A simple single- or multi-station sprinkler controller is set to various run times and watering intervals by the repetitive operation of pushbuttons or combinations of pushbuttons. The chosen settings are communicated to the operator by illumination patterns of leds. The patterns may include groups of flashes, sequential scrolling of leds, multicolored illumination of an led, and steady illumination or non-illumination of selected leds. If a short occurs in a station, the controller shuts itself off and flashes a pattern that signals a shorted condition and identifies the shorted station. On power-up, run times and intervals are automatically set to generally-usefll default values.
|
14. An irrigation controller, comprising:
a) means for selecting an operating parameter for a watering station controlled by said controller, the value of said parameter being the sum of a selected plurality of increments of different sizes; and b) an led arranged to display the value of the selected parameter by flashing, in a different color for each increment size, the number of increments selected.
1. An irrigation controller for residential sprinkler systems, comprising:
a) a set of actuators; b) a set of individually illuminable indicators; c) a set of watering station terminals; and d) a microprocessor actuated by said actuators to selectively energize said watering station terminals, said microprocessor operating said indicators to convey information regarding the status of said controller; e) said microprocessor operating said indicators so as to convey information concerning the status of said watering station terminals by a combination of flashing illumination patterns and sequence of illumination of selected ones of said indicators.
7. An irrigation controller for residential sprinkler systems, comprising:
a) a set of pushbuttons; b) a set of light emitting diodes; c) a set of watering stations; and d) a microprocessor actuated by said pushbuttons to selectively energize said watering stations at selected intervals and for selected run times, said microprocessor operating said light emitting diodes to convey information regarding the selected intervals and run times; e) said selection of intervals and run times being accomplished by a repetitive actuation of at least one of said set of pushbuttons; and f) said microprocessor operating said light emitting diodes to convey said information by patterned groups of illumination flashes.
2. The irrigation controller of
3. The irrigation controller of
4. The controller of
5. The irrigation controller of
6. The controller of
8. The controller of
9. The controller of
10. The controller of
11. The controller of
12. The controller of
13. The controller of
|
This is a continuation-in-part of application Ser. No. 09/510,489 filed Feb. 23, 2000, which in turn is a regular filing corresponding to Provisional Application Serial No. 60/121,220 filed Feb. 23, 1999.
This invention relates to irrigation controllers, and more particularly to a single-or multi-station controller which is inexpensive and easy to program, and which uses only a minimal set of pushbutton controls and visual indicators to carry out and indicate relatively complex programming functions.
A large variety of controllers are commercially available for controlling the automatic operation of irrigation sprinklers in residential and industrial applications. These controllers vary in complexity and cost all the way from single-station, battery-powered units with few programming options that are mounted directly on a water valve, to complex, computer-programmable wall-mounted units capable of operating a complex irrigation system with many stations that require different operating parameters. Existing controllers are generally complicated and time-consuming for an unskilled owner to program. This causes many home controllers to be set once upon installation, and not to be periodically readjusted to fit changing conditions.
For this reason, and also because of the price consciousness of most homeowners, a need exists for both a single-station and a multi-station controller that is simple and inexpensive, powers up with a useful default set of operating parameters upon installation, and is simple to set to different parameters at any time.
The present invention fills the above-described need by providing, in the first two embodiments described herein, a multi-station controller with three actuators such as pushbuttons that select, respectively one of a set of predetermined combinations of water cycle length and repetition rate (i.e. the number of days between watering cycles); a start time-of-day; and a manual operation. On power-up, the inventive controller defaults to a generally appropriate cycle length, repetition rate and start time, which can then be changed by pushing the buttons. Alternatively, with an extra button as shown in the second embodiment, the watering time for each station can be set individually.
Operational parameter settings and controller status are indicated in the inventive controller by a set of simple indicators such as lights or light-emitting diodes (LEDs), preferably at least one for each cycle (in the first embodiment) or station (in the second embodiment), which convey information by their combinations and actions (e.g. scrolling, illumination, flashing and/or blinking).
If only a single station is to be controlled, as in the third embodiment described herein, the functions of the controller can be performed with only two pushbuttons, by using one or both pushbuttons.
Pushbutton 24 sets the watering cycle length and repetition rate; pushbutton 26 sets the start time; and pushbutton 28 starts a manual cycle. Indicator lights 30, 32, 34 and 36 provide information on the controller status and settings as described below.
The controller of this invention is intended for the homeowner market. Consequently, simplicity of operation and low cost are dominant considerations, even though they come at the expense of versatility. In this regard, it has been found that homeowners with little gardening skills or interest, at least in the warmer climates, do not care to repeatedly fine-tune their sprinkler systems. Such homeowners are only interested in setting their sprinklers to seasonal changes in watering conditions, to run them manually when necessary, or to turn them off during protracted periods of rain. It is therefore possible to determine, based on the climatic conditions of a particular market, a set of cycle length and repetition rate parameters that is generally suitable for a given season in that market.
The present invention makes use of this fact in reducing the complexity and cost of a controller by combining cycle lengths and repetition rate settings into a set of single settings such as heavy (summer), medium (spring/fall) and light (winter) watering. Thus, the homeowner merely needs to select a-watering level and a start time, and the controller does the rest. To accommodate special situations, a no-watering setting and a manual start for a selected station or stations are provided.
A short circuit detector 44 monitors the current drawn by each station output 16 through 22 from the input 12 for one full AC cycle, i.e. 16.7 ms, on power-up, and also monitors it continually whenever a station is on. If an overcurrent indicative of a short circuit occurs, the detector 44 sends a signal to the microcontroller 46 to shut off all stations and flash all the LEDs 30 through 36 with a blinking code indicating the station which was energized when the short was detected.
The internal clock for the microcontroller 46 is provided by an oscillator 48 which, in the preferred embodiments, operates at 32.768 kHz in order for the clock timer to synchronize with real time. The operations of microcontroller 46 are controlled, as detailed below, by the pushbuttons 24, 26 and 28. The outputs of microcontroller 46 are the lines 50 to the LEDs 30 through 36, and the lines 52 which selectively enable one of the station outputs 16 through 22 to be connected to the power input 12.
If a short circuit is not detected on the power-up test, the program next resets the WDT and tests to see if a pushbutton has been pressed. If one has, the program updates the microcontroller register status indicated by that pushbutton. In either event, the program next updates the microcontroller's event timing clock registers. On each main loop iteration, which is preferably programmed to be 31.25 ms, the program increments and checks the timing registers. Once the seconds timing register has been incremented to indicate that a minute has elapsed, the program checks and updates the station status and LED status based on the parameters then selected or defaulted to, as the case may be. Once the minutes timing register has been incremented to indicate that an hour has elapsed, the program checks whether the start time has been reached and whether the present day is the correct day for watering. If both are true, the program initiates a watering cycle.
On each iteration of the program's main loop, the program, station, and LED statuses are updated, and the program then waits for the next iteration. Inasmuch as the WDT is reset on each 31.25 ms iteration, it does not time out unless a software glitch stops the iteration of the main loop in FIG. 3. In that case, the WDT does time out and resets the controller to the power-up mode.
The microcontroller program is preferably arranged to carry out the operation of the controller in accordance with pushbutton operation as follows: Upon power-up, the cycle setting defaults to medium watering, and the start time defaults to twenty-four hours from power-up. The four LEDs 30 through 36 flash in succession, i.e. scroll, thereby calling attention to the condition that power had shut off so that any previously selected start time and cycle settings were lost; and that, at the time power was restored, the start time and cycle setting reverted to their default values. When one of the pushbuttons 24, 26 or 28 is pressed, or a watering cycle starts, LED 34 lights and stays on. Each time a button is pressed, a short flash of all four LEDs 30 through 36 indicates that electrical contact has been made. The pushbuttons 24, 26 and 28 are preferably software-debounced in a conventional manner so that contact noise will not result in multiple operations. Software control also prevents continuous pressing from inadvertently causing the user to make an incorrect selection.
If a different watering cycle than medium watering is desired, pushbutton 24 must be pushed, repeatedly if necessary, to select high, low or no watering.
If watering is to start at a time of day different than the time of power-up, pushbutton 26 must be pushed. The first push resets the start time to twenty-four hours after that push. Each subsequent push of pushbutton 26 (made within a preset wait period) sets the start time back one hour from the first push. If, for example, a new start time of approximately 2:00 a.m. is desired and the current time is Tuesday, 10:15 a.m., a first push sets the time to 10:15 a.m. Wednesday. Eight additional pushes set the time back to 2:15 a.m. for Wednesdsay. An interval timer resets this function after a brief elapsed time, for example 10 seconds. If more than this time interval elapses between pushes of pushbutton 26, the function resets and the next push sets the start time anew to twenty-four hours after the push. Once a start time has been chosen, any watering will always start every twenty-four hours from that time.
The controller now runs on its own. At the chosen start time, the four station connectors 16 through 22 are energized in sequence for the cycle length associated with the selected cycle setting. During this time, the LED associated with the chosen cycle setting repetitively flashes one blink while connector 16 is energized (Station 1), two blinks for connector 18 (Station 2), three blinks for connector 20 (Station 3), and four blinks for connector 22 (Station 4).
In one aspect of the invention, provision is made to prevent excessive watering (which may cause undesirable runoff) during any given cycle by limiting the length of uninterrupted watering that can occur. For example, if the maximum tolerable continuous watering time is six minutes but the selected watering schedule calls for 15 minutes of watering per cycle, the microcontroller will run station 16 (if selected) for six minutes, then stations 18, 20 and/or 22 (as selected) for six minutes each. It then runs station 16 for another six minutes, followed in like manner by stations 18, 20 and/or 22. Finally, all the selected stations in sequence run for the remaining three minutes each If station 16 is the only station selected, the microprocessor inserts a five-minute break between the successive operations of station 16.
In an alternative embodiment, all watering for each station may occur at one time without repeats, as for example in installations involving very porous soil.
If a start time is encountered while the controller is in the no watering or off mode, the entire watering cycle is inhibited, and the controller remains inactive until another mode is selected. No change to the controller's settings can be made while a cycle is in progress; thus, if a cycle is in progress when the user pushes button 26, the controller's action will not change.
For manual watering, pushbutton 28 is pressed once. This immediately starts a watering sequence. Pressing pushbutton 28 again skips to the next station in the sequence. Pressing pushbutton 28 while terminal 22 is energized stops the manual watering. Manual watering may normally cause a single iteration of the stations for ten minutes each. Manual watering cannot be initiated while an automatic cycle is in progress.
During manual operation, the LED associated with the watering cycle currently selected for automatic operation blinks one or more times to identify the currently energized station. This makes it possible to check for open circuits or valve failures by monitoring the controller indication when a station fails to operate.
If a short circuit occurs in the wiring of a station, all four LEDs 30 through 36 repetitively flash together, blinking once if connector 16 is shorted, twice for connector 18, three times for connector 20, and four times for connector 22 to identify which station has the short. At the same time, the controller shuts off all stations to prevent a possibly damaging operation of the controller. Power must be turned off to remove this blinking even if the short condition is corrected.
As shown in
In the embodiment of
If button 58 is not pushed for five seconds, or more, the program of button 58 resets, and the next push will again select 0 minutes.
In the block diagram of
A third embodiment of the invention is directed at those installations in which a single station needs to be operated with little or no supervision in an environment in which power is not readily available. Because such a controller needs to rely on longterm battery power in humid or otherwise adverse environments, fail-safe circuitry with very low power consumption must be used.
An embodiment satisfying these requirements is shown in
The controller 80 is powered by a battery 94. Because a battery failure while the valve 87 is open could be catastrophic, a battery power sensor 96 is provided in the controller 80. When battery power drops below a predetermined safe level, the sensor 96 causes the cycle timer 98 in microprocessor 92 to close the valve 87 and lock itself in the "Off" mode until the battery 94 is replaced.
The microprocessor 92 includes four operational elements: an hours counter 100, the cycle timer 98, a valve actuator 104, and an LED control 106. The counter 100 cyclically counts off twenty-four one-hour intervals and then issues a start signal 108 to the cycle timer 98. The cycle timer 98 preferably includes a day counter and five selectable timing routines: Off (no watering), Some (e.g. 5 minutes every third day), More (e.g. 10 minutes every other day), Most (e.g. 20 minutes every day, preferably applied in two 10-minute cycles with an hour's delay between them), and Manual (e.g. 10 minutes). These routines (other than Manual) can be selected in the cycle timer 98 by successive pushes of the cycle selector button 82. The Manual routine is selected by pushing cycle selector button 82 and Start selector button 84 simultaneously. On power-up, the cycle timer 98 defaults to the More routine.
The cycle timer 98 provides "open" and "close" signals in accordance with the selected timing routine to the valve actuator 104, which in turn operates the locking solenoid 90 to open or close the water valve 87.
The LED control 106 causes the LED 86 to flash momentarily whenever button 82 or 84 is pushed, and to indicate the selected cycle routine by blinking, e.g. steady on for Off, one blink for Some, two blinks for More, and three blinks for Most. In Manual mode, the LED 86 remains off. In order to conserve power, the LED 86 is deactivated after five seconds.
Using a microprocessor control similar to that described in connection with
Each push of start time button 134 within a predetermined wait time decrements the start time of the first watering cycle by one hour from the 24-hour default, after which the watering cycles start at intervals of 24 hours or a multiple thereof from the first cycle. Pressing the manual button 136 starts a manual cycle or stops an automatic cycle. Each push while a station is running manually advances the cycle to the next station. Also like in the controllers of
In the controller of
For users desiring greater flexiblity in setting the interval between watering cycles and the run time of any given station while retaining the simplicity of the controller, the embodiment of Fig. IO provides an additional LED 138, and uses a combination of pushbuttons 132 and 134 to set the cycle interval separately from the station run times.
Specifically, in the device of
Alternatively, the microcontroller 140 may be programmed so that start time button 134 must be held down until the interval LED flashes red, and button 136 must then be pressed to set the desired interval.
If the start time button 134 is not pushed, the pushbuttons 126 through 132 operate to set the run times for their respective stations. Each push of a button 126, 128, 130 or 132 increases the run time of its respective station by five minutes. Holding the button down, e.g. for three seconds, returns the run time to zero, i.e. turns the station off. The run time setting for each station is indicated by flashing of its associated LED 118, 120, 122 or 124 in groups of one flash for each 5 minutes of run time. More specifically, after one of the LEDs 118, 120, 122 or 124 flashes the run time value for that station, the next LED similarly flashes its run time value, and so on in a scrolling sequence across the LEDs 118, 120, 122 and 124. For a station that is off, its associated LED may be steadily on or steadily off. If any of the pushbuttons 126 through 132 are not pushed within five seconds after the preceding push, any subsequent pushes cause new run time values to be entered for that station.
In installations that include drip irrigation systems, it may be necessary to run a station for two hours or more. Setting such a run time in five-minute increments, and checking it by counting flashes each representing five minutes of run time, would be awkward at best. In the controller of
Thus, different increments can be set by the pushbuttons and signalled by the LEDs. For example, if the manual button 136 in
As shown in
The inputs to the microcontroller 140 are the pushbuttons 126 through 134 and the valve short circuit (i.e. AC power overcurrent) detector 144. The AC power supply 145, which may advantageously be 24 V, also operates a 5 V DC power supply 146 for the microcontroller 140. The outputs of microcontroller 140 are the power outputs 148 to the sprinkler valves 16 through 22, the LED illumination controls 150 for the LEDs 118 through 124 and 138, and the color control 152 for the LEDs 118 through 124.
If no short circuit is detected, the program enters the main loop 160 and checks the status of the controller 140 every 250 ms at 162. The status loop 163 checks and updates the LED flash status every second, the station status every minute, and the watering cycle start time status every hour.
When the clock time equals the cycle start time programmed by the operator (or 24 hours from power-up if the operator does not program any start time), a watering cycle in accordance with the flags set at 164 and 166 and the count of flash register 168 is initiated at 170. If any valve station 16 through 22 is on at 171 when the start time is reached, a watering cycle is considered to be in progress, and the program returns to the main loop 160.
The pressing of any button 126 through 134 at 172 results in the identification of the pressed button at 164 and the setting of the function flag associated with it. If it is the first button pressed after a power-up or reset, the scrolling of the LEDs 118 through 124 is also stopped at this point. Depending upon the operator's action, a special function flag may be set at 166, and cycle timing registers may be incremented at 168 for the purposes discussed herein.
When the proper flags have been set by the pushing of the appropriate button or buttons, the next iteration of the main loop 160 executes the button function at 174 or other selected function at 175. For example, the selected duration of watering for a given station may be entered into the memory of microcontroller 140. Whenever any valve 16 through 22 is on, the main loop 160 continually checks it for short circuits every 250 ms.
It is to be understood that the exemplary irrigation controllers described herein and shown in the drawings represent only presently preferred embodiments of the invention. Indeed, various modifications and additions may be made to such embodiments without departing from the spirit and scope of the invention. Thus, other modifications and additions may be obvious to those skilled in the art and may be implemented to adapt the present invention for use in a variety of different applications.
Goldberg, Allan Morris, Hopkins, Larry Kent
Patent | Priority | Assignee | Title |
10039241, | Jun 17 2005 | Rain Bird Corporation | Programmable irrigation controller having user interface |
10058042, | Jul 27 2009 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
10070596, | Sep 15 2005 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
10390502, | Sep 15 2005 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
10409296, | Mar 13 2017 | ECO-DRIP IRRIGATION SYSTEMS, INC | System for continuous-flow irrigation valve activation and monitoring |
10470275, | Dec 16 2015 | Intel Corporation | Infrared light emitting diode control circuit |
10693296, | May 03 2017 | International Business Machines Corporation | Stabilizing consumer energy demand |
10742037, | Jul 02 2018 | International Business Machines Corporation | Managing consumer energy demand |
10842091, | Jul 27 2009 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
10842092, | Sep 15 2005 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
10871242, | Jun 23 2016 | Rain Bird Corporation | Solenoid and method of manufacture |
10980120, | Jun 15 2017 | Rain Bird Corporation | Compact printed circuit board |
11177659, | May 03 2017 | International Business Machines Corporation | Computer-implemented method, system, and computer program product for setting a target power demand corresponding to a consumer |
11185023, | Sep 15 2005 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
11234380, | Sep 27 2018 | Rain Bird Corporation | Irrigation controller with relays |
11330770, | Jul 27 2009 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
11337385, | Sep 15 2005 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
11503782, | Apr 11 2018 | Rain Bird Corporation | Smart drip irrigation emitter |
11721465, | Apr 24 2020 | Rain Bird Corporation | Solenoid apparatus and methods of assembly |
11793129, | Sep 27 2018 | Rain Bird Corporation | Irrigation controller with relays |
11805739, | Sep 15 2005 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
7058479, | Jan 30 2004 | Irrigation controller | |
8108078, | Sep 15 2005 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
8160750, | Jun 17 2005 | Rain Bird Corporation | Programmable irrigation controller having user interface |
8260465, | Jul 17 2009 | Rain Bird Corporation | Data communication in a multi-wire irrigation control system |
8295985, | Dec 22 2008 | Rain Bird Corporation | Latching solenoid energy reserve |
8457798, | Mar 14 2006 | Jamie, Hackett | Long-range radio frequency receiver-controller module and wireless control system comprising same |
8532831, | Jul 17 2009 | Rain Bird Corporation | Data communication in a multi-wire irrigation control system |
8659183, | Jul 17 2009 | Rain Bird Corporation | Variable initialization time in the charging of energy reserves in an irrigation control system |
8706307, | Jun 17 2005 | Rain Bird Corporation | Programmable irrigation controller having user interface |
8793025, | Sep 15 2005 | Rain Bird Corporation | Irrigation control device for decoder-based irrigation system |
8840084, | Jul 27 2009 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
8851447, | Sep 15 2005 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
8909381, | Jul 17 2009 | Rain Bird Corporation | Data communication in a multi-wire irrigation control system |
9665106, | Sep 15 2005 | Rain Bird Corporation | Integrated actuator coil and decoder module for irrigation control |
9681610, | Sep 15 2005 | Rain Bird Corporation | Integrated control circuitry and coil assembly for irrigation control |
9999113, | Dec 16 2015 | Intel Corporation | Infrared light emitting diode control circuit |
D647411, | Jan 12 2011 | Rain Bird Corporation | Water timer |
D682714, | Jan 12 2011 | Rain Bird Corporation | Water timer |
Patent | Priority | Assignee | Title |
4760547, | Sep 24 1985 | Remote controlled multi-station irrigation system with DTMF transmitter | |
5363290, | Jul 18 1990 | The Toro Company | Irrigation controller |
5381331, | Jul 18 1990 | The Toro Company | Irrigation controller |
5414618, | Jul 18 1990 | The Toro Company | Irrigation controller with analog data input devices |
5473309, | Jan 26 1994 | Apparatus for testing an irrigation system controller and method of testing irrigation systems | |
5568376, | Jul 18 1990 | The Toro Company | Irrigation controller |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 28 2002 | GOLDBERG, ALLAN MORRIS | TORO COMPANY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012995 | /0723 | |
May 31 2002 | HOPKINS, LARRY KENT | TORO COMPANY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012995 | /0723 | |
Jun 06 2002 | The Toro Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 08 2004 | ASPN: Payor Number Assigned. |
Aug 27 2007 | REM: Maintenance Fee Reminder Mailed. |
Feb 17 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 17 2007 | 4 years fee payment window open |
Aug 17 2007 | 6 months grace period start (w surcharge) |
Feb 17 2008 | patent expiry (for year 4) |
Feb 17 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 17 2011 | 8 years fee payment window open |
Aug 17 2011 | 6 months grace period start (w surcharge) |
Feb 17 2012 | patent expiry (for year 8) |
Feb 17 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 17 2015 | 12 years fee payment window open |
Aug 17 2015 | 6 months grace period start (w surcharge) |
Feb 17 2016 | patent expiry (for year 12) |
Feb 17 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |