A method of constructing a wall form and of forming a wall includes employing a modular concrete form system having a clamping device to clamp adjacent modular form members to one another. The clamping device includes an elongated bar, a pair of clamps mounted on the bar, and a pair of clip assemblies mounted on the bar, the bar being shaped to complementarily engage the perimeter frames of the modular form members. The jaws of the clamps retain the perimeter frames of the adjacent modular form members against the bar, which clamps the form members to the bar and retains them in a flush orientation with one another. The clip assemblies each having a slidable tie clip formed with an opening for receiving a portion of a tie therein. The tie is tapered and is nominally of a circular cross section and formed with a plurality of spaced groves at the alternate ends thereof.
|
1. A retention system for retaining a first modular form member in a given orientation with respect to a second modular form member, the first modular form member being formed with a first indentation, the second modular form member being formed with a second indentation, the retention system comprising:
a first clamping device; a second clamping device; and an elongated tie; the first clamping device including a first elongated bar having at least a first protrusion, at least a first clamp, and at least a first tie clip, the at least first protrusion being structured to be engageable with the first indentation, the at least first clamp having a jaw, the jaw of the at least first clamp being structured to removably engage the first protrusion with the first indentation, the at least first tie clip being mounted on the first bar and being formed with an opening that is configured to removably receive at least a portion of the tie therein; and the second clamping device including a second elongated bar having at least a second protrusion, at least a second clamp, and at least a second tie clip, the at least second protrusion being structured to be engageable with the second indentation, the at least second clamp having a jaw, the jaw of the at least second clamp being structured to removably engage the second protrusion with the second indentation, the at least second tie clip being mounted on the second bar and being formed with an opening that is configured to removably receive at least a portion of the tie therein.
2. The retention system of
3. The retention system of
4. The retention system of
5. The retention system of
6. The retention system of
7. The retention system of
8. The retention system of
9. The retention system of
10. The retention system of
11. The retention system of
12. The retention system of
13. The retention system of
|
The current application is a divisional application of U.S. patent application Ser. No. 09/759,895, filed Jan. 12, 2001, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to modular form systems for the pouring of concrete walls and other structures and, more particularly, relates to a clamping device for clamping modular form members with one another. Specifically, the invention relates to a clamping device that can clamp one or more modular form members to a tube that is shaped to complementarily receive the modular form member.
2. Description of the Related Art
Concrete is a well-known building material that has been used for many years. Once particular use of concrete is in the formation of poured concrete walls whereby a hollow form is assembled at a desired location, with concrete then being poured into the form and allowed to harden or cure. As is known in the relevant art, one type of form includes a plurality of panels that are each formed with a retention surface. The panels are affixed to one another such that the retention surfaces together provide an interior surface and an exterior surface that will retain the uncured concrete and that will define the interior and exterior surfaces of the finished concrete wall. Once the poured concrete has cured, the panels are disassembled and removed from the wall and are reused in other applications to build other such walls. While such known modular form systems have been at least moderately successful for their intended purposes, such known systems have not, however, been without limitations.
Such known concrete modular form systems are labor-intensive to assemble as well as to disassemble after the wall has been formed. Moreover, the formation of walls using known modular form systems is expensive in terms of assembly components that remain disposed in the finished wall and thus cannot be reused.
The modular form members typically include a perimeter frame that is formed with a number of slots that receive wedge bolts and/or tie members for assembling the modular form members into a wall form. As is known in the relevant art, wedge bolts typically are roughly triangular plates formed with a longitudinally extending slot. One way in which wedge bolts can be used to assemble adjacent form members to one another is to align the slots of the adjacent perimeter frames and to receive a first wedge bolt in the aligned slots until the wedge bolt is wedged therein. A second wedge bolt is then received in the slot formed in the first wedge bolt to compress the form members against one another. Such assembly practices require the use of numerous such wedge bolts that often must be assembled and disassembled with a hammer, which is extremely time consuming and thus is costly in terms of labor.
Tie members are employed to extend between the form members that will form the interior surface of the wall and the form members that will form the exterior surface of the wall, as well as for other purposes. Such tie members extend directly between opposed pairs of aligned form members and other structures and thus ultimately are disposed within the concrete when the concrete is poured as well as after curing thereof. As such, many such tie members remain disposed internally within a cured concrete wall and thus cannot be reused. Tie members often are attached to the modular form members with additional wedge bolts, which requires substantial increased labor.
After the concrete has cured and the form members are removed from the concrete walls, the ends of the tie members typically protrude outwardly from the wall and must be removed, as by snapping off the protruding portion, which requires further labor. In this regard, it can be seen that the use of tie members extending between the interior and exterior form members requires the attention of a laborer at both of the interior and exterior walls for the application and removal of wedge bolts or other attachment structures.
It is thus desired to provide an improved modular form system that permits adjacent form members to be connected with one another quickly and efficiently with reduced labor required. Additionally, it is desired to provide such an improved system that does not require the usual labor-intensive efforts to install tie members between interior and exterior form members. Still further, it is desired to provide such a system wherein fewer, if any, tie members remain within the concrete wall after curing.
A modular concrete form system employs a clamping device to clamp adjacent modular form members to one another. The clamping device includes an elongated bar and a pair of clamps mounted on the bar, the bar being shaped to complementarily engage the perimeter frames of the modular form members. The jaws of the clamps retain the perimeter frames of the adjacent modular form members against the bar, which clamps the form members to one another and retains them in a flush orientation with one another.
The clamping system additionally includes a pair of clip assemblies mounted on the bar, the clip assemblies each having a slidable tie clip formed with an opening for receiving a portion of a tie therein. The tie is tapered and is nominally of a circular cross section and formed with a plurality of spaced groves at the alternate ends thereof. One end of the tie is receivable in a tie hole formed in the bar as well as in an opening of a tie clip that is aligned with the tie hole, the grooves in the end of the tie being removably lockable in the opening. The opposite end of the tie can be similarly received in another clamping device that is used to clamp modular form members that will define an opposite surface of a concrete wall. The ties are disposed within the wall after the concrete has cured, but the ties are nevertheless removable from the cured concrete inasmuch as the ties are tapered and can be dislodged from the wall with a blow from a hammer delivered to the narrow protruding end of the tie.
One embodiment of the present invention provides a clamping device for retaining a first modular form member in a given orientation with respect to a second modular form member, the first modular form member being formed with a first indentation, the second modular form member being formed with a second indentation, the general nature of which can be stated as including an elongated bar having a first protrusion and a second protrusion, the first protrusion being structured to be engageable with the first indentation, the second protrusion being structured to be engageable with the second indentation, and at least a first clamp having a first jaw and a second jaw, the first jaw being structured to removably engage the first protrusion with the first indentation, the second jaw being structured to removably engage the second protrusion with the second indentation.
Another embodiment of the present invention provides a retention system for retaining a first modular form member in a given orientation with respect to a second modular form member, the first modular form member being formed with a first indentation, the second modular form member being formed with a second indentation, the general nature of which can be stated as including a first clamping device, a second clamping device, and an elongated tie, the first clamping device including a first elongated bar having at least a first protrusion, at least a first clamp, and at least a first tie clip, the at least first protrusion being structured to be engageable with the first indentation, the at least first clamp having a jaw, the jaw of the at least first clamp being structured to removably engage the first protrusion with the first indentation, the at least first tie clip being mounted on the first bar and being formed with an opening that is configured to removably receive at least a portion of the tie therein, and the second clamping device including a second elongated bar having at least a second protrusion, at least a second clamp, and at least a second tie clip, the at least second protrusion being structured to be engageable with the second indentation, the at least second clamp having a jaw, the jaw of the at least second clamp being structured to removably engage the second protrusion with the second indentation, the at least second tie clip being mounted on the second bar and being formed with an opening that is configured to removably receive at least a portion of the tie therein.
Still another embodiment of the present invention provides a clamping device for retaining a first modular form member in a given orientation with respect to a second modular form member, the first modular form member being formed with a first form engagement structure, the second modular form member being formed with a second form engagement structure, the general nature of which can be said to includes an elongated bar having a first bar engagement structure and a second bar engagement structure, the first bar engagement structure being structured to be engageable with the first form engagement structure, the second bar engagement structure being structured to be engageable with the second form engagement structure, and at least a first clamp having a first jaw and a second jaw, the first jaw being structured to removably engage the first bar engagement structure with the first form engagement structure, the second jaw being structured to removably engage the second bar engagement structure with the second form engagement structure.
An object of the present invention is to provide a clamping device having a bar and a clamp that can clamp a modular form member to the bar.
A further object of the present invention is to provide a modular form system that employs ties that are tapered and removable from a cured concrete wall.
A further object of the present invention is to provide a clamping device that employs sliding tie clips formed with openings that can receive grooved ends of ties therein.
A further object of the present invention is to provide a clamping device having an elongated bar that is formed to complementarily engage a perimeter frame of a modular form member.
A further object of the present invention is to provide a clamping device that is compatible with and can be used in conjunction with existing modular form systems.
A further object of the present invention is to provide a clamping device and a modular form system that are economical to use.
A further object of the present invention is to provide a clamping device that improves the efficiency with which a modular form system can be used.
A further object of the present invention is to provide a method of constructing a wall form that can be used to construct a wall out of a building material such as concrete.
A further object of the present invention is to provide a method of forming a wall out of a building material.
These and other objects and advantages of the present invention will be more readily understood from the following description and reference to the drawings.
The preferred embodiments of the invention, illustrative of the best modes in which Applicant has contemplated applying the principles of the invention, are set forth in the following description and are shown in the drawings and are particularly and distinctly pointed out and set forth in the appended Claims.
Similar numerals refer to similar parts throughout the specification.
A first embodiment of a clamping device 4 in accordance with the present invention is indicated in generally
The wall form 14 depicted generally in
As is best shown in
As can be seen in
With reference to
As is best shown in
It can also be seen from
The bar 16 additionally includes a pair of elongated first embossments 64 on one side of the bar 16 and a pair of elongated second embossments 68 extending along an opposite side of the bar 16. The first and second embossments 64 and 68 extend into the bar 16 and extend substantially continuously along the longitudinal extent of the bar 16. As will be set forth more fully below, however, in other embodiments the first and second embossments 64 and 68 may not extend continuously along the longitudinal extent of the bar 16, and rather may be made up of a plurality of smaller bumps or other forms that are spaced from one another but are aligned with one another along the longitudinal extent of the bar 16. It will also be understood that the terms "embossment" and variations thereof are used herein without limitation as to a specific method of manufacture or forming, as will be set forth more fully below.
The first embossments 64 define a first protrusion 72 that extends outwardly from the bar 16 and extends substantially along the longitudinal extent of the bar 16. Similarly, the second embossments 68 define a second protrusion 76 that extends outwardly from the bar 16 in a direction generally away from the first protrusion 72 and extends along substantially the longitudinal extent of the bar 16.
As will be set forth more fully below, the first protrusion 72 is structured to be clampingly and removably received in and engaged with the first indentation 42 formed in the first perimeter frame 36. Similarly, the second protrusion 76 is configured to be clampingly and removably received in and engaged with the second indentation 54 of the second perimeter frame 48. It will be understood, however, that the terms "indentation," "protrusion," and variations thereof are not used in a limiting sense, and rather refer to engagement structures on the bar 16 and on the first and second modular form members 8 and 12 that are complementarily engageable with one another. As such, in other configurations of the present invention the bar 16 may be formed with indentations and the perimeter frames 36 and 48 formed with protrusions without departing from the concept of the present invention.
The bar 16 also includes a generally planar mounting surface 80 extending between the first and second protrusions 72 and 76. The first and second clamps 20 and 24 and the first and second clip assemblies 28 and 32 are mounted on the mounting surface 80. The bar 16 additionally includes a substantially planar facing surface 84 opposite the mounting surface 80. As can be seen in
As can be seen in
The first jaw 88 includes a first clamping face 98 and a first shank 100 extending substantially perpendicularly from one another. The second jaw 92 includes a second clamping face 102 and a second shank 104 extending substantially perpendicularly from one another. The second shank 104 is formed with a channel 106 extending substantially the length thereof and within which the first shank 100 is slidably received. The sliding adjustment of the first shank 100 in the channel 106 adjusts the distance between the first and second clamping faces 98 and 102, as will be set forth more fully below.
The first shank 100 additionally is formed with a hole that defines first compression surface 108, and the second shank 104 is formed with a hole that defines a pair of co-planar second compression surfaces 112. As is best shown in
As can be understood from
Such a configuration of the first clamp 20 is particularly useful with regard to the clamping device 4. As is best shown in
In order to clamp the first and second modular form members 8 and 12 with the clamping device 4, the clamp bolt 96 is removed from the first and second jaws 88 and 92, and the first and second jaws 88 and 92 are slid apart to maximize the distance between the first and second clamping faces 98 and 102. A similar operation is performed with the second clamp 24. The first modular form member 88 is then received against the bar 16 such that the first protrusion 72 of the bar 16 is engaged with the first indentation 42 of the first perimeter frame 36. The second modular form member 12 is then received against the bar 16 such that the second protrusion 76 of the bar 16 is engaged with the second indentation 54 of the second perimeter frame 48. The first and second jaws 88 and 92 are then manually pushed together to bring the first and second clamping faces 98 and 102 toward one another and, more specifically, to receive the first clamping face 98 in the first reception surface 128 and to receive the second clamping face 102 in the second reception surface 132.
The clamp bolt 96 is then received with the vertical surface 116 disposed against the second compression surfaces 112 and with one of the first and second inclined surfaces 120 and 124 disposed against the first compression surface 108. The clamp bolt 96 is received as such with sufficient force to compressively engage the first and second clamping faces 98 and 102 against the first and second reception surfaces 128 and 132, and thereby to compressively retain the first and second perimeter frames 36 and 48 against the bar 16.
In alternate applications in which only the first modular form member 8 is to be clamped to the bar 16, such as at the end of a long wall where a bulkhead is to be positioned opposite the first modular form member 8 where the second modular form member 12 otherwise would be, the second inclined surface 124 is provided to take up the additional slack between the first and second clamping faces 98 and 102 in the absence of the second perimeter frame 48. The second inclined surface 124 is also usable in other applications of the clamping device 4.
As is best shown in
When the first modular form member 8 is compressed against the bar 16, the first extension members 134 and 135 are received in the first embossments 64, and the edges of the first protrusion 72 are engaged with the fillets between the first indentation 42 and the first extension members 134 and 135. Such engagement advantageously resists movement of the first modular form member 8 with respect to the bar 16 that otherwise might permit the first retention surface 44 to become non-coplanar with the facing surface 84.
It can be seen that the depth of the first indentation 42 is at least nominally greater than the height of the first protrusion 72 such that a first cavity 138 remains between the first indentation 42 and the first protrusion 72 when the first modular form member 8 is clamped against the bar 16. The first cavity 138 advantageously can receive foreign matter therein that otherwise might interfere with the clamping engagement of the first protrusion 72 with the first indentation 42. The reception of the first extension members 134 and 135 in the first embossments 64 with the first cavity 138 extending therebetween thus provides two relatively smaller regions of contact between the first modular form member 8 and the bar 16 instead of having a relatively larger single surface of contact. Such a configuration helps to alleviate the effect of nominal quantities of foreign matter that may be received between the first protrusion 72 and the first indentation 42, which helps to ensure that the first retention surface 44 is coplanar with the facing surface 84 when the first modular form member 8 is clamped to the bar 16.
The second perimeter frame 48 is similarly formed with a pair of second extension members 136 and 137 and similar fillets that are received in the second embossments 68 and engaged with the second protrusion 76 of the bar 16, with a second cavity 140 remaining between the second indentation 54 and the second protrusion 76. Such a configuration similarly provides two relatively smaller regions of contact between the second modular form member 12 and the bar 16 to ensure that the second retention surface 56 is coplanar with the facing surface 84 when the second modular form member 12 is clamped against the bar 16, and alleviates the effect of nominal quantities of foreign matter that may be received between the second protrusion 76 and the second indentation 54.
It can thus be seen that the first and second modular form members 8 and 12 can be quickly clamped against the bar 16 by operating the first and second clamps 20 and 24 as set forth above. In this regard, it can be see that the labor involved in operating the first and second clamps 20 and 24 is substantially less than would be required if a plurality of prior art wedge bolts as described above were employed in clamping the first and second modular form members 8 and 12 together. Moreover, the configuration of the bar 16 with the first and second embossments 64 and 68 that define the first and second protrusions 72 and 76 that operate complementarily with the first and second perimeter frames 36 and 48 helps to automatically align the first and second modular form members 8 and 12 with the bar 16 and with one another upon clamping the first and second modular form members 8 and 12 to the bar 16. It can thus be seen that the clamping device 4 quickly and reliably clamps the first modular form member 8 into a desired orientation with respect to the second modular form member 12, whereby the first and second retention surfaces 44 and 56 are coplanar with one another and with the facing surface 84 of the bar 16 to advantageously provide a common planar surface against which concrete can be formed and retained in forming a concrete wall.
As is best shown in
As is best shown in
As is best shown in
With continued attention to
As can be seen in
As is best shown in
The notches 176 and 177 are receivable against the ends 151 and 154 of the straps 148 and 149 when the hole 180 is aligned with the first tie hole 192. More specifically, and as is shown in
Inasmuch as the tie clip 144 is slidably disposed between the central portions of the straps 148 and 149 and the mounting surface 80 of the bar 16, the engagement of the notches 176 and 177 against the ends 151 and 154 of the straps 148 and 149 retains the hole 180 in substantial alignment with the first tie hole 192 by resisting the tie clip 144 from gravitationally sliding along the sliding axis 152. Such alignment between the hole 180 in the plate 160 and the first tie hole 192 is desirable inasmuch as such alignment permits the tie 34 (
The tie 34 is depicted generally in
The tie 34 is an elongated member having a nominally circular cross section and including a first end 204, a second end 208, and a central region 212 extending between the first and second ends 204 and 208. As can be seen in
With continued attention to
The first end 204 is formed with a pair of diametrically opposed first grooves 224, a pair diametrically opposed second grooves 228, and a pair of diametrically opposed third grooves 232. The first grooves 224 thus define a first key 236 on the tie 34, and the second and third grooves 228 and 232 similarly define a second key 240 and a third key 244 (FIG. 7), respectively. In this regard, it can be seen that the first, second, and third grooves 224, 228, and 232 refer to material that has been removed from the first end 204, while the first, second, and third keys 236, 240, and 244 refer to material that remains with the first end 204 and is defined by the first, second, and third grooves 224, 228, and 232, respectively. The keys and grooves define retention structures that are receivable in the openings 172 of the tie clips 144, as will be set forth more fully below.
The first, second, and third keys 236, 240, and 244 are all of an equal key width 246 as measured across the parallel and spaced apart planar surfaces of the first, second, and third keys 236, 240, and 244. The first, second, and third keys 236, 240, and 244 each also have a key length 248 that is defined by the nominal circular diameter of the first end 204.
The second end 208 is similarly formed with a pair of first grooves 250, a pair of second grooves 252, and a pair of third grooves 256, the first, second, and third pairs of grooves 250, 252, and 256 defining a first key 260, a second key 264, and a third key 268 (FIG. 8), respectively. It can be seen that the first, second, and third keys 260, 264, and 268 each advantageously are of the same key width 246, as measured across the parallel and spaced apart planar surfaces thereof, as the first, second, and third keys 236, 240, and 244 of the first end 204. The first, second, and third keys 260, 264, and 268 have a key length 270 defined by the nominal circular diameter of the second end 208.
As can be seen in
While not specifically shown in
The first end 204 of the tie 34 is axially inserted into the hole 180 in the plate 160 and thereafter through the first tie hole 192 of a first clamping device 4. In such condition the tie 34 is partially received in the first clamping device 4, with the rounded tip 216 of the tie 34 extending into the space in the wall form 14 between the interior and exterior structures 26 and 30.
The tie 34 is further axially advanced toward the second clamping device 4 until the rounded tip 216 of the first end 204 is received through the first tie hole 192 of a second and opposed clamping device 4, with the tie 34 being further advanced until the rounded tip 216 passes through the hole 180 in the opposing tie clip 144. In such condition, the tie 34 extends between the first and second clamping devices 4, with the first end 204 extending through the second clamping device 4 and with the second end 208 extending through the first clamping device 4. In such condition, the tie 34 is rotationally aligned such that the longest dimensions of the first, second, and third keys 236, 240, 244, 260, 264, and 268 lie in a direction substantially perpendicular to the sliding axis 152 of th,e tie clips 144.
In order to enhance the versatility of the present invention, the first tie holes 192 and the holes 180 in the tie clips 144 are sized to receive therein the part of the tie 34 having the largest diameter, which in the depicted embodiment is the second end 208. Such a configuration obviates the likelihood of needing to consciously assemble the wall form 14 with specific parts on the interior structure 26 and other parts on the exterior structure 30, which advantageously simplified assembly.
The tie 34 must then be translated to a specific longitudinal position with respect to both of the tie clips 144. More specifically, the first, second, and third grooves 224, 228, 232, 250, 252, and 256 are longitudinally spaced from one another along the tie 34 to allow for finished walls having different thicknesses. For instance, the distance between the third grooves 232 and 256 is representative of the minimum wall thickness that can result in employing the tie 34 to build the wall form 14. Similarly, the distance between the first grooves 224 and 250 represents the maximum wall thickness. It must be decided during assembly of the wall form 14 which sets of grooves will be employed on the tie 34 to insure that a consistent and appropriate wall thickness results in the finished wall.
Once the tie 34 has achieved an appropriate alignment with respect to the tie clips 144 of the clamping devices 4 such that one of the first, second, and third keys 236, 240, and 244 is aligned with the hole 180 in the tie clip 144 of the second clamping device 4, and one of the first, second, and third keys 260, 264, and 268 is aligned with the hole 180 in the tie clip 144 of the first clamping device 4, the tie 34 is rotated about its central axis until the key widths 246 are aligned with the first slots 184 of the tie clips 144. In this regard, the flats 220 may be employed in conjunction with an appropriate tool to rotate the tie 34.
As can be seen in
In receiving the tie 34 in the tie clips 144 as indicated above and as depicted generally in
With one of the first, second, and third keys 236, 240, and 244 received in the first slot 184 of the tie clip 144 of the second clamping device 4, and with one of the first, second, and third keys 260, 264, and 268 received in the first slot 184 of the first clamping device 4, it can be seen that the opposed clamping devices 4 between which the tie 34 extends are retained in a fixed spatial relation with one another. More specifically, it can be seen that the clamping devices 4 cannot be moved closer to one another or be spread farther apart from one another due to the engagement of the keys and grooves in the first slots 184 of the tie clips 144. Readjustment could, however, be accomplished by disengaging the specific key from the first slot 184 of either or both of the tie clips 144 and re-engaging a different key therein.
The retention of the clamping devices 4 in a given spatial relationship with one another correspondingly retains the modular form members that are mounted on the clamping devices 4 in the same given spatial orientation. Such integrity in the orientation of the modular form members with respect to one another ensures that the resultant wall form 14 will remain in the desired configuration despite the hydrostatic forces that are inherent in the pouring and retention of concrete within the wall form 14.
While the insertion of only a single tie 34 between a pair of opposed clamping devices 4 has been set forth above, it is understood that in the embodiment depicted herein a pair of ties 34 extends between each opposite pair of clamping devices 4, and a plurality of clamping devices 4 typically are employed in assembling each of the interior and exterior structures 26 and 30 of the wall form 14. In this regard, it can be seen that the relatively simple operation set forth above, when repeated numerous times, saves substantial labor in assembling the wall form 14 as compared with assembling the wall form 14 with previously known wedge bolts in previously known tie members.
Once the wall form 14 has been completely assembled, as is generally shown in the example depicted in
More specifically, after the concrete has cured, the wall form 14 is disassembled by first removing the clamp bolts 96 from all of the first and second clamps 20 and 24, and by removing the modular form members 10 from the clamping devices 4. The clamping devices 4 are then removed from the cured concrete wall by first sliding each of the tie clips 144 along its sliding axis 152 until the hole 180 of each is aligned with the associated tie hole, which as depicted herein as the first tie hole 192. In this regard, the second ear 168 may need to receive a blow from a hammer or other appropriate tool to slide the tie clip 144 into such alignment. With the first and second clip assemblies 28 and 32 of each clamping device 4 aligned as such, the clamping devices 4 can be removed from the first and second ends 204 and 208 of the ties 34 that still protrude from the concrete wall.
After all of the clamping devices 4 and modular form members have been removed from the finished concrete wall, only the ties 34 remain, the ties 34 being disposed internally within the cured concrete wall and with the first and second ends 204 and 208 at least partially protruding from the wall. Inasmuch as the ties 34 are each advantageously tapered as set forth above, a blow from a hammer or other appropriate tool longitudinally applied to the first end 204 dislodges the tie 34 from the concrete wall and thus leaves a tapered circular hole in the concrete wall. The resultant hole can be sealed with caulking compounds or other appropriate sealants, or can be sealed by receiving a rubber-type plug in the hole to prevent leakage of water and undesirable matter.
The bar 16 is advantageously configured with a sufficient distance between the mounting and facing surfaces 80 and 84 that none of the grooves is ever disposed in the space between the interior and exterior structures 26 and 30 after construction of the wall form 14 is completed. In this regard, the distance between the first and third grooves 224 and 232, and the distance between the first and third grooves 250 and 256 is less than the distance between the mounting and facing surfaces 80 and 84, whereby the grooves are never exposed to the uncured concrete between the interior and exterior structures 26 and 30.
The clamping device 4 of the present invention thus quickly and easily permits the first and second modular form members 8 and 12 to be clamped on alternate sides thereof and to be clamped into a specific and fixed coplanar orientation with one another. The clamping device 4 also can receive a portion of a tie 34 therein such that the clamping device 4 can be held by the tie 34 in a fixed spatial relationship with an opposite clamping device 4. The ability of the tie 34 to cooperate with opposite clamping devices 4 provides a retention system that advantageously retains a modular form member of an interior structure in a fixed spatial relationship with an opposite modular form member in an exterior structure, which advantageously results in a finished concrete wall having vertical and evenly spaced interior and exterior walls if desired. The tie 34 is advantageously configured to have numerous grooves to allow the tie to be used in constructing walls of different thicknesses. Moreover, the configuration of the first and second clip assemblies 28 and 32 of each clamping device 4 permits a tie 34 to be installed between opposite clamping devices 4 by a laborer working only from the mounting surface 80 of either of the interior or exterior structures 26 or 30 of the wall form 14.
The configuration of the tie clips 144 to each slide along a sliding axis 152 that is oblique to the longitudinal axis 156 of the bar 16 permits the tie clips 144 to gravitationally engage portions of the ties 34. By configuring each of the tie clips 144 to have both a first slot 184 as well as a second slot 188 opposite thereto, the clamping devices 4 advantageously do not have a specific up or down configuration, meaning that the clamping devices 4 can be used in a given vertical orientation as well as an orientation where the same clamping device 4 is flipped upside-down. In the upside-down configuration, the second slots 188 of the tie clips 144 would engage the grooves and keys of the tie 34.
A second embodiment of a clamping device 504 in accordance with the present invention is indicated generally in
It can be seen that the first pads 570 together operate as a first protrusion 572, and the second pads 574 operate together as a second protrusion 576, the first and second protrusions 572 and 576 extending outwardly from opposite sides of the bar 516. It can likewise be seen that the first protrusion 572 providing by the first pads 570 is clampingly receivable in the first indentation 42 of the first perimeter frame 36 of the first modular form member 8, and that the second protrusion 576 provided by the second pads 574 is clampingly receivable in the second indentation 54 of the second modular form member 12.
The first and second pads 570 and 574 may be made of the same material as the bar 516 or may be made out of a different material. The first and second pads 570 and 574 are mounted on the bar 516 using any of a variety of known methods such as by welding, adhering, fastening with fasteners, and other appropriate mounting methodologies. It is further noted that the first and second pads 570 and 574 can be integrally formed in the bar 516, such as by embossing the first and second pads 570 and 574 on the bar 516, by forming the bar 516 and the first and second pads 570 and 574 together as a monolithic structure, or by employing other appropriate forming methodologies.
The first pads 570 are longitudinally spaced from one another along the first surface 562 to provide a number of first gaps 634 extending therebetween. The second pads 574 are similarly spaced along the second surface 566 to provide second gaps 638 therebetween. The first and second gaps 634 and 638 advantageously can receive a nominal quantity of foreign matter therein to resist interference by the foreign matter with attachment of the first and second modular form members 8 and 12 to the clamping device 504 and alignment therebetween. It is understood, however, that in other configurations the bar 516 may include only a single first pad 570 extending substantially along the longitudinal extent thereof, and similarly may include a single second pad 574 extending along the longitudinal extent thereof, without departing from the concept of the present invention.
The configuration of the bar 516 thus provides the advantages of readily clamping and aligning the first and second modular form members 8 and 12 thereto, and provides versatility in the way that the first and second pads 570 and 574 may be formed. The configuration of the bar 516 with its first and second pads 570 and 574 thus potentially may be manufactured less expensively than the bar 16 under various circumstances.
A third embodiment of a clamping apparatus 804 in accordance with the present invention is indicated generally in
As is best shown in
As is best shown in
As can be seen from
It is further understood that the first and second bump members 865 and 869 may, in other embodiments, extend continuously along the length of the bar 816, and may be of other configurations than that depicted generally in
The configuration of the bar 816 with first and second bumps 867 and 870 that engage the fillets of the first and second modular form members 808 and 812 provides engagement structures that are limited in size yet permit secure retention of the first and second modular form members 808 and 812 on the bar 816, and further provides larger cavities therebetween into which foreign matter can be received to avoid interference with the clamping function of the clamping apparatus 804. Moreover, the first and second bump members 865 and 869 can be of numerous different configurations which adds a great level of versatility to the clamping apparatus 804 by permitting it to be manufactured in different ways and by making it suitable for use in diverse applications.
A fourth embodiment of a clamping apparatus 1104 in accordance with the present invention is indicated generally in FIG. 15. The clamping apparatus 1104 includes a substantially solid bar 1116 having a pair of first bump members 1165 extending outwardly from a first surface 1162 of the bar 1116 and a pair of second bump members 1169 extending outwardly from a second surface 1166 of the bar 1116 opposite the first surface 1162. The first and second bump members 1165 and 1169 are formed integrally and monolithically with the bar 1116 as a single structure. The first bump members 1165 form a first protrusion, and the second bump members 1169 form a second protrusion 1176. The first and second protrusions 1172 and 1176 are engagement structures that are removably engagable with complementary structures on modular form members in a fashion similar to the clamping apparatus 804.
The first bump members 1165 are each in the form of a first bump 1167 that extends continuously along the length of the bar 1116, and the second bump members 1169 are each similarly in the form of a second bump 1170 extending continuously along the length of the bar 1116. As such, the cross-section of the bar 1116 is substantially constant throughout the longitudinal extent of the bar 1116. In other embodiments, however, the first and second bump members 1165 and 1169 may be non-continuous in a fashion similar to the bar 816.
Since the first and second bumps 1167 and 1170 are formed integrally and monolithically with the bar 1116 as a single structure, the bar 1116 can be manufactured by known methods such as extrusion and the like. In embodiments of the bar 1116 such as that depicted in
A fifth embodiment of a clamping apparatus 1404 of the present invention is depicted generally in FIG. 16. The clamping apparatus 1404 includes an elongated bar 1416 having a pair first bump members 1465 disposed on a first surface 1462 of the bar 1416 and a pair of second bump members 1469 disposed on a second surface 1466 of the bar 1416 opposite the first surface 1462. It can be understood from
The first and second rods 1471 and 1473 are each advantageously configured with an arcuate outer surface that is configured to engage a fillet of and extension member of a modular form member. If the fillets of the modular form members are themselves arcuate, the curvature of the first and second rods 1471 and 1473 preferably is configured to match the curvature of the fillets, or to at least be of a smaller radius than the fillets to permit engagement therebetween. If the fillets are angled, the first and second rods 1471 and 1473 still provide appropriate engagement structures that can engage the modular form members and resist movement between the modular form members and the bar 1416.
While the first and second bump members 1465 and 1469 are depicted as being of a substantially circular cross-section, it is understood that in other configurations the cross-sections may be of other configurations such as portions of circles, non-circular arcuate shapes, and polygonal shapes, as well as other shapes, without departing from the concept of the present invention. Moreover, while the first and second rods 1471 and 1473 are depicted herein as being substantially continuous along the longitudinal extent of the bar 1416, it is understood that in other embodiments the first and second rods 1471 and 1473 may be discontinuous in a fashion similar to the first and second bumps 867 and 870 of the bar 816. It is further understood that in still other embodiments the first and second bump members 1465 and 1469 may be integrally formed in a monolithic fashion with the bar 1416 as a single structure or may be formed thereon in other appropriate fashions.
The first and second modular form members 8 and 12, and the modular form member 10 generally, are of various dimensions suited to the construction of concrete walls of buildings and other structures. As such, an example of the nominal dimensions of one instance of the first and second modular form members 8 and 12 and the modular form member 10 are approximately two feet in width and eight feet in height. It is understood, however, that other instances of the modular form members may be of numerous different dimensions that can be assembled in various combinations and orientations to provide a wall form 14 having specific desired dimensions to result in a finished concrete wall having the desired dimensions.
In this regard, it is understood that the method and apparatus of the present invention can be used to construct walls out of a building material such as concrete in commercial, industrial, residential, and public works applications, as well as other appropriate applications. While concrete is illustrated herein as being the building material that is employed with the method and apparatus of the present invention, it can be seen that other appropriate building materials potentially may be employed to create other types of walls without departing from the concept of the present invention.
While a number of particular embodiments of the present invention have been described herein, it is understood that various changes, additions, modifications, and adaptations may be made without departing from the scope of the present invention, as set forth in the following Claims.
Patent | Priority | Assignee | Title |
10100635, | Dec 19 2012 | ExxonMobil Upstream Research Company | Wired and wireless downhole telemetry using a logging tool |
10132149, | Nov 26 2013 | ExxonMobil Upstream Research Company | Remotely actuated screenout relief valves and systems and methods including the same |
10167717, | Dec 19 2012 | ExxonMobil Upstream Research Company | Telemetry for wireless electro-acoustical transmission of data along a wellbore |
10344583, | Aug 30 2016 | ExxonMobil Upstream Research Company | Acoustic housing for tubulars |
10364669, | Aug 30 2016 | ExxonMobil Upstream Research Company | Methods of acoustically communicating and wells that utilize the methods |
10408047, | Jan 26 2015 | ExxonMobil Upstream Research Company | Real-time well surveillance using a wireless network and an in-wellbore tool |
10415376, | Aug 30 2016 | ExxonMobil Upstream Research Company | Dual transducer communications node for downhole acoustic wireless networks and method employing same |
10465505, | Aug 30 2016 | ExxonMobil Upstream Research Company | Reservoir formation characterization using a downhole wireless network |
10480308, | Dec 19 2012 | ExxonMobil Upstream Research Company | Apparatus and method for monitoring fluid flow in a wellbore using acoustic signals |
10487647, | Aug 30 2016 | ExxonMobil Upstream Research Company | Hybrid downhole acoustic wireless network |
10526888, | Aug 30 2016 | ExxonMobil Upstream Research Company | Downhole multiphase flow sensing methods |
10590759, | Aug 30 2016 | ExxonMobil Upstream Research Company | Zonal isolation devices including sensing and wireless telemetry and methods of utilizing the same |
10689962, | Nov 26 2013 | ExxonMobil Upstream Research Company | Remotely actuated screenout relief valves and systems and methods including the same |
10690794, | Nov 17 2017 | ExxonMobil Upstream Research Company | Method and system for performing operations using communications for a hydrocarbon system |
10697287, | Aug 30 2016 | ExxonMobil Upstream Research Company | Plunger lift monitoring via a downhole wireless network field |
10697288, | Oct 13 2017 | ExxonMobil Upstream Research Company | Dual transducer communications node including piezo pre-tensioning for acoustic wireless networks and method employing same |
10711600, | Feb 08 2018 | ExxonMobil Upstream Research Company | Methods of network peer identification and self-organization using unique tonal signatures and wells that use the methods |
10724363, | Oct 13 2017 | ExxonMobil Upstream Research Company | Method and system for performing hydrocarbon operations with mixed communication networks |
10771326, | Oct 13 2017 | ExxonMobil Upstream Research Company | Method and system for performing operations using communications |
10837276, | Oct 13 2017 | ExxonMobil Upstream Research Company | Method and system for performing wireless ultrasonic communications along a drilling string |
10844708, | Dec 20 2017 | ExxonMobil Upstream Research Company | Energy efficient method of retrieving wireless networked sensor data |
10883363, | Oct 13 2017 | ExxonMobil Upstream Research Company | Method and system for performing communications using aliasing |
11035226, | Oct 13 2017 | ExxoMobil Upstream Research Company | Method and system for performing operations with communications |
11156081, | Dec 29 2017 | ExxonMobil Upstream Research Company | Methods and systems for operating and maintaining a downhole wireless network |
11180986, | Sep 12 2014 | ExxonMobil Upstream Research Company | Discrete wellbore devices, hydrocarbon wells including a downhole communication network and the discrete wellbore devices and systems and methods including the same |
11203927, | Nov 17 2017 | ExxonMobil Upstream Research Company | Method and system for performing wireless ultrasonic communications along tubular members |
11268378, | Feb 09 2018 | ExxonMobil Upstream Research Company | Downhole wireless communication node and sensor/tools interface |
11293280, | Dec 19 2018 | ExxonMobil Upstream Research Company | Method and system for monitoring post-stimulation operations through acoustic wireless sensor network |
11313215, | Dec 29 2017 | ExxonMobil Upstream Research Company | Methods and systems for monitoring and optimizing reservoir stimulation operations |
11828172, | Aug 30 2016 | EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY | Communication networks, relay nodes for communication networks, and methods of transmitting data among a plurality of relay nodes |
11952886, | Dec 19 2018 | EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY | Method and system for monitoring sand production through acoustic wireless sensor network |
9557434, | Dec 19 2012 | ExxonMobil Upstream Research Company | Apparatus and method for detecting fracture geometry using acoustic telemetry |
9631485, | Dec 19 2012 | ExxonMobil Upstream Research Company | Electro-acoustic transmission of data along a wellbore |
9759062, | Dec 19 2012 | ExxonMobil Upstream Research Company | Telemetry system for wireless electro-acoustical transmission of data along a wellbore |
9816373, | Dec 19 2012 | ExxonMobil Upstream Research Company | Apparatus and method for relieving annular pressure in a wellbore using a wireless sensor network |
9863222, | Jan 19 2015 | ExxonMobil Upstream Research Company | System and method for monitoring fluid flow in a wellbore using acoustic telemetry |
ER1231, |
Patent | Priority | Assignee | Title |
1291257, | |||
1292986, | |||
1293036, | |||
1780661, | |||
2600362, | |||
2610660, | |||
2763911, | |||
3357672, | |||
3945602, | Sep 10 1974 | Harsco Corporation | Gang tie holding bolt |
4185804, | Feb 21 1979 | Lock and release form clamp | |
4433520, | Dec 15 1980 | Building wall construction | |
5579624, | May 16 1994 | UL Tech AG | Profile bar for the attachment of flat objects |
5855807, | Jun 24 1996 | Concrete form securing device | |
5860262, | Apr 09 1997 | Permanent panelized mold apparatus and method for casting monolithic concrete structures in situ | |
5965053, | Apr 07 1997 | Western Forms, Inc. | Penetratable form with stiffback |
5987830, | Jan 13 1999 | Wall Ties & Forms, Inc.; WALL-TIES & FORMS, INC | Insulated concrete wall and tie assembly for use therein |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 16 2002 | Harsco Technologies Corporation | (assignment on the face of the patent) | / | |||
Mar 04 2009 | Harsco Technologies Corporation | Harsco Technologies LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 031314 | /0569 | |
Nov 04 2013 | Harsco Technologies LLC | Harsco Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031603 | /0107 | |
Nov 26 2013 | Brand Services, LLC | MORGAN STANLEY SENIOR FUNDING, INC | NOTICE AND CONFIRMATION OF GRANT OF SECURITY INTEREST IN PATENTS | 031786 | /0861 | |
Dec 04 2013 | Harsco Corporation | Brand Services, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031714 | /0096 | |
Jun 21 2017 | MORGAN STANLEY SENIOR FUNDING, INC | BRAND SHARED SERVICES LLC | RELEASE OF SECURITY INTEREST IN PATENTS | 042931 | /0235 | |
Jun 21 2017 | MORGAN STANLEY SENIOR FUNDING, INC | ALUMA SYSTEMS CONCRETE CONSTRUCTION, LLC | RELEASE OF SECURITY INTEREST IN PATENTS | 042931 | /0235 | |
Jun 21 2017 | MORGAN STANLEY SENIOR FUNDING, INC | MATCOR, INC | RELEASE OF SECURITY INTEREST IN PATENTS | 042931 | /0235 | |
Jun 21 2017 | BRAND SHARED SERVICES LLC | Goldman Sachs Bank USA | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 042826 | /0275 |
Date | Maintenance Fee Events |
Mar 06 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 24 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 02 2015 | REM: Maintenance Fee Reminder Mailed. |
Feb 24 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 24 2007 | 4 years fee payment window open |
Aug 24 2007 | 6 months grace period start (w surcharge) |
Feb 24 2008 | patent expiry (for year 4) |
Feb 24 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 24 2011 | 8 years fee payment window open |
Aug 24 2011 | 6 months grace period start (w surcharge) |
Feb 24 2012 | patent expiry (for year 8) |
Feb 24 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 24 2015 | 12 years fee payment window open |
Aug 24 2015 | 6 months grace period start (w surcharge) |
Feb 24 2016 | patent expiry (for year 12) |
Feb 24 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |