acttccacca gctggaaaag aaatttttaa aa |
#gttgttat 76560 |
tagtatctta ctgaatgaaa agccattcaa gtaagttgta gttgtcactg ac |
#aactattt 76620 |
aaatggctct tctgctctct cactgtattt gtaagtgtaa cacaaatata cg |
#gatggtcc 76680 |
ttcacttaca atggttcacc ttaggatttt ttgacttaaa aatggtgcaa aa |
#gtgatata 76740 |
cattcaacag aaaccatact ctgagtgttg atcttttccc agtatgatac tc |
#catgctgg 76800 |
gcagcagcag tgagccacag ctcccagtca gccacatgat catgaggata ac |
#cagtactc 76860 |
tacggtttgc agtgaactac atgatctgcc caactgtagg ctaatgcaca ca |
#ttctgagc 76920 |
acatttaagg taggctaagc taagctatga ggtttggtgg gataaatatg tt |
#aaatgcat 76980 |
tttcaactta acaatatttt cagttgatgt gtaggattta tcaggacata ag |
#gccatcat 77040 |
aagttgagaa gcgtctgtat gtagctaaga aatttattca gaaattcttc ta |
#ttctgtag 77100 |
aaactagaca gttcttcaca gaggatgagt aaactgattc ttagtatagc aa |
#atgaaaaa 77160 |
ttgttttaaa gcatgcactg gattttactt ccttgcttaa aaccctccga tt |
#actctgtt 77220 |
acattttcaa ttaaatctaa ccttcttgcc atgaccagtc tcttccctac cc |
#caaggccc 77280 |
tcacttccac ttgctacttg ctgttcccgc tgcctgggac atttctccct gt |
#tcttgaca 77340 |
tgcctgactt cttacctttc aatgctcagc ttaaactgat ctggagaggt ca |
#cagctcta 77400 |
agtatatcct ccctatgcac ttctttcatg gcattcataa gataaaaata ta |
#tactacat 77460 |
gtcatcttca tgaaggcaag aattgtgtgt tttgttcact acacatcact ag |
#acttgaag 77520 |
acacagcaat aaaaactata ggtaaaatat agaaaaaaat tgtttaaata ca |
#gcatttag 77580 |
cagcctaagg gacatttaat tagagtcccc aaaggaacga gaaaaaaaaa ta |
#cttaaaga 77640 |
aaaaatggcc aaaaattttc caaatttgat gaaaacagta aacccaaaga tt |
#gaagaaaa 77700 |
tcaatgaatc ccaggcacac aaatgtaacg gcaccctagg aaatatcaca ac |
#tgtataat 77760 |
caggggatat agtcaaagca gccagaattt ttaaagccag aggaaaaaaa aa |
#gattctct 77820 |
gattggaaac catgctagtt agaagacagt agactaatat ttttaaagta tt |
#gaaaaata 77880 |
actgtcaaca taaaattcat tgcacggaga aaatatcttt caaaaacaaa gg |
#tgaaataa 77940 |
aggctaagac atacaaaacc taaatacagc catccctcag tatccatggg gg |
#actgattc 78000 |
aaggaccccc tctgttacca aaatccatgg atgctcaagt ccctgatata aa |
#atggcatc 78060 |
gcatctgcat attctagcac atcttctcat atactttaaa tcatctctac tt |
#ataatacc 78120 |
taatataaat gctatgaaaa tagttgttat gctgtatttt tatttgattt gt |
#ttattgtt 78180 |
gtagttactt tttattgttt ttcttttttc caaatacttt cagtccatgg tt |
#gcatctac 78240 |
agaagcagaa accatggata cagagggcta actactgtaa ttcattacta gc |
#agaacttc 78300 |
tagacatgga aattttttct ttttcttttt ttcttttttt ttgagacaag gt |
#ctcactct 78360 |
gttgcccagg ctggtataca gtggtatgat ctcagcacac tgcagccttg ac |
#ctcccagc 78420 |
ctcaagcagt tctctcacct cagcctccca agcagctggg actacaagtg ca |
#caccacca 78480 |
cacccagcta atttgtttat cgttttgtag agatgaggtc tcactgtgtt tg |
#cccaagct 78540 |
ggtctccaac tcctgagccc aagcaatccg cccacctcag cctcccaaag tg |
#ctggaatt 78600 |
acaggcgtga aaggaaattc ttcaagcagg agaatgagac tacacagaaa cc |
#tggatcta 78660 |
cacaaaagaa tagcaagcac tggaaatgct atgtacatga gtaaatacag ac |
#tcattaat 78720 |
caactgtaga aagcaaaaat aatatgttat agaacatata acacgtagaa gt |
#aaaatata 78780 |
tgaaaacacc acaaaggctg gaagggaaga tatatattat tgaaaggttc tt |
#tttactct 78840 |
aaagtgtgta tcacctgaag gtggataagt ttaagatata taatatacta ac |
#gcaaccac 78900 |
ttcaacacaa tgaacagtta cagctaacaa gccagcaaag ctatcaaatg ca |
#atctttaa 78960 |
aaataagaca gggccaggca ctgtggctca tgcctgcaat cccaacacta ag |
#agaccacg 79020 |
gcaggtgaac tgcttgagcc tggggatttg agatcagcct gggcaacatg gt |
#ggaacccc 79080 |
atctctaaaa aatacaaaaa ccacaaaaat tagccaggca tggtggcgtg ca |
#cctgtggt 79140 |
tccagctact caggaaaaag acaagggaca aaagagttct gagacaaaga ga |
#aaataagt 79200 |
atcaggattt aaagctaagg atatcaataa tcaaattaaa tgtaaatgtt cc |
#aaacaccc 79260 |
cattaaaaga cagaggttaa gttggattca aaagtaagac ccaactatat ga |
#tgcctaca 79320 |
ggaaatccac attaaaaata agataaaaca ggtcaaaagt aaaagaatgg aa |
#aaatgtat 79380 |
catgttaaca ttaaaaaaaa gaaggctgaa gtggctacat gttgacaata tc |
#ggacaaag 79440 |
ttgatttcag agcaaagatt accaggtgta aagggggggt cactgcataa tg |
#ataaaagg 79500 |
gtagactcat gaagaggaca tgacagtcct aaaagtctat gcgtcttata ac |
#agaccttc 79560 |
aaaatacatg aagcaaatag tgatagaaac gcaagaagaa atacacaaat tg |
#gctgggca 79620 |
cggtatactc tcagcatttt gggaggccaa cgtggagccc aggagtttga ga |
#ccagcctg 79680 |
ggcaacatgg tggaacccca tctctacaaa aaataaaaaa aatcagctgg gc |
#atgatggt 79740 |
gcatgcctat agttcgggct actcaacagg ctgaggcaga agaattgctt ga |
#gcctggga 79800 |
gatcaaggct gcagcgatcc aggatcgcac tgccactaca ctccagccta gg |
#tgatagtg 79860 |
agagtctgtc tcaaaaaaca aaaacaaaaa aaaaaagaaa agaaatacca ca |
#attataat 79920 |
cagagatatc aatattctct caataattta tagaacaagt aaataagaaa tc |
#agtaagga 79980 |
cacagacaac ttaaacaaca ctatcaacca acttgaccta attgacattt aa |
#aaatactg 80040 |
cccacaacaa atgctaaaca cacattcttt tcaagtacaa acagaatatt ca |
#ccagggaa 80100 |
taccatattc tggaccataa aacaagtctc aacaaattta gtgggattca aa |
#tcatacaa 80160 |
aatatgtcct ctgaatacaa tggagttaaa ttacaaatca atagcagaaa ga |
#tacctgaa 80220 |
aatctctcaa gtgtttggaa atgtaaatga ctcacttcta aataagccaa gg |
#atcaaaga 80280 |
agagtcaaaa gggaaatcag aaagtattgt gaactgaatg aaaatgaaaa ca |
#actactaa 80340 |
atttgtgagg ttcagataaa gcagcactga gaaggaaatt tggagcacta cc |
#taactcta 80400 |
ttagaaaaga agttctcaaa gcaatcacca tagcttccac cttgagaaac ta |
#ggaaataa 80460 |
aaaaacaaat gaaaccaaaa gctgattctt cgagaaaatc agtaaattga ta |
#aacctcct 80520 |
gccagactca ttagggaaaa aagagaaaag acacaaatta ccaatatcaa ga |
#ataagagc 80580 |
atgacagaga taaagattct acagatatta aaatacagta agaaatacat gg |
#ccgtgtgc 80640 |
ggtggctcac accctgtaat cccagcactt tgggaggcca aggtgggcag at |
#ctgaagcc 80700 |
aggagttcaa gaccagcctg gccaacatgg caaaacctca tctctactaa aa |
#atacaaaa 80760 |
aaaaaaaaaa attatccagg catggtggtg cacagctgta atcccagcta ct |
#agggaggc 80820 |
tgaggcacga gaatcacttg aacccaggag gcggaagttg cagtgagcta ac |
#tcacgcta 80880 |
ctacactcca gtctgggcga cagagcgaga ctccatctca aaaaaaaaaa aa |
#aagaaaag 80940 |
aaacaaatat aaacaacttt aagacaatac ttaaatgaaa tggacaaatt cc |
#ttgaaaga 81000 |
cacaaactag caaagcgcaa tcaagaagaa acagataata tgaacagcct ta |
#tgttgttt 81060 |
aaaaataaat ttaatttata gctttaaatt ttcctccccc caaaatctcc ag |
#gcccatac 81120 |
tgcttcactg gggaattcta tcaaatgttt agggaataat actaattcta ca |
#ccaactat 81180 |
tccatcccac tctgatgctg gtatgactct gaaaccaaaa cccaacaaag ag |
#ataataag 81240 |
aaaagaaaag tacagctcaa tatccttcat gaacatatat gcaaaaattc tt |
#aatatttt 81300 |
acaaaatcaa ctcccatttt tgctgatcaa aataatgctg ttaagatacc aa |
#ttcctctc 81360 |
agattggtct acagattcaa aggaattcca attaaaatct cagctggctt tt |
#tttttttt 81420 |
tttttttttg agatggagtc ttgctctgtc gcccaggctg gagggcagtg gt |
#gccatctc 81480 |
ggctcttgac aacctccacc tcctgggttc aagcgattct cctgcctcag cc |
#tcccaagt 81540 |
agctgggact acaggcgccc gccaccacac ccggctaatt ttttgtattt tt |
#agtagaga 81600 |
cggggtttca ccatgttagc caggatggtc tcaatctcct gacctcgtga tc |
#cgcccacc 81660 |
tctgtctccc aaagtgctgg gattacaggt gtgagccacc gtacccggcc tc |
#agctggct 81720 |
tttttttttc ttggaaactt aaaatttgat gttataattc aaataaaaat gc |
#aaaagagc 81780 |
cagaacaact ttgaaaaaca agtcattata ggacttacac tacctgactc ca |
#agatgtat 81840 |
ctaaagctac aataatcaag aaatacagac aaacagatca atggaaccga ag |
#agtatata 81900 |
gaaacagacc cacatatata tgggttactg atttttgaca aagatacaga gg |
#gaattcag 81960 |
tggaggaagc atggtcttct tgacacatgg agctggaaca agtggatatc ca |
#cacaccac 82020 |
aaatgaattc cagtgcatgc cccacactgt atacaaatgg cgtctcaaat ga |
#tcataaaa 82080 |
ctgaatgtaa aacctaaaac tataacactt ctagaagaaa acaaaggaga aa |
#ctctttgt 82140 |
gaccttggat taggcaagta tttctgacat gtgacaccaa aagcatgatc ca |
#ctagagaa 82200 |
caaataagtt ggattttgtc aaactttgaa acctctgctc ttcaaaagac ac |
#tattaaga 82260 |
aaatgaaaag acaagccata gactgggatg aaatgtcact gataaaggac tt |
#gtatccag 82320 |
gatatataat tttttaatct caaaactcaa taatgagaaa acaaatcacc ag |
#tgatgggc 82380 |
agcagggctg ggctagtgga cagcgttcaa ggaagtgttc actctctgag ct |
#ttttaaaa 82440 |
aattttttgt gggtacatag tagatgtata tatttatggg gtacatgaga tg |
#ttttgata 82500 |
caggcatgca atgtgaacta agcacatcaa ggggaatggg gtatctgtcc cc |
#tcaagcat 82560 |
ttatcctttg agttacaaac cattatactc tttaagtcat tttaaaatgt ac |
#aattatcg 82620 |
gtaagcttct aaaatagctc ctggtgtcca cacccgttgt gaccccctcc ct |
#ttgagtgt 82680 |
cagctggact agagactcgt tcctaaccac agaatacagc aggagtgatg ga |
#acatcatg 82740 |
tccacatcaa gtcataagag atggagctct gtcttgctca cactctgggg ct |
#cctctcac 82800 |
ccgcctgctc tgatgaagcc agtcgcaggg gacaggccca caggaaccca gg |
#ccctcggc 82860 |
ccaaaagctc tcaaggaatt caatcttgcc aacagccact caagaaatgc ct |
#acttgtgg 82920 |
cctctgattc agttgctaat aaggttacca acaggacttt ccattctgcc tc |
#aactgacc 82980 |
ttaaagtgac ggctctggga gttccacacc accaggtcgg ggaggccccc tc |
#gacagtgt 83040 |
cgaaagtcag cagccaggtg cctgcacaca ccactgagca cagggccccc ca |
#ggcaggag 83100 |
acaagatcct gaacacaaaa cacaggacag ttagccactt ccctcgtgac ag |
#agaatgga 83160 |
aataggctcc agggatcacg agacggagaa aagctcagtg tatatgtaat tc |
#agtgcaca 83220 |
tggaccccag gcccaccatg cgctgttctg ctgcttgtac cagagctgca ga |
#gccatggc 83280 |
tggaatccca ctggcaagtg gtgggagact ggtcctcctg tggtcagttt cc |
#aggcttct 83340 |
gcagcgtggc catgctgggg agcgctgagg aagagggatg tggaggatgc ac |
#tcaggaac 83400 |
gcgacagcat ggcctcatag agggcagcag ttgaaggaac acagaaggta |
# 83450 |
<210> SEQ ID NO 4 |
<211> LENGTH: 476 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 4 |
Gly Glu Ile Val Val Asn Glu Val Asn Phe Va |
#l Arg Lys Cys Ile Ala |
1 5 |
# 10 |
# 15 |
Thr Asp Thr Ser Gln Tyr Asp Leu Trp Gly Ly |
#s Leu Ile Cys Ser Asn |
20 |
# 25 |
# 30 |
Phe Lys Ile Ser Phe Ile Thr Asp Asp Pro Me |
#t Pro Leu Gln Lys Phe |
35 |
# 40 |
# 45 |
His Tyr Arg Asn Leu Leu Leu Gly Glu His As |
#p Val Pro Leu Thr Cys |
50 |
# 55 |
# 60 |
Ile Glu Gln Ile Val Thr Val Asn Asp His Ly |
#s Arg Lys Gln Lys Val |
65 |
#70 |
#75 |
#80 |
Leu Gly Pro Asn Gln Lys Leu Lys Phe Asn Pr |
#o Thr Glu Leu Ile Ile |
85 |
# 90 |
# 95 |
Tyr Cys Lys Asp Phe Arg Ile Val Arg Phe Ar |
#g Phe Asp Glu Ser Gly |
100 |
# 105 |
# 110 |
Pro Glu Ser Ala Lys Lys Val Cys Leu Ala Il |
#e Ala His Tyr Ser Gln |
115 |
# 120 |
# 125 |
Pro Thr Asp Leu Gln Leu Leu Phe Ala Phe Gl |
#u Tyr Val Gly Lys Lys |
130 |
# 135 |
# 140 |
Tyr His Asn Ser Ala Asn Lys Ile Asn Gly Il |
#e Pro Ser Gly Asp Gly |
145 1 |
#50 1 |
#55 1 |
#60 |
Gly Gly Gly Gly Gly Gly Gly Asn Gly Ala Gl |
#y Gly Gly Ser Ser Gln |
165 |
# 170 |
# 175 |
Lys Thr Pro Leu Phe Glu Thr Tyr Ser Asp Tr |
#p Asp Arg Glu Ile Lys |
180 |
# 185 |
# 190 |
Arg Thr Gly Ala Ser Gly Trp Arg Val Cys Se |
#r Ile Asn Glu Gly Tyr |
195 |
# 200 |
# 205 |
Met Ile Ser Thr Cys Leu Pro Glu Tyr Ile Va |
#l Val Pro Ser Ser Leu |
210 |
# 215 |
# 220 |
Ala Asp Gln Asp Leu Lys Ile Phe Ser His Se |
#r Phe Val Gly Arg Arg |
225 2 |
#30 2 |
#35 2 |
#40 |
Met Pro Leu Trp Cys Trp Ser His Ser Asn Gl |
#y Ser Ala Leu Val Arg |
245 |
# 250 |
# 255 |
Met Ala Leu Ile Lys Asp Val Leu Gln Gln Ar |
#g Lys Ile Asp Gln Arg |
260 |
# 265 |
# 270 |
Ile Cys Asn Ala Ile Thr Lys Ser His Pro Gl |
#n Arg Ser Asp Val Tyr |
275 |
# 280 |
# 285 |
Lys Ser Asp Leu Asp Lys Thr Leu Pro Asn Il |
#e Gln Glu Val Gln Ala |
290 |
# 295 |
# 300 |
Ala Phe Val Lys Leu Lys Gln Leu Cys Val As |
#n Glu Pro Phe Glu Glu |
305 3 |
#10 3 |
#15 3 |
#20 |
Thr Glu Glu Lys Trp Leu Ser Ser Leu Glu As |
#n Thr Arg Trp Leu Glu |
325 |
# 330 |
# 335 |
Tyr Val Arg Ala Phe Leu Lys His Ser Ala Gl |
#u Leu Val Tyr Met Leu |
340 |
# 345 |
# 350 |
Glu Ser Lys His Leu Ser Val Val Leu Gln Gl |
#u Glu Glu Gly Arg Asp |
355 |
# 360 |
# 365 |
Leu Ser Cys Cys Val Ala Ser Leu Val Gln Va |
#l Met Leu Asp Pro Tyr |
370 |
# 375 |
# 380 |
Phe Arg Thr Ile Thr Gly Phe Gln Ser Leu Il |
#e Gln Lys Glu Trp Val |
385 3 |
#90 3 |
#95 4 |
#00 |
Met Ala Gly Tyr Gln Phe Leu Asp Arg Cys As |
#n His Leu Lys Arg Ser |
405 |
# 410 |
# 415 |
Glu Lys Glu Ser Pro Leu Phe Leu Leu Phe Le |
#u Asp Ala Thr Trp Gln |
420 |
# 425 |
# 430 |
Leu Leu Glu Gln Tyr Pro Ala Ala Phe Glu Ph |
#e Ser Glu Thr Tyr Leu |
435 |
# 440 |
# 445 |
Ala Val Leu Tyr Asp Ser Thr Arg Ile Ser Le |
#u Phe Gly Thr Phe Leu |
450 |
# 455 |
# 460 |
Phe Asn Ser Pro His Gln Arg Val Lys Gln Se |
#r Thr |
465 4 |
#70 4 |
#75 |
<210> SEQ ID NO 5 |
<211> LENGTH: 434 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 5 |
Met Pro Leu Gln Lys Phe His Tyr Arg Asn Le |
#u Leu Leu Gly Glu His |
1 5 |
# 10 |
# 15 |
Asp Val Pro Leu Thr Cys Ile Glu Gln Ile Va |
#l Thr Val Asn Asp His |
20 |
# 25 |
# 30 |
Lys Arg Lys Gln Lys Val Leu Gly Pro Asn Gl |
#n Lys Leu Lys Phe Asn |
35 |
# 40 |
# 45 |
Pro Thr Glu Leu Ile Ile Tyr Cys Lys Asp Ph |
#e Arg Ile Val Arg Phe |
50 |
# 55 |
# 60 |
Arg Phe Asp Glu Ser Gly Pro Glu Ser Ala Ly |
#s Lys Val Cys Leu Ala |
65 |
#70 |
#75 |
#80 |
Ile Ala His Tyr Ser Gln Pro Thr Asp Leu Gl |
#n Leu Leu Phe Ala Phe |
85 |
# 90 |
# 95 |
Glu Tyr Val Gly Lys Lys Tyr His Asn Ser Al |
#a Asn Lys Ile Asn Gly |
100 |
# 105 |
# 110 |
Ile Pro Ser Gly Asp Gly Gly Gly Gly Gly Gl |
#y Gly Gly Asn Gly Ala |
115 |
# 120 |
# 125 |
Gly Gly Gly Ser Ser Gln Lys Thr Pro Leu Ph |
#e Glu Thr Tyr Ser Asp |
130 |
# 135 |
# 140 |
Trp Asp Arg Glu Ile Lys Arg Thr Gly Ala Se |
#r Gly Trp Arg Val Cys |
145 1 |
#50 1 |
#55 1 |
#60 |
Ser Ile Asn Glu Gly Tyr Met Ile Ser Thr Cy |
#s Leu Pro Glu Tyr Ile |
165 |
# 170 |
# 175 |
Val Val Pro Ser Ser Leu Ala Asp Gln Asp Le |
#u Lys Ile Phe Ser His |
180 |
# 185 |
# 190 |
Ser Phe Val Gly Arg Arg Met Pro Leu Trp Cy |
#s Trp Ser His Ser Asn |
195 |
# 200 |
# 205 |
Gly Ser Ala Leu Val Arg Met Ala Leu Ile Ly |
#s Asp Val Leu Gln Gln |
210 |
# 215 |
# 220 |
Arg Lys Ile Asp Gln Arg Ile Cys Asn Ala Il |
#e Thr Lys Ser His Pro |
225 2 |
#30 2 |
#35 2 |
#40 |
Gln Arg Ser Asp Val Tyr Lys Ser Asp Leu As |
#p Lys Thr Leu Pro Asn |
245 |
# 250 |
# 255 |
Ile Gln Glu Val Gln Ala Ala Phe Val Lys Le |
#u Lys Gln Leu Cys Val |
260 |
# 265 |
# 270 |
Asn Glu Pro Phe Glu Glu Thr Glu Glu Lys Tr |
#p Leu Ser Ser Leu Glu |
275 |
# 280 |
# 285 |
Asn Thr Arg Trp Leu Glu Tyr Val Arg Ala Ph |
#e Leu Lys His Ser Ala |
290 |
# 295 |
# 300 |
Glu Leu Val Tyr Met Leu Glu Ser Lys His Le |
#u Ser Val Val Leu Gln |
305 3 |
#10 3 |
#15 3 |
#20 |
Glu Glu Glu Gly Arg Asp Leu Ser Cys Cys Va |
#l Ala Ser Leu Val Gln |
325 |
# 330 |
# 335 |
Val Met Leu Asp Pro Tyr Phe Arg Thr Ile Th |
#r Gly Phe Gln Ser Leu |
340 |
# 345 |
# 350 |
Ile Gln Lys Glu Trp Val Met Ala Gly Tyr Gl |
#n Phe Leu Asp Arg Cys |
355 |
# 360 |
# 365 |
Asn His Leu Lys Arg Ser Glu Lys Glu Ser Pr |
#o Leu Phe Leu Leu Phe |
370 |
# 375 |
# 380 |
Leu Asp Ala Thr Trp Gln Leu Leu Glu Gln Ty |
#r Pro Ala Ala Phe Glu |
385 3 |
#90 3 |
#95 4 |
#00 |
Phe Ser Glu Thr Tyr Leu Ala Val Leu Tyr As |
#p Ser Thr Arg Ile Ser |
405 |
# 410 |
# 415 |
Leu Phe Gly Thr Phe Leu Phe Asn Ser Pro Hi |
#s Gln Arg Val Lys Gln |
420 |
# 425 |
# 430 |
Ser Thr |
<210> SEQ ID NO 6 |
<211> LENGTH: 668 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 6 |
Lys Ala Pro Lys Pro Ser Phe Val Ser Tyr Va |
#l Arg Pro Glu Glu Ile |
1 5 |
# 10 |
# 15 |
His Thr Asn Glu Lys Glu Val Thr Glu Lys Gl |
#u Val Thr Leu His Leu |
20 |
# 25 |
# 30 |
Leu Pro Gly Glu Gln Leu Leu Cys Glu Ala Se |
#r Thr Val Leu Lys Tyr |
35 |
# 40 |
# 45 |
Val Gln Glu Asp Ser Cys Gln His Gly Val Ty |
#r Gly Arg Leu Val Cys |
50 |
# 55 |
# 60 |
Thr Asp Phe Lys Ile Ala Phe Leu Gly Asp As |
#p Glu Ser Ala Leu Asp |
65 |
#70 |
#75 |
#80 |
Asn Asp Glu Thr Gln Phe Lys Asn Lys Val Il |
#e Gly Glu Asn Asp Ile |
85 |
# 90 |
# 95 |
Thr Leu His Cys Val Asp Gln Ile Tyr Gly Va |
#l Phe Asp Glu Lys Lys |
100 |
# 105 |
# 110 |
Lys Thr Leu Phe Gly Gln Leu Lys Lys Tyr Pr |
#o Glu Lys Leu Ile Ile |
115 |
# 120 |
# 125 |
His Cys Lys Asp Leu Arg Val Phe Gln Phe Cy |
#s Leu Arg Tyr Thr Lys |
130 |
# 135 |
# 140 |
Glu Glu Glu Val Lys Arg Ile Val Ser Gly Il |
#e Ile His His Thr Gln |
145 1 |
#50 1 |
#55 1 |
#60 |
Ala Pro Lys Leu Leu Lys Arg Leu Phe Leu Ph |
#e Ser Tyr Ala Thr Ala |
165 |
# 170 |
# 175 |
Ala Gln Asn Asn Thr Val Thr Asp Pro Lys As |
#n His Thr Val Met Phe |
180 |
# 185 |
# 190 |
Asp Thr Leu Lys Asp Trp Cys Trp Glu Leu Gl |
#u Arg Thr Lys Gly Asn |
195 |
# 200 |
# 205 |
Met Lys Tyr Lys Ala Val Ser Val Asn Glu Gl |
#y Tyr Lys Val Cys Glu |
210 |
# 215 |
# 220 |
Arg Leu Pro Ala Tyr Phe Val Val Pro Thr Pr |
#o Leu Pro Glu Glu Asn |
225 2 |
#30 2 |
#35 2 |
#40 |
Val Gln Arg Phe Gln Gly His Gly Ile Pro Il |
#e Trp Cys Trp Ser Cys |
245 |
# 250 |
# 255 |
His Asn Gly Ser Ala Leu Leu Lys Met Ser Al |
#a Leu Pro Lys Glu Gln |
260 |
# 265 |
# 270 |
Asp Asp Gly Ile Leu Gln Ile Gln Lys Ser Ph |
#e Leu Asp Gly Ile Tyr |
275 |
# 280 |
# 285 |
Lys Thr Ile His Arg Pro Pro Tyr Glu Ile Va |
#l Lys Thr Glu Asp Leu |
290 |
# 295 |
# 300 |
Ser Ser Asn Phe Leu Ser Leu Gln Glu Ile Gl |
#n Thr Ala Tyr Ser Lys |
305 3 |
#10 3 |
#15 3 |
#20 |
Phe Lys Gln Leu Phe Leu Ile Asp Asn Ser Th |
#r Glu Phe Trp Asp Thr |
325 |
# 330 |
# 335 |
Asp Ile Lys Trp Phe Ser Leu Leu Glu Ser Se |
#r Ser Trp Leu Asp Ile |
340 |
# 345 |
# 350 |
Ile Arg Arg Cys Leu Lys Lys Ala Ile Glu Il |
#e Thr Glu Cys Met Glu |
355 |
# 360 |
# 365 |
Ala Gln Asn Met Asn Val Leu Leu Leu Glu Gl |
#u Asn Ala Ser Asp Leu |
370 |
# 375 |
# 380 |
Cys Cys Leu Ile Ser Ser Leu Val Gln Leu Me |
#t Met Asp Pro His Cys |
385 3 |
#90 3 |
#95 4 |
#00 |
Arg Thr Arg Ile Gly Phe Gln Ser Leu Ile Gl |
#n Lys Glu Trp Val Met |
405 |
# 410 |
# 415 |
Gly Gly His Cys Phe Leu Asp Arg Cys Asn Hi |
#s Leu Arg Gln Asn Asp |
420 |
# 425 |
# 430 |
Lys Glu Glu Val Pro Val Phe Leu Leu Phe Le |
#u Asp Cys Val Trp Gln |
435 |
# 440 |
# 445 |
Leu Val His Gln His Pro Pro Ala Phe Glu Ph |
#e Thr Glu Thr Tyr Leu |
450 |
# 455 |
# 460 |
Thr Val Leu Ser Asp Ser Leu Tyr Ile Pro Il |
#e Phe Ser Thr Phe Phe |
465 4 |
#70 4 |
#75 4 |
#80 |
Phe Asn Ser Pro His Gln Lys Asp Thr Asn Me |
#t Gly Arg Glu Gly Gln |
485 |
# 490 |
# 495 |
Asp Thr Gln Ser Lys Pro Leu Asn Leu Leu Th |
#r Val Trp Asp Trp Ser |
500 |
# 505 |
# 510 |
Val Gln Phe Glu Pro Lys Ala Gln Thr Leu Le |
#u Lys Asn Pro Leu Tyr |
515 |
# 520 |
# 525 |
Val Glu Lys Pro Lys Leu Asp Lys Gly Gln Ar |
#g Lys Gly Met Arg Phe |
530 |
# 535 |
# 540 |
Lys His Gln Arg Gln Leu Ser Leu Pro Leu Th |
#r Gln Ser Lys Ser Ser |
545 5 |
#50 5 |
#55 5 |
#60 |
Pro Lys Arg Gly Phe Phe Arg Glu Glu Thr As |
#p His Leu Ile Lys Asn |
565 |
# 570 |
# 575 |
Leu Leu Gly Lys Arg Ile Ser Lys Leu Ile As |
#n Ser Ser Asp Glu Leu |
580 |
# 585 |
# 590 |
Gln Asp Asn Phe Arg Glu Phe Tyr Asp Ser Tr |
#p His Ser Lys Ser Thr |
595 |
# 600 |
# 605 |
Asp Tyr His Gly Leu Leu Leu Pro His Ile Gl |
#u Gly Pro Glu Ile Lys |
610 |
# 615 |
# 620 |
Val Trp Ala Gln Arg Tyr Leu Arg Trp Ile Pr |
#o Glu Ala Gln Ile Leu |
625 6 |
#30 6 |
#35 6 |
#40 |
Gly Gly Gly Gln Val Ala Thr Leu Ser Lys Le |
#u Leu Glu Met Met Glu |
645 |
# 650 |
# 655 |
Glu Val Gln Ser Leu Gln Glu Lys Ile Asp Gl |
#u Arg |
660 |
# 665 |
<210> SEQ ID NO 7 |
<211> LENGTH: 508 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 7 |
Lys Ala Pro Lys Pro Ser Phe Val Ser Tyr Va |
#l Arg Pro Glu Glu Ile |
1 5 |
# 10 |
# 15 |
His Thr Asn Glu Lys Glu Val Thr Glu Lys Gl |
#u Val Thr Leu His Leu |
20 |
# 25 |
# 30 |
Leu Pro Gly Glu Gln Leu Leu Cys Glu Ala Se |
#r Thr Val Leu Lys Tyr |
35 |
# 40 |
# 45 |
Val Gln Glu Asp Ser Cys Gln His Gly Val Ty |
#r Gly Arg Leu Val Cys |
50 |
# 55 |
# 60 |
Thr Asp Phe Lys Ile Ala Phe Leu Gly Asp As |
#p Glu Ser Ala Leu Asp |
65 |
#70 |
#75 |
#80 |
Asn Asp Glu Thr Gln Phe Lys Asn Lys Val Il |
#e Gly Glu Asn Asp Ile |
85 |
# 90 |
# 95 |
Thr Leu His Cys Val Asp Gln Ile Tyr Gly Va |
#l Phe Asp Glu Lys Lys |
100 |
# 105 |
# 110 |
Lys Thr Leu Phe Gly Gln Leu Lys Lys Tyr Pr |
#o Glu Lys Leu Ile Ile |
115 |
# 120 |
# 125 |
His Cys Lys Asp Leu Arg Val Phe Gln Phe Cy |
#s Leu Arg Tyr Thr Lys |
130 |
# 135 |
# 140 |
Glu Glu Glu Val Lys Arg Ile Val Ser Gly Il |
#e Ile His His Thr Gln |
145 1 |
#50 1 |
#55 1 |
#60 |
Ala Pro Lys Leu Leu Lys Arg Leu Phe Leu Ph |
#e Ser Tyr Ala Thr Ala |
165 |
# 170 |
# 175 |
Ala Gln Asn Asn Thr Val Thr Val Pro Lys As |
#n His Thr Val Met Phe |
180 |
# 185 |
# 190 |
Asp Thr Leu Lys Asp Trp Cys Trp Glu Leu Gl |
#u Arg Thr Lys Gly Asn |
195 |
# 200 |
# 205 |
Met Lys Tyr Lys Ala Val Ser Val Asn Glu Gl |
#y Tyr Lys Val Cys Glu |
210 |
# 215 |
# 220 |
Arg Leu Pro Ala Tyr Phe Val Val Pro Thr Pr |
#o Leu Pro Glu Glu Asn |
225 2 |
#30 2 |
#35 2 |
#40 |
Val Gln Arg Phe Gln Gly His Gly Ile Pro Il |
#e Trp Cys Trp Ser Cys |
245 |
# 250 |
# 255 |
His Asn Gly Ser Ala Leu Leu Lys Met Ser Al |
#a Leu Pro Lys Glu Gln |
260 |
# 265 |
# 270 |
Asp Asp Gly Ile Leu Gln Ile Gln Lys Ser Ph |
#e Leu Asp Gly Ile Tyr |
275 |
# 280 |
# 285 |
Lys Thr Ile His Arg Pro Pro Tyr Glu Ile Va |
#l Lys Thr Glu Asp Leu |
290 |
# 295 |
# 300 |
Ser Ser Asn Phe Leu Ser Leu Gln Glu Ile Gl |
#n Thr Ala Tyr Ser Lys |
305 3 |
#10 3 |
#15 3 |
#20 |
Phe Lys Gln Leu Phe Leu Ile Asp Asn Ser Th |
#r Glu Phe Trp Asp Thr |
325 |
# 330 |
# 335 |
Asp Ile Lys Trp Phe Ser Leu Leu Glu Ser Se |
#r Ser Trp Leu Asp Ile |
340 |
# 345 |
# 350 |
Ile Arg Arg Cys Leu Lys Lys Ala Ile Glu Il |
#e Thr Glu Cys Met Glu |
355 |
# 360 |
# 365 |
Ala Gln Asn Met Asn Val Leu Leu Leu Glu Gl |
#u Asn Ala Ser Asp Leu |
370 |
# 375 |
# 380 |
Cys Cys Leu Ile Ser Ser Leu Val Gln Leu Me |
#t Met Asp Pro His Cys |
385 3 |
#90 3 |
#95 4 |
#00 |
Arg Thr Arg Ile Gly Phe Gln Ser Leu Ile Gl |
#n Lys Glu Trp Val Met |
405 |
# 410 |
# 415 |
Gly Gly His Cys Phe Leu Asp Arg Cys Asn Hi |
#s Leu Arg Gln Asn Asp |
420 |
# 425 |
# 430 |
Lys Glu Glu His Gln Arg Gln Leu Ser Leu Pr |
#o Leu Thr Gln Ser Lys |
435 |
# 440 |
# 445 |
Ser Ser Pro Lys Arg Gly Phe Phe Arg Glu Gl |
#u Thr Asp His Leu Ile |
450 |
# 455 |
# 460 |
Lys Asn Leu Leu Gly Lys Arg Ile Ser Lys Le |
#u Ile Asn Ser Ser Asp |
465 4 |
#70 4 |
#75 4 |
#80 |
Glu Leu Gln Asp Asn Phe Arg Glu Phe Tyr As |
#p Ser Trp His Ser Lys |
485 |
# 490 |
# 495 |
Ser Thr Asp Tyr His Gly Leu Leu Leu Pro Hi |
#s Ile |
500 |
# 505 |
<210> SEQ ID NO 8 |
<211> LENGTH: 80 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 8 |
Ser Asp Glu Leu Gln Asp Asn Phe Arg Glu Ph |
#e Tyr Asp Ser Trp His |
1 5 |
# 10 |
# 15 |
Ser Lys Ser Thr Asp Tyr His Gly Leu Leu Le |
#u Pro His Ile Glu Gly |
20 |
# 25 |
# 30 |
Pro Glu Ile Lys Val Trp Ala Gln Arg Tyr Le |
#u Arg Trp Ile Pro Glu |
35 |
# 40 |
# 45 |
Ala Gln Ile Leu Gly Gly Gly Gln Val Ala Th |
#r Leu Ser Lys Leu Leu |
50 |
# 55 |
# 60 |
Glu Met Met Glu Glu Val Gln Ser Leu Gln Gl |
#u Lys Ile Asp Glu Arg |
65 |
#70 |
#75 |
#80 |
<210> SEQ ID NO 9 |
<211> LENGTH: 638 |
<212> TYPE: PRT |
<213> ORGANISM: Drosophila melanogaster |
<400> SEQUENCE: 9 |
Phe Gly Leu Leu Ser Val Thr Asn Phe Lys Le |
#u Ala Phe Val Pro Leu |
1 5 |
# 10 |
# 15 |
His Glu Lys Arg Asn Gln Ala Ile Thr Ala Pr |
#o Leu Ile Asp Leu Tyr |
20 |
# 25 |
# 30 |
Gln Glu Asn Thr Tyr Leu Gly Arg Asn Glu Il |
#e Thr Leu Asn Asn Ile |
35 |
# 40 |
# 45 |
Asp His Ile Tyr Thr Ile Thr Glu Leu Gly Ar |
#g Ala Ala Ser Ala Leu |
50 |
# 55 |
# 60 |
Gln Ala Ala Arg Gly Met Ala Ser His Ala Gl |
#y Met Ser Arg Arg Lys |
65 |
#70 |
#75 |
#80 |
Lys Leu Glu Pro Phe Lys Gln Gln Asn Ile Se |
#r Gly Arg Ile Ala Ala |
85 |
# 90 |
# 95 |
Leu His Ile Val Cys Lys Asn Phe Arg Leu Le |
#u Lys Phe Ala Phe Gln |
100 |
# 105 |
# 110 |
Gln Gln Asp Ser Lys Met Phe Gly Ala Ser As |
#p Gln Gly Lys Leu Ile |
115 |
# 120 |
# 125 |
Ala Ser Ala Leu Val Arg Phe Ala Tyr Pro Me |
#t Arg His Asp Leu Ser |
130 |
# 135 |
# 140 |
Phe Ala Tyr Ala His Arg Glu Pro Tyr Tyr Se |
#r Thr Leu Gly Ala Ser |
145 1 |
#50 1 |
#55 1 |
#60 |
Gly Thr Ser Met Tyr Ala Thr Lys Asn Asp Tr |
#p Ala Arg Glu Leu Ile |
165 |
# 170 |
# 175 |
Arg Cys Gly Ala Thr Glu Trp Gln Val Val Se |
#r Cys Ala Ser Val Gln |
180 |
# 185 |
# 190 |
Leu Leu Gln Asn Pro Leu Gln Ala Gly Lys Ty |
#r Thr Val Pro Pro His |
195 |
# 200 |
# 205 |
Phe Val Ile Pro Lys Ser Cys Ser Val Asp Ar |
#g Phe Leu Asp Leu Ser |
210 |
# 215 |
# 220 |
Arg Ala Phe Cys Asp Ser Arg Ala Ala Phe Tr |
#p Val Tyr Ser Tyr Gly |
225 2 |
#30 2 |
#35 2 |
#40 |
Ser Ser Ala Ala Leu Val Arg Leu Ala Glu Le |
#u Gln Pro Ala Ala Gln |
245 |
# 250 |
# 255 |
Gln Asp Thr Lys Ser Glu Asn Val Met Leu Gl |
#u Leu Val Arg Lys Cys |
260 |
# 265 |
# 270 |
Asp Ala Gly Arg Gln Leu Lys Leu Leu Gln Le |
#u Thr Asp Arg Leu Pro |
275 |
# 280 |
# 285 |
Ser Ile Gln Asp Val Leu Arg Ala Tyr Gln Ly |
#s Leu Arg Arg Leu Cys |
290 |
# 295 |
# 300 |
Thr Pro Glu Thr Pro Glu Lys Phe Met Leu Gl |
#n Asp Asp Lys Tyr Leu |
305 3 |
#10 3 |
#15 3 |
#20 |
Gly Leu Leu Glu Lys Thr Asn Trp Leu Phe Ty |
#r Val Ser Leu Cys Leu |
325 |
# 330 |
# 335 |
Arg Tyr Ala Ser Glu Ala Ser Ala Thr Leu Ar |
#g Ser Gly Val Thr Cys |
340 |
# 345 |
# 350 |
Val Leu Gln Glu Ser Asn Gly Arg Asp Leu Cy |
#s Cys Val Ile Ser Ser |
355 |
# 360 |
# 365 |
Leu Ala Gln Leu Leu Leu Asp Pro His Phe Ar |
#g Thr Ile Asp Gly Phe |
370 |
# 375 |
# 380 |
Gln Ser Leu Val Gln Lys Glu Trp Val Ala Le |
#u Glu His Pro Phe Gln |
385 3 |
#90 3 |
#95 4 |
#00 |
Arg Arg Leu Gly His Val Tyr Pro Ala Gln Pr |
#o Ala Gly Gly Asn Ala |
405 |
# 410 |
# 415 |
Glu Leu Phe Asp Ser Glu Gln Ser Pro Val Ph |
#e Leu Leu Phe Leu Asp |
420 |
# 425 |
# 430 |
Cys Val Trp Gln Leu Leu Gln Gln Phe Pro As |
#p Glu Phe Glu Phe Thr |
435 |
# 440 |
# 445 |
Gln Thr Tyr Leu Thr Thr Leu Trp Asp Ser Cy |
#s Phe Met Pro Ile Phe |
450 |
# 455 |
# 460 |
Asp Thr Phe Gln Phe Asp Thr Gln Ala Gln Ar |
#g Leu Lys Ala Val Thr |
465 4 |
#70 4 |
#75 4 |
#80 |
Asp Ser Gln Leu Val Leu Arg Pro Val Trp As |
#p Trp Gly Glu Gln Phe |
485 |
# 490 |
# 495 |
Ser Asp Lys Asp Lys Met Phe Phe Ser Asn Pr |
#o Leu Tyr Gln Arg Gln |
500 |
# 505 |
# 510 |
Arg Gly Asp Leu Gly Ala Gln Ala Ala Ala Va |
#l Ala His Arg Arg Ser |
515 |
# 520 |
# 525 |
Leu Ala Val Gly Ser Lys Gly Ala His Gly Al |
#a Ala Ser Gly Val Thr |
530 |
# 535 |
# 540 |
Pro Ser Arg Asn Thr Ile Asn Pro Gln Leu Ph |
#e Ala Thr Ala Ser Ser |
545 5 |
#50 5 |
#55 5 |
#60 |
Val Pro Gln Asp Arg Tyr Leu Gln Pro Ala Hi |
#s Arg Ile Phe Asp Leu |
565 |
# 570 |
# 575 |
Gln Val Trp Asp Gln Cys Tyr Tyr Arg Trp Le |
#u Pro Ile Leu Asp Ile |
580 |
# 585 |
# 590 |
Arg Gly Gly Gly Gln Pro Gln Val Asp Leu Ty |
#r His Arg Leu Leu Leu |
595 |
# 600 |
# 605 |
Ser Asn Ile Ala Lys Val Gln Arg Cys Leu As |
#p Tyr Gln Asn Phe Asp |
610 |
# 615 |
# 620 |
Asp Leu Pro Asp Ala Tyr Tyr Glu Phe Ala Gl |
#y Glu Ser Arg |
625 6 |
#30 6 |
#35 |
<210> SEQ ID NO 10 |
<211> LENGTH: 458 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 10 |
Glu Pro Pro Leu Leu Pro Gly Glu Asn Ile Ly |
#s Asp Met Ala Lys Asp |
1 5 |
# 10 |
# 15 |
Val Thr Tyr Ile Cys Pro Phe Thr Gly Ala Va |
#l Arg Gly Thr Leu Thr |
20 |
# 25 |
# 30 |
Val Thr Asn Tyr Arg Leu Tyr Phe Lys Ser Me |
#t Glu Arg Asp Pro Pro |
35 |
# 40 |
# 45 |
Phe Val Leu Asp Ala Ser Leu Gly Val Ile As |
#n Arg Val Glu Lys Ile |
50 |
# 55 |
# 60 |
Gly Gly Ala Ser Ser Arg Gly Glu Asn Ser Ty |
#r Gly Leu Glu Thr Val |
65 |
#70 |
#75 |
#80 |
Cys Lys Asp Ile Arg Asn Leu Arg Phe Ala Hi |
#s Lys Pro Glu Gly Arg |
85 |
# 90 |
# 95 |
Thr Arg Arg Ser Ile Phe Glu Asn Leu Met Ly |
#s Tyr Ala Phe Pro Val |
100 |
# 105 |
# 110 |
Ser Asn Asn Leu Pro Leu Phe Ala Phe Glu Ty |
#r Lys Glu Val Phe Pro |
115 |
# 120 |
# 125 |
Glu Asn Gly Trp Lys Leu Tyr Asp Pro Leu Le |
#u Glu Tyr Arg Arg Gln |
130 |
# 135 |
# 140 |
Gly Ile Pro Asn Glu Ser Trp Arg Ile Thr Ly |
#s Ile Asn Glu Arg Tyr |
145 1 |
#50 1 |
#55 1 |
#60 |
Glu Leu Cys Asp Thr Tyr Pro Ala Leu Leu Va |
#l Val Pro Ala Asn Ile |
165 |
# 170 |
# 175 |
Pro Asp Glu Glu Leu Lys Arg Val Ala Ser Ph |
#e Arg Ser Arg Gly Arg |
180 |
# 185 |
# 190 |
Ile Pro Val Leu Ser Trp Ile His Pro Glu Se |
#r Gln Ala Thr Ile Thr |
195 |
# 200 |
# 205 |
Arg Cys Ser Gln Pro Met Val Gly Val Ser Gl |
#y Lys Arg Ser Lys Glu |
210 |
# 215 |
# 220 |
Asp Glu Lys Tyr Leu Gln Ala Ile Met Asp Se |
#r Asn Ala Gln Ser His |
225 2 |
#30 2 |
#35 2 |
#40 |
Lys Ile Phe Ile Phe Asp Ala Arg Pro Ser Va |
#l Asn Ala Val Ala Asn |
245 |
# 250 |
# 255 |
Lys Ala Lys Gly Gly Gly Tyr Glu Ser Glu As |
#p Ala Tyr Gln Asn Ala |
260 |
# 265 |
# 270 |
Glu Leu Val Phe Leu Asp Ile His Asn Ile Hi |
#s Val Met Arg Glu Ser |
275 |
# 280 |
# 285 |
Leu Arg Lys Leu Lys Glu Ile Val Tyr Pro As |
#n Ile Glu Glu Thr His |
290 |
# 295 |
# 300 |
Trp Leu Ser Asn Leu Glu Ser Thr His Trp Le |
#u Glu His Ile Lys Leu |
305 3 |
#10 3 |
#15 3 |
#20 |
Ile Leu Ala Gly Ala Leu Arg Ile Ala Asp Ly |
#s Val Glu Ser Gly Lys |
325 |
# 330 |
# 335 |
Thr Ser Val Val Val His Cys Ser Asp Gly Tr |
#p Asp Arg Thr Ala Gln |
340 |
# 345 |
# 350 |
Leu Thr Ser Leu Ala Met Leu Met Leu Asp Gl |
#y Tyr Tyr Arg Thr Ile |
355 |
# 360 |
# 365 |
Arg Gly Phe Glu Val Leu Val Glu Lys Glu Tr |
#p Leu Ser Phe Gly His |
370 |
# 375 |
# 380 |
Arg Phe Gln Leu Arg Val Gly His Gly Asp Ly |
#s Asn His Ala Asp Ala |
385 3 |
#90 3 |
#95 4 |
#00 |
Asp Arg Ser Pro Val Phe Leu Gln Phe Ile As |
#p Cys Val Trp Gln Met |
405 |
# 410 |
# 415 |
Thr Arg Gln Phe Pro Thr Ala Phe Glu Phe As |
#n Glu Tyr Phe Leu Ile |
420 |
# 425 |
# 430 |
Thr Ile Leu Asp His Leu Tyr Ser Cys Leu Ph |
#e Gly Thr Phe Leu Cys |
435 |
# 440 |
# 445 |
Asn Ser Glu Gln Gln Arg Gly Lys Glu Asn |
450 |
# 455 |
<210> SEQ ID NO 11 |
<211> LENGTH: 458 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<400> SEQUENCE: 11 |
Glu Pro Pro Leu Leu Pro Gly Glu Asn Ile Ly |
#s Asp Met Ala Lys Asp |
1 5 |
# 10 |
# 15 |
Val Thr Tyr Ile Cys Pro Phe Thr Gly Ala Va |
#l Arg Gly Thr Leu Thr |
20 |
# 25 |
# 30 |
Val Thr Asn Tyr Arg Leu Tyr Phe Lys Ser Me |
#t Glu Arg Asp Pro Pro |
35 |
# 40 |
# 45 |
Phe Val Leu Asp Ala Ser Leu Gly Val Ile As |
#n Arg Val Glu Lys Ile |
50 |
# 55 |
# 60 |
Gly Gly Ala Ser Ser Arg Gly Glu Asn Ser Ty |
#r Gly Leu Glu Thr Val |
65 |
#70 |
#75 |
#80 |
Cys Lys Asp Ile Arg Asn Leu Arg Phe Ala Hi |
#s Lys Pro Glu Gly Arg |
85 |
# 90 |
# 95 |
Thr Arg Arg Ser Ile Phe Glu Asn Leu Met Ly |
#s Tyr Ala Phe Pro Val |
100 |
# 105 |
# 110 |
Ser Asn Asn Leu Pro Leu Phe Ala Phe Glu Ty |
#r Lys Glu Val Phe Pro |
115 |
# 120 |
# 125 |
Glu Asn Gly Trp Lys Leu Tyr Asp Pro Leu Le |
#u Glu Tyr Arg Arg Gln |
130 |
# 135 |
# 140 |
Gly Ile Pro Asn Glu Ser Trp Arg Ile Thr Ly |
#s Ile Asn Glu Arg Tyr |
145 1 |
#50 1 |
#55 1 |
#60 |
Glu Leu Cys Asp Thr Tyr Pro Ala Leu Leu Va |
#l Val Pro Ala Asn Ile |
165 |
# 170 |
# 175 |
Pro Asp Glu Glu Leu Lys Arg Val Ala Ser Ph |
#e Arg Ser Arg Gly Arg |
180 |
# 185 |
# 190 |
Ile Pro Val Leu Ser Trp Ile His Pro Glu Se |
#r Gln Ala Thr Ile Thr |
195 |
# 200 |
# 205 |
Arg Cys Ser Gln Pro Met Val Gly Val Ser Gl |
#y Lys Arg Ser Lys Glu |
210 |
# 215 |
# 220 |
Asp Glu Lys Tyr Leu Gln Ala Ile Met Asp Se |
#r Asn Ala Gln Ser His |
225 2 |
#30 2 |
#35 2 |
#40 |
Lys Ile Phe Ile Phe Asp Ala Arg Pro Ser Va |
#l Asn Ala Val Ala Asn |
245 |
# 250 |
# 255 |
Lys Ala Lys Gly Gly Gly Tyr Glu Ser Glu As |
#p Ala Tyr Gln Asn Ala |
260 |
# 265 |
# 270 |
Glu Leu Val Phe Leu Asp Ile His Asn Ile Hi |
#s Val Met Arg Glu Ser |
275 |
# 280 |
# 285 |
Leu Arg Lys Leu Lys Glu Ile Val Tyr Pro As |
#n Ile Glu Glu Thr His |
290 |
# 295 |
# 300 |
Trp Leu Ser Asn Leu Glu Ser Thr His Trp Le |
#u Glu His Ile Lys Leu |
305 3 |
#10 3 |
#15 3 |
#20 |
Ile Leu Ala Gly Ala Leu Arg Ile Ala Asp Ly |
#s Val Glu Ser Gly Lys |
325 |
# 330 |
# 335 |
Thr Ser Val Val Val His Cys Ser Asp Gly Tr |
#p Asp Arg Thr Ala Gln |
340 |
# 345 |
# 350 |
Leu Thr Ser Leu Ala Met Leu Met Leu Asp Gl |
#y Tyr Tyr Arg Thr Ile |
355 |
# 360 |
# 365 |
Arg Gly Phe Glu Val Leu Val Glu Lys Glu Tr |
#p Leu Ser Phe Gly His |
370 |
# 375 |
# 380 |
Arg Phe Gln Leu Arg Val Gly His Gly Asp Ly |
#s Asn His Ala Asp Ala |
385 3 |
#90 3 |
#95 4 |
#00 |
Asp Arg Ser Pro Val Phe Leu Gln Phe Ile As |
#p Cys Val Trp Gln Met |
405 |
# 410 |
# 415 |
Thr Arg Gln Phe Pro Thr Ala Phe Glu Phe As |
#n Glu Tyr Phe Leu Ile |
420 |
# 425 |
# 430 |
Thr Ile Leu Asp His Leu Tyr Ser Cys Leu Ph |
#e Gly Thr Phe Leu Cys |
435 |
# 440 |
# 445 |
Asn Ser Glu Gln Gln Arg Gly Lys Glu Asn |
450 |
# 455 |
38 |
Di Francesco, Valentina, Beasley, Ellen M., Yan, Chunhua, Gan, Weiniu
Patent | Priority | Assignee | Title |
8834866, | Jun 15 2009 | Valerion Therapeutics, LLC | Methods and compositions for treatment of myotubular myopathy using chimeric polypeptides comprising myotubularin 1(MTM1) polypeptides |
9447394, | Jun 15 2009 | Valerion Therapeutics, LLC | Methods and compositions for treatment of myotubular myopathy using chimeric polypeptides comprising myotubularin 1(MTM1) polypeptides |
Patent | Priority | Assignee | Title |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 24 2003 | Applera Corporation | (assignment on the face of the patent) | / | |||
Jul 01 2008 | Applera Corporation | Celera Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021561 | /0124 |
Date | Maintenance Fee Events |
Aug 17 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 03 2011 | REM: Maintenance Fee Reminder Mailed. |
Feb 17 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 17 2007 | 4 years fee payment window open |
Aug 17 2007 | 6 months grace period start (w surcharge) |
Feb 17 2008 | patent expiry (for year 4) |
Feb 17 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 17 2011 | 8 years fee payment window open |
Aug 17 2011 | 6 months grace period start (w surcharge) |
Feb 17 2012 | patent expiry (for year 8) |
Feb 17 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 17 2015 | 12 years fee payment window open |
Aug 17 2015 | 6 months grace period start (w surcharge) |
Feb 17 2016 | patent expiry (for year 12) |
Feb 17 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |