An apparatus and method for providing container interior sterilization in an aseptic processing apparatus. An atomized sterilant is applied to an interior surface of a container such as a bottle. A supply of hot sterile drying air is applied to the interior surface to activate and dry the sterilant.
|
13. A method for sterilizing a container comprising:
providing a first supply of sterile air; providing a supply of sterilant; producing an atomized sterilant by mixing the first supply of sterile air with the sterilant; applying the atomized sterilant to the container; supplying a third supply of hot sterile drying air for activating and drying the sterilant in the interior of the container, wherein the container is upright and plastic; and applying the third supply of hot sterile drying air to the container for about 24 seconds, wherein the interior of the container immediately after the applying retains a concentration of hydrogen peroxide of less than 0.5 PPM.
1. Apparatus for sterilizing a container comprising:
a first supply source of sterile air; a supply source of sterilant; an atomizing system producing an atomized sterilant from the mixing of the sterile air from the first supply source of sterile air with the sterilant; a second supply source providing a non-intermittent supply of hot sterile air to a conduit wherein said conduit is operationally coupled between said atomizing system and a container, and wherein said atomized sterilant is intermittently added to said conduit; a mechanism for applying the atomized sterilant and the second supply source of hot sterile air on to the container; and a third supply source of a hot sterile drying air for activating and drying the sterilant in the interior of the container, wherein the container is upright.
22. Apparatus comprising:
means for supplying a first source of sterile air; means for supplying a source of sterilant, including a spoon dipper apparatus; means for providing an atomizing system for producing an atomized sterilant from the mixing of sterile air from the first source of sterile air with the sterilant; means for applying a second source of hot sterile air non-intermittently to a volume; means for applying the atomizing sterilant intermittently to the volume thereby mixing the second source of non-intermittent hot sterile air with the atomizing sterilant; means for applying the mixture of atomized sterilant and the second source of non-intermittent hot sterile air to a container; and means for supplying a third source of hot sterile drying air into the interior of the container for activating and drying the sterilant, wherein the container is upright.
2. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The method of
10. The apparatus of
11. The apparatus of
12. The apparatus of
14. The method of
17. The method of
18. The method of
providing a conduit operationally coupled between the container and a location where said atomized sterilant is produced; providing a second supply of non-intermittent hot sterile air to the conduit; adding the atomized sterilant to the conduit intermittently; and further wherein the applying the atomized sterilant step includes applying a mixture of the non-intermittent hot sterile air and the atomized sterilant to the container.
19. The method of
20. The method of
21. The method of
23. The apparatus of
|
The present invention relates generally to systems for the aseptic packaging of food products. More particularly, the present invention relates to an apparatus and method for providing container interior sterilization in an aseptic processing apparatus.
Sterilized packaging systems in which a sterile food product is placed and sealed in a container to preserve the product for later use are well known in the art. Methods of sterilizing incoming containers, filling the containers with pasteurized product, and sealing the containers in an aseptic sterilization tunnel are also known.
Generally, containers such as cups are sterilized using a mixture of hydrogen peroxide and a carrier gas such as air. The hydrogen peroxide vapor mixture is directed against the interior surface of the cup and a condensate film forms. Cups typically have a ratio of an opening diameter to a height of greater than 1∅ The hydrogen peroxide vapor may be easily introduced through the large opening and the vapor easily covers the interior surface of the cup. Furthermore, a hot drying gas may easily flow through and dry the interior of the cup. For containers such as bottles, with an opening to a height ratio of less than 1.0, difficulties arise in attempting to sterilize to aseptic standards the large interior surface. For example, difficulties occur when trying to rapidly introduce a sterilant through the small bottle opening onto the large interior surface. It is difficult to achieve a uniform coating of sterilant over the interior surface. Additionally, the sterilant vapor may condense and form droplets on the surface. These droplets are difficult to remove and can cause residual sterilant levels above an acceptable level. For example, for the sterilant hydrogen peroxide, the residual level must be less than 0.5 PPM in order to meet FDA standards. The small bottle opening also restricts the flow of drying gas that can enter, pass through, and exit the bottle.
Another disadvantage in the design of typical hydrogen peroxide sterilization equipment is the build up of hydrogen peroxide droplets in the delivery nozzles or other delivery apparatus. These droplets can eventually be directed into the container and become impossible to heat and evaporate, and therefore, will result in a residual level of hydrogen peroxide in the container which will be greater than the FDA allowable 0.5 PPM.
Packaged food products can generally be categorized as high acid products (Ph below 4.5) or low acid products (Ph of 4.5 and above). The high acid content of a high acid product helps to reduce bacteria growth in the product, thereby increasing the shelf life of the product. The low acid content of a low acid product, however, necessitates the use of more stringent packaging techniques, and often requires refrigeration of the product at the point of sale.
Several packaging techniques, including extended shelf life (ESL) and aseptic packaging, have been developed to increase the shelf life of low acid products. During ESL packaging, for example, the packaging material is commonly sanitized and filled with a product in a presterilized tunnel under "ultra-clean" conditions. By using such ESL packaging techniques, the shelf life of an ESL packaged product is commonly extended from about 10 to 15 days to about 90 days. Aseptic packaging techniques, however, which require that the packaging take place in a sterile environment, using presterilized containers, etc., are capable of providing a packaged product having an even longer shelf life of 150 days or more. In fact, with aseptic packaging, the shelf life limitation is often determined by the quality of the taste of the packaged product, rather than by a limitation caused by bacterial growth.
For the aseptic packaging of food products, an aseptic filler must, for example, use an FDA (Food and Drug Administration) approved sterilant, meet FDA quality control standards, use a sterile tunnel or clean room, and must aseptically treat all packaging material. The food product must also be processed using an "Ultra High Temperature"(UHT) pasteurization process to meet FDA aseptic standards. The packaging material must remain in a sterile environment during filling, closure, and sealing operations.
Many attempts have been made, albeit unsuccessfully, to aseptically fill containers, such as bottles or jars having small openings, at a high output processing speed. In addition, previous attempts for aseptically packaging a low acid product in plastic bottles or jars (e.g., formed of polyethylene terepthalate (PET) or high density polyethylene (HDPE)), at a high output processing speed, have also failed. Furthermore, the other fillers have not been successful in providing a high output aseptic filler that complies with the stringent United States FDA standards for labeling a packaged product as "aseptic." In the following description of the present invention, the term "aseptic" denotes the United States FDA level of aseptic.
In order to overcome the above deficiencies, the present invention provides an apparatus and method for providing container interior sterilization in an aseptic processing apparatus. The interior container sterilization is applied in an apparatus for providing aseptically processed low acid products in a container having a small opening, such as a glass or plastic bottle or jar, at a high output processing speed. The present invention includes a plurality of sterile air supply sources. For example, a first supply source of sterile air is used to atomize a sterilant (e.g., hydrogen peroxide), within an atomizing venturi. A second supply source of sterile air is used to provide hot sterile air to the atomized sterilant leaving the atomizing venturi. A third supply source of sterile air is used to provide hot sterile air for activating and drying the sterilant on the interior surface of the container. The second supply source of heated sterile air, prevents the formation of hydrogen peroxide droplets. This results in a design that will meet the FDA regulations for each and every bottle that is manufactured. Typically, in the aseptic packaging industry, a low volume of air at a high temperature is applied to the packaging materials. This method works well when the container material can withstand relatively high temperatures such as when cups are made of polypropylene. However, this often results in deformation and softening of packaging materials formed of PET or HDPE. In order to prevent softening and deformation of the bottles, when formed from these types of plastic materials, the present invention applies high volumes of air at relatively low temperatures over an extended period of time in the activation and drying apparatus. A long exposure time is predicated by the geometry of the bottle and the softening temperature of the material used to form the bottle. In the present invention, about 24 seconds are allowed for directing hot sterile air from the third supply source of sterile air into the interior of the bottles. In order to achieve aseptic sterilization, the bottle is maintained at about 131°C F. for at least 5 seconds. Many features are incorporated into the interior bottle sterilization apparatus in order to meet the various FDA aseptic standards and the 3A Sanitary Standards and Accepted Practices.
The present invention generally provides an apparatus comprising:
a first supply source of sterile air;
a supply source of sterilant;
an atomizing system producing an atomized sterilant from the mixing of the sterile air from the first supply source of sterile air with the sterilant;
a second supply source of a hot sterile air for providing the hot sterile air to the atomized sterilant;
a probe for applying the atomized sterilant into an interior of a container; and
a third supply source of a hot sterile drying air for activating and drying the sterilant in the interior of the container.
Also provided is a method comprising:
providing a first supply of sterile air;
providing a supply of sterilant;
producing an atomized sterilant by mixing the first supply of sterile air with the sterilant;
providing a second supply of hot sterile air to the atomized sterilant;
providing a probe for applying the atomized sterilant into an interior of a container; and
supplying a third supply of hot sterile drying air for activating and drying the sterilant in the interior of the container.
The features of the present invention will best be understood from a detailed description of the invention and a preferred embodiment, thereof selected for the purposes of illustration, and shown in the accompanying drawings in which:
Although certain preferred embodiments of the present invention will be shown and described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims. The scope of the present invention will in no way be limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., and are disclosed simply as an example of the preferred embodiment. The features and advantages of the present invention are illustrated in detail in the accompanying drawings, wherein like reference numerals refer to like elements throughout the drawings. Although the drawings are intended to illustrate the present invention, the drawings are not necessarily drawn to scale.
The present invention provides an aseptic processing apparatus 10 that will meet the stringent United States FDA (Food and Drug Administration) requirements and 3A Sanitary Standards and Accepted Practices required to label a food product (foodstuffs) as "aseptic". Hereafter, "aseptic" will refer to the FDA level of aseptic. The present invention provides an aseptic processing apparatus 10 for producing at least about a 12 log reduction of Clostridium botulinum in food products. In addition, the present invention produces packaging material with at least about a 6 log reduction of spores. Actual testing of the aseptic processing apparatus is accomplished with spore test organisms. These test organisms are selected on their resistance to the media selected used to achieve sterility. For example, when steam is the media, the test organism is Bacillus stearothermophilus. When hydrogen peroxide is the media, then the test organism is Bacillus subtilis var. globigii.
The present invention processes containers such as bottles or jars that have a small opening compared to its height and its greatest width (e.g., the ratio of the opening diameter to the height of the container is less than 1.0). In the preferred embodiment, a bottle 12 (see, e.g.,
The bottles 12 arrive at a first bottle unscrambler 20 with a random orientation, such that an opening 16 (see
Referring to
A sterilant such as hydrogen peroxide may be provided to the sterilant application apparatus 36 in many ways. For example, liquid hydrogen peroxide may be provided in a reservoir at a level maintained by a pump and overflow pipe. A plurality of measuring cups (e.g., approximately 0.5 ml each) connected by an air cylinder are submerged into the reservoir and are lifted above the liquid level. Thus, a measured volume of liquid hydrogen peroxide is contained in each measuring cup.
Each measuring cup may include a conductivity probe that is configured to send a signal to the control system 550 indicating that the measuring cup is full. A tube (e.g., having a diameter of about {fraction (1/16)}") is positioned in the center of the measuring cup. A first end of the tube is positioned near the bottom of the measuring cup. A second end of the tube is connected to the sterilant application apparatus 36. The sterilant application apparatus 36 includes a venturi and a heated double tube heat exchanger. When the measuring cup is full, and a signal is received from the control system 550, a valve is opened allowing pressurized sterile air to enter the venturi. The pressurized air flow causes a vacuum to be generated in second end of the tube causing liquid hydrogen peroxide to be pulled out of the measuring cup. The liquid hydrogen peroxide is sprayed into a sterile air stream which atomizes the hydrogen peroxide into a spray. The atomized hydrogen peroxide enters the double tube heat exchanger in order to heat the atomized hydrogen peroxide above its vaporization phase. The double tube heat exchanger is heated with steam and the temperature is monitored and controlled by the control system 550. In
Alternatively, a direct spray of heated hydrogen peroxide may be continuously applied to the outside surface 34 of each bottle 12. For producing the direct spray, a metering pump regulates the amount of hydrogen peroxide, a flow meter continuously measures and records the quantity of hydrogen peroxide being dispensed, a spray nozzle produces a fine mist, and a heat exchanger heats the hydrogen peroxide above the vaporization point.
As illustrated in
In accordance with the preferred embodiment of the present invention, twelve drying positions are provided in the sterilization chamber 38. Each bottle 12 is exposed to the hot sterile air in the sterilization chamber 38 for about at least 24 seconds. This provides time sufficient time for the hydrogen peroxide sterilant to break down into water and oxygen, to kill any bacteria on the bottles 12, and to evaporate from the outside surface 34 of the bottles 12.
An exhaust fan 73 is located at a top of the exhaust conduit 70 to provide an outlet from the sterilization tunnel 90, and to control the sterile air flow rate through the sterilization chamber 38. The exhaust fan 73 is controlled by the control system 550. The control system 550 controls the sterile air temperature preferably to about 230°C F., and controls the sterile air flow rate through the sterilization chamber 38. The flow rate is preferably about 1800 scfm through the sterilization chamber 38. The bottles 12 leave the sterilization chamber 38 with a hydrogen peroxide concentration of less than 0.5 PPM.
As shown in
In the preferred embodiment of the present invention, the filler apparatus 50 includes forty-one (41) index stations 92, hereafter referred to as "stations." Various index stations 92 are illustrated in
Referring to
A plurality of conveying plates 94 are attached to a main conveyor 106. The main conveyor 106 forms a continuous element around conveyor pulleys 108 and 110 as illustrated in
At station 4, the bottles 12 in the conveying plate 94 enter a bottle detection apparatus 112. The bottle detection apparatus 112 determines whether all twelve bottles 12 are actually present and correctly positioned in the conveying plate 94. Proximity sensors 114 detect the presence and the alignment of each bottle 12. In the present invention, a bottle 12 with correct alignment is in an upright position with the opening 16 of the bottle 12 located in an upward position. Information regarding the location of any misaligned or missing bottles 12 is relayed to the control system 550. The control system 550 uses this location information to ensure that, at future stations 92, bottle filling or sealing will not occur at the locations corresponding to the misaligned or missing bottles 12.
At station 7, as illustrated in
Each spoon dipper 304 may include a conductivity probe that is configured to send a signal to the control system 550 indicating that the spoon dipper 304 is full. A tube 312 (e.g., having a diameter of about {fraction (1/16)}") is positioned in the center of the spoon dipper 304. A first end of the tube 312 is positioned near the bottom of the spoon dipper 304. A second end of the tube 312 is connected to an atomizing venturi 314.
A pressurized air source 318 is connected by a conduit 320 to a flow adjust valve 322. A conduit 324 connects the flow adjust valve 322 to a regulator valve 326. A conduit 328 connects the regulator valve 326 with a solenoid actuated valve 330. A conduit 332 connects the solenoid actuated valve 330 with the air cylinder 316. The control system 550 controls the solenoid actuated valve 330 which controls the compressed air supplied to the air cylinder 316. Compressed air supplied to the air cylinder 316 lowers or lifts the spoon dipper 304 into or out of the liquid sterilant.
A conduit 334 connects the flow adjust valve 322 with the regulator valve 336. A conduit 338 connects the regulator valve 336 with a sterile air filter 340. A conduit 342 connects the sterile air filter 340 with a solenoid actuated valve 344. A conduit 346 connects the solenoid actuated valve 344 with the atomizing venturi 314. When the spoon dipper 304 is full, and a signal is received from the control system 550, the solenoid actuated valve 344 is opened allowing pressurized sterile air to enter the atomizing venturi 314 through the conduit 346. The pressurized air flow causes a vacuum to be generated in the second end of the tube 312 causing liquid hydrogen peroxide to be pulled out of the spoon dipper 304.
A first supply of sterile air is supplied through conduit 346. The pressurized air supplied through conduit 346 is used to atomize the hydrogen peroxide sterilant in the atomizing venturi 314. Atomization of the liquid hydrogen peroxide may be provided by other means such as by using ultrasonic frequencies to atomize the liquid hydrogen peroxide.
A conduit 348 connects with the atomizing venturi 314, passes through a heat exchanger 350 (e.g., double tube heat exchanger), and connects with a probe 123 including the applicator spray nozzle 122. A conduit 352 connects a steam supply 354 with a valve 356. A conduit 358 connects the valve 356 with a regulator valve 360. A conduit 382 connects the regulator valve 360 with the heat exchanger 350.
A second supply of hot sterile air is supplied to the atomized sterilant through a conduit 378. A humidity control apparatus 362 maintains the humidity level of the air entering a blower 364. A conduit 366 connects the blower 364 with a heater 368. A conduit 370 connects the heater 368 with a sterile filter 372. A conduit 374 connects the sterile filter 372 with a flow adjust valve 376. The conduit 378 connects the flow adjust valve 376 with the conduit 348. A conduit 380 connects the sterile filter 372 with a bypass valve 382. The blower 364 operates continuously supplying humidity controlled air to the heater 368. The flow of heated sterile air is controlled with the flow adjust valve 376 and travels through conduit 378.
Exiting conduit 378, the second supply of hot sterile air enters the conduit 348 to mix with the atomized hydrogen peroxide from the atomizing venturi 314. Excess flow of heated sterile air travels through conduit 380 and passes through the bypass valve 382. The second supply of hot sterile air assists in obtaining a uniform concentration of hydrogen peroxide in the air stream in conduit 348 and provides enough momentum to ensure that all portions of the bottle 12 interior 118 are contacted by hydrogen peroxide. Furthermore, the second supply of hot sterile air is continuously blowing, whereas the first supply of sterile air and hydrogen peroxide in conduit 346 is intermittent corresponding to the movement of the bottles 12. Since the second supply of hot sterile air is continuous, hydrogen peroxide does not have the ability to fall out of the air stream and deposit in the delivery conduit 348 in the form of drops. This ensures that the delivery of hydrogen peroxide is consistent from one bottle 12 application to the next and does not allow a drop to be directed into the bottle 12 interior 118.
The mixture of heated sterile air and atomized hydrogen peroxide in conduit 348 passes through the double tube heat exchanger 350. The double tube heat exchanger 350 adds additional heat to the atomized hydrogen peroxide. Heat is supplied to the double tube heat exchanger 350 from the steam supply 354 controlled by the regulator valve 360. Generally, hydrogen peroxide has chemical stabilizers in it that may cause a white powder precipitate to form on the inner surfaces of the double tube heat exchanger 350. This occurs when the temperature differential between the supplied steam heat and the gas to be heated is large. In the present inventions the temperature of the atomized hydrogen peroxide is typically about the same as the supplied steam heat so that a minimal amount of precipitate occurs. Another embodiment of the invention eliminates the need for the double tube heat exchanger 350 because the temperature of the atomized hydrogen peroxide is already at the desired temperature.
The temperature of the atomized gas entering the interior 118 of the bottle 12 is in the range of about 100°C C. to 120°C C. This temperature is limited to prevent the plastic bottles 12 from melting. The droplet size occurring on the interior surface 119 of the bottles 12 is in the range of about 300 to 500 micrometers. The initial concentration level of hydrogen peroxide on the interior surface 119 of the bottle 12 is about 35%.
As illustrated in
The control system 550 monitors and controls a spray apparatus 126 that includes the probe 123 including the applicator spray nozzles 122 FIG. 10. Each applicator spray nozzle 122 sprays the sterilant into the interior 118 of a corresponding bottle 12 as a hot vapor fog. The probe 123 including applicator spray nozzles 122 are designed to extend through the bottle openings 16. The probe 123 including applicator spray nozzles 122 descends into the interior 118 and toward the bottom of the bottles 12. This ensures the complete application of sterilant to the entire interior 118 and interior surface 119 of each bottle 12. Alternately, the probe 123 including the applicator spray nozzles 122 may be positioned immediately above the bottle openings 16 prior to the application of sterilant.
As illustrated in
The partition 130A separates an activation and drying apparatus 152 from the interior bottle sterilization apparatus 116. The partition 130B separates the activation and drying apparatus 152 from a main product filler apparatus 160 and a lid sterilization and heat sealing apparatus 162. Thus, a first sterilization zone 164 is created that includes the activation and drying apparatus 152. Partition 130C separates the main product filler apparatus 160 and the lid sterilization and heat sealing apparatus 162 from a bottle discharge apparatus 280. Thus, partitions 130B and 130C create a second sterilization zone 166 that includes the main product filler apparatus 160 and the lid sterilization and heat sealing apparatus 162. A third sterilization zone 172 includes the bottle discharge apparatus 280. A fourth sterilization zone 165 includes the interior bottle sterilization apparatus 116. The second sterilization zone 166 provides a highly sterile area where the bottles 12 are filled with a product and sealed. The second sterilization zone 166 is at a higher pressure than the first sterilization zone 164 and the third sterilization zone 172. Therefore, any gas flow leakage is in the direction from the second sterilization zone 166 out to the first sterilization zone 164 and the third sterilization zone 172. The first sterilization zone 164 is at a higher pressure than the fourth sterilization zone 165. Therefore, gas flow is in the direction from the first sterilization zone 164 to the fourth sterilization zone 165.
The partitions 130A, 130B, and 130C create sterilization zones 164, 165, 166, and 172 with different concentration levels of gas laden sterilant (e.g., hydrogen peroxide in air). The highest concentration level of sterilant is in the fourth sterilization zone 165. For example, with the sterilant hydrogen peroxide, the concentration level of hydrogen peroxide is about 1000 ppm (parts per million) in the fourth sterilization zone 165. The hydrogen peroxide sterilant level is about 3 ppm in the first sterilization zone 164. The lowest concentration level of sterilant is in the second sterilization zone 166. In the second sterilization zone 166, the hydrogen peroxide sterilant concentration level is less than 0.5 ppm and typically about 0.1 ppm. Advantageously, this helps to maintain the main product filler apparatus 160 and the lid sterilization and heat sealing apparatus 162 at a low sterilant concentration level. This prevents unwanted high levels of sterilant to enter the food product during the filling and lidding process. The hydrogen peroxide sterilant concentration level is about 0.1 ppm in the third sterilization zone 172.
As illustrated in
As illustrated in
Stations 10 through 21 include twelve stations for directing hot sterile air into each bottle 12 for the activation and removal of the sterilant from the interior of the bottle 12. In these twelve stations, a third supply of hot sterile air is provided through the sterile air supply system 146. The sterile air supply system 146 supplies hot sterile air to a plurality of nozzles 150 in the activation and drying apparatus 152. The hot sterile air flow in each bottle 12 is about 40 SCFM. Hot sterile air is supplied to the sterile air supply system 146 through conduit 148. The air is first passed through a filtration system to sterilize the air. The air is then heated in a heating system to about 230°C F. The air temperature is regulated by the control system 550. Also, the control system 550 monitors it the air pressure and flow rate to ensure that an adequate flow of hot sterile air is maintained in the sterilization tunnel 90 of the application and drying apparatus 152.
As shown in
A foodstuff product is first sterilized to eliminate bacteria in the product. An "Ultra High Temperature" (UHT) pasteurization process is required to meet the aseptic FDA is standard. The time and temperature required to meet the aseptic FDA standard depends on the type of foodstuff. For example, milk must be heated to 282°C F. for not less than 2 seconds in order to meet the aseptic standards.
After UHT pasteurization, the product is delivered to a main product filler apparatus 160. The main product filler apparatus is illustrated in
The initial sterilization process for the pressurized reservoir apparatus 180 includes the step of exposing all of the surfaces of the pressurized reservoir apparatus 180 that come in contact with the product to steam at temperatures above about 250°C F. for a minimum of about 30 minutes. Elements such as cups 198A and 198B are used to block off nozzle outlets 196A and 196B respectively, to allow a buildup of steam pressure to about 50 psig inside the pressurized reservoir apparatus 180. Condensate generated as the steam heats the interior surfaces of the pressurized reservoir apparatus 180 is collected in the cups 198A and 198B. This condensate is released when the cups 198A and 198B are removed from the nozzle outlets 196A and 196B. Once the interior surfaces of the pressurized reservoir apparatus 180 are sterilized, the steam is shut off, and sterile air is used to replace the steam. The sterile air reduces the interior temperature of the pressurized reservoir apparatus 180 to the temperature of the product before the product is allowed to enter the enclosed product tank 182. Sterile air is directed through sterile air conduits 142 and 144 into the second sterilization zone 166 at a volume rate of about 800 scfm (FIG. 13). The sterile air flow entering the second sterilization zone 166 provides sterile air to the main product filler apparatus 160 and to the lid sterilization and heat sealing apparatus 162.
The main product filler apparatus 160 includes a separate filling position for each bottle. The bottle 12 filling operation is completed for six bottles at station 23 and for six bottles at station 25.
Once sterilized, the lids 200 enter the sterilization tunnel 90 where they are separated from the daisy chain 202 and placed on a bottle 12. Each lid is slightly larger in diameter then that of the opening 16 of a bottle 12. During the placement of the lid 200 on the bottle 12, a slight mechanical crimp of the lid 200 is formed to locate and hold the lid 200 on the bottle 12. The crimp holds the lid 200 in place on the bottle 12 until the bottle 12 reaches a station 33 for sealing.
Another embodiment of a lid sterilization and heat sealing apparatus 552 is illustrated in FIG. 19. As illustrated in
The daisy chain 215A, 215B of lids 200 is placed on each of a plurality of reels 210 (e.g. 210A and 210B). For the twelve bottle configuration of the present invention, six of the reels 210, each holding a daisy chain 215A, 215B of lids 200, are located on each side of a heat sealing apparatus 214. Each daisy chain 215A, 215B of lids 200 winds off of a corresponding reel 210 and is sterilized preferably using a hydrogen peroxide bath 204. The concentration of hydrogen peroxide can range from about 30 to 40%, however, preferably the concentration is about 35%. The lids 200 remain in the hydrogen peroxide bath 204 for at least 18 seconds. A plurality of hot sterile air knives 208, which are formed by jets of hot sterile air, activate the hydrogen peroxide to sterilize the lids 200 on the daisy chain 215A, 215B. The hot sterile air temperature is about 135°C C. The hot air knives 208 also remove excess hydrogen peroxide form the lids 200. A plurality of heated platens 205 further dry the lids 200 so that the residual concentration of hydrogen peroxide is less than 0.5 PPM. The hydrogen peroxide bath 204 prevents any contaminants from entering the sterilization tunnel 90 via the lidding operation. The drive sprocket 211A includes a plurality of pins 209 that engage with the holes 207 of the daisy chain 215A. The drive sprocket 211A rotates in a counterclockwise direction and indexes and directs the daisy chain 215A, through a plurality of guides 217A. The guides 217A may include a plurality of rollers 221A to further guide and direct an end 219A of the daisy chain 215A over the bottle 12A. The drive sprocket 211B includes a plurality of pins 209 that engage with the holes 207 of the daisy chain 215B. The drive sprocket 211B rotates in a clockwise direction and indexes and directs the daisy chain 215B through a plurality of guides 217B. The guides 217B may include a plurality of rollers 221B to further guide and direct an end 219B of the daisy chain 215B over the bottle 12B.
Once sterilized, the lids 200 enter the sterilization tunnel 90 where they are separated from the daisy chain 215A, 217B and placed on the bottle 12A, 12B. At station 33, the lids 200 are applied to the bottles 12. As illustrated in
At station 37, the lid 200 seal and bottle 12 integrity are checked in a known manner by a seal integrity apparatus (not shown) comprising, for example, a bottle squeezing mechanism and a proximity sensor. Each bottle 12 is squeezed by the bottle squeezing mechanism which causes the lid 200 on the bottle 12 to extend upward. The proximity sensor detects if the lid 200 has extended upward, which indicates an acceptable seal, or whether the seal remains flat, which indicates a leaking seal or bottle 12. The location of the defective bottles 12 are recorded by the control system 550 so that the defective bottles will not be packed.
Bottle discharge from the sterilization tunnel 90 of the filler apparatus 50 occurs at stations 38 and 40 as illustrated in
As illustrated in
Referring again to
The first capping apparatus 410 secures a cap (not shown) on the top of each bottle 12 in the first lane 292. The second capping apparatus 400 secures a cap on the top of each bottle 12 in the second lane 294. The caps are secured to the bottles 12 in a manner known in the art. It should be noted that the capping process may be performed outside of the sterilization tunnel 90 because each of the bottles 12 have previously been sealed within the sterilization tunnel 90 by the lid sterilization and heat sealing apparatus 162 using a sterile lid 200.
After capping, the bottles 12 are transported via the first and second lanes 292, 294 to labelers 460 and 470. The first labeling apparatus 470 applies a label to each bottle 12 in the first lane 292. The second labeling apparatus 460 applies a label to each bottle 12 in the second lane 294.
From the first labeling apparatus 470, the bottles 12 are transported along a first set of multiple lanes (e.g., 4) to a first case packing apparatus 490. From the second labeling apparatus 460, the bottles 12 are transported along a second set of multiple lanes to a second case packing apparatus 480. Each case packing apparatus 480, 490 gathers and packs a plurality of the bottles 12 (e.g., twelve) in each case in a suitable (e.g., three by four) matrix.
A first conveyor 296 transports the cases output by the first case packer 490 to a first palletizer 510. A second conveyor 298 transports the cases output by the second case packer 480 to a second palletizer 500. A vehicle, such as a fork lift truck, then transports the pallets loaded with the cases of bottles 12 to a storage warehouse.
Referring again to
Stations 1 through 40 are enclosed in the sterilization tunnel 90. The sterilization tunnel 90 is supplied with air that is pressurized and sterilized. The interior of the sterilization tunnel 90 is maintained at a pressure higher than the outside environment in order to eliminate contamination during the bottle processing. In addition, to further ensure a sterile environment within the sterilization tunnel 90, the sterile air supply provides a predetermined number of air changes (e.g., 2.5 changes of air per minute) in the sterilization tunnel 90.
Before bottle production is initiated, the bottle infeed and sterilization apparatus 60 and the filler apparatus 50 are preferably sterilized with an aseptic sterilant. For example, a sterilant such as a hot hydrogen peroxide mist may be applied to all interior surfaces of the bottle infeed and sterilization apparatus 60 and the filler apparatus 50. Then, hot sterile air is supplied to activate and remove the hydrogen peroxide, and to dry the interior surfaces of the bottle infeed and sterilization apparatus 60 and the filler apparatus 50.
A. A bottle counter to ensure that a predetermined number of the bottles 12 (e.g., six bottles) on each upper horizontal row 24, 28 enter the loading area of the bottle infeed and sterilization apparatus 60.
B. A proximity sensor to ensure that the first group of bottles 12 has dropped into the first bottle position in the bottle infeed and sterilization apparatus 60.
C1. A conductivity sensor to ensure that the measuring cup used by the sterilant application apparatus 36 is full.
C2. A conductivity sensor to ensure that the measuring cup used by the sterilant application apparatus 36 is emptied in a predetermined time.
C3. A pressure sensor to ensure that the pressure of the air used by the sterilant application apparatus 36 is within predetermined atomization requirements.
C4. A temperature sensor to ensure that each heat heating element used by the sterilant application apparatus 36 is heated to the correct temperature.
D. A proximity sensor (e.g., proximity sensor 71,
E. A temperature sensor to ensure that the temperature of the heated sterile air entering the bottle infeed and sterilization apparatus 60 is correct.
F. A proximity sensor that to ensure that each conveying plate 94 is fully loaded with bottles 12.
G1. A conductivity sensor to ensure that the measuring cup used by the interior bottle sterilization apparatus 116 is full.
G2. A conductivity sensor to ensure that the measuring cup used by the interior bottle sterilization apparatus 116 is emptied in a predetermined time.
G3. A pressure sensor to ensure that the pressure of the air used by the interior bottle sterilization apparatus 116 is within predetermined atomization requirements.
G4. A temperature sensor to ensure that each heat heating element used by the interior bottle sterilization apparatus 116 is heated to the correct temperature.
H. A temperature sensor to ensure that the air drying temperature within the activation and drying apparatus 152 is correct.
I. A plurality of flow sensors to ensure that the airflow rate of the sterile air entering the sterilization tunnel 90 is correct.
J. A pressure sensor to ensure that the pressure of the sterile air entering the activation and drying apparatus 152 is correct.
K. A measuring device (e.g., volumetric measuring device 188,
L. A pressure sensor to ensure that the pressure in the product tank 182 is above a predetermined level.
M. A level sensor to ensure that the level of product in the product tank 182 is maintained at a predetermined level.
N. Proximity sensors to ensure that the daisy chains 202 of lids 200 are present in the lid sterilization and heat sealing apparatus 162.
O. A level sensor to ensure that the hydrogen peroxide level in the hydrogen peroxide bath 204 in the lid sterilization and heat sealing apparatus 162 is above a predetermined level.
P. A temperature sensor to ensure that the temperature of the hot sterile air knives 208 of the lid sterilization and heat sealing apparatus 162 is correct.
Q. A temperature sensor to ensure that the heat sealing apparatus 214 is operating at the correct temperature.
R. Proximity sensors to ensure that the bottles 12 are discharged from the filler.
S. A speed sensor to measure the speed of the conveying apparatus 100.
T. A concentration sensor to ensure that the concentration of oxonia is maintained at a predetermined level in the sanitizing apparatus 300.
U. A pressure sensor to ensure that the pressure of the oxonia is maintained above a predetermined level in the sanitizing apparatus 300.
V. A temperature sensor to ensure that the drying temperature of the drying apparatus 302 is correct.
The following steps are performed during the "Clean In Place" (CIP) process in the filler apparatus 50;
23. Conductivity sensor to verify caustic and acid concentrations.
24. Temperature sensor to verify "Clean In Place" solution temperatures.
25. Flow meter to verify "Clean In Place" flow rates.
26. Time is monitored to ensure that adequate cleaning time is maintained.
The follow steps are performed during sterilization of the bottle filler apparatus 50;
27. Temperature sensors for measuring steam temperatures.
28. Proximity sensors to ensure filler nozzle cleaning/sterilization cups are in position.
29. Temperature sensors for air heating and cooling.
30. Flow meter for hydrogen peroxide injection.
31. Time is monitored to ensure the minimum time periods are met (steam, hydrogen peroxide application and activation/drying).
The foregoing description of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and many modifications and variations are possible in light of the above teaching. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of this invention.
Taggart, Thomas D., Newitt, Daniel
Patent | Priority | Assignee | Title |
10836527, | Jul 03 2009 | TETRA LAVAL HOLDINGS & FINANCE S A | Device and a method for maintaining a gas flow barrier between two interconnected volumes |
11376341, | Mar 28 2019 | Kart Kleen LLC | Sanitization and cleaning system for objects |
11413364, | May 07 2021 | Steribin, LLC | Top load disinfection device for disinfecting a container |
11478561, | Mar 28 2019 | Kart Kleen LLC | Sanitization and cleaning system for objects |
11679171, | Jun 08 2021 | Steribin, LLC | Apparatus and method for disinfecting substances as they pass through a pipe |
6786249, | Aug 21 2000 | Tetra Laval Holdings & Finance S.A. | Device for sterilizing packaging using hydrogen peroxide |
7157046, | Feb 16 2001 | American Sterilizer Company | High capacity flash vapor generation systems |
7186374, | Feb 16 2001 | American Sterilizer Company | Vapor phase decontamination of containers |
7219794, | Nov 05 2004 | MASSMAN COMPANIES, INC | Adjustable guide chute and method for processing containers |
7270229, | Nov 05 2004 | MASSMAN COMPANIES, INC | Container unscrambler system having adjustable track and method |
7591367, | Nov 05 2004 | MASSMAN COMPANIES, INC | Container unscrambler system having adjustable track |
8349272, | May 01 2006 | American Sterilizer Company | Hydrogen peroxide vaporizer |
8568666, | Mar 03 2006 | PARAMETRIK HOLDINGS, INC | Apparatus and method for reprocessing lumened instruments |
8646243, | Oct 04 2007 | MedInstill Development LLC | Apparatus for formulating and aseptically filling liquid products |
8658090, | Mar 03 2006 | PARAMETRIK HOLDINGS, INC | Apparatus and method for reprocessing lumened instruments |
8697001, | Mar 03 2006 | PARAMETRIK HOLDINGS, INC | Apparatus and method for reprocessing lumened instruments |
9023277, | Mar 03 2006 | PARAMETRIK HOLDINGS, INC | Apparatus and method for reprocessing lumened instruments |
9089880, | Mar 03 2006 | PARAMETRIK HOLDINGS, INC | Apparatus and method for reprocessing lumened instruments |
9120660, | Apr 27 2007 | KHS GmbH | Method and apparatus for the cleaning of containers such as plastic bottles in a bottle filling plant or containers in a container filling plant |
9120661, | Apr 27 2007 | KHS GmbH | Procedure and apparatus for the treating containers such as plastic bottles in a bottle filling plant or containers in a container filling plant |
9975657, | Mar 18 2013 | MITSUBISHI HEAVY INDUSTRIES MACHINERY SYSTEMS, LTD | Sterilization device for container |
Patent | Priority | Assignee | Title |
2380984, | |||
3783581, | |||
3891779, | |||
3899862, | |||
4045945, | Apr 17 1972 | Firma Hamba-Maschinenfabrik Hans A. Muller | Apparatus for the sterile filling of foods into containers |
4175140, | Apr 10 1974 | Ozonia AG | Method for automatic low-bacteria to aseptic filling and packing of foodstuffs employing ultraviolet radiation |
4369898, | Mar 09 1977 | STERIDOSE SYSTEMS AB, DATAVAGEN 55, 436 00 ASKIM, SWEDEN ACOMPANY SWEDISH | Filling machine |
4494357, | Dec 31 1981 | International Paper Company | Sterilization of packaging material |
4566591, | Aug 26 1983 | Gasti-Verpackungsmaschinen GmbH | Multiple packaging device |
4597242, | Jun 01 1982 | Lever Brothers Company | Process and apparatus for the aseptic packaging of products such as foodstuffs and pharmaceutical products |
4622800, | May 13 1981 | Gasti-Verpackungsmaschinen GmbH | Sterilizing method and apparatus |
4683701, | Feb 13 1986 | ELOTRADE A G , A SWISS CORP | Container sterilization apparatus |
4730482, | Aug 07 1985 | Gasti Verpackungsmaschinen GmbH | Process and apparatus for monitoring the hermeticity of filled containers closed by sealed-on or welded-on cover of the like |
4742667, | Nov 14 1981 | SIG Combibloc GmbH | Method of and apparatus for sterilizing packaging material, especially container-type packages |
4903891, | Jul 07 1989 | International Paper Company | Gable top carton sealing construction |
4936486, | Jun 07 1988 | Gasti-Verpackungsmaschinen GmbH | Dosing apparatus for metering predetermined quantities of a sterilizing agent to a spray device |
4987721, | Jan 10 1989 | Gasti Verpackungsmaschinen GmbH | Method of and apparatus for the sterilization of stacked packaging elements |
4987726, | Dec 04 1987 | KabiVitrum AB | Bottle filling and sealing apparatus |
4992247, | May 11 1989 | Elopak Systems, A.G. | Container sterilization system |
4996824, | Nov 18 1988 | JAGENBERG AG A CORP OF GERMANY | Method and device for sterilizing a packaging installation for food and pharmaceutical products |
5001886, | Jan 23 1989 | Gasti Verpackungsmachinen GmbH | Packaging machine for the aseptic packaging of sterile fillings in cups or the like |
5007232, | Nov 20 1989 | Abbott Laboratories | Apparatus and method of use of sterilizing containers using hydrogen peroxide vapor |
5135014, | May 02 1990 | The West Company, Incorporated | Bottle washer with multiple size carrier |
5251423, | May 30 1990 | Gasti Verpackungsmachinen GmbH | Method of and apparatus for sterile packaging using stacked packaging elements, especially plastic cups with varying wall thickness |
5313990, | Oct 17 1991 | Seitz Enzinger Noll Maschinenbau Aktiengesellschaft | Method and apparatus for filling containers with liquid material |
5365774, | Sep 10 1992 | Gasti Verpackungsmaschinen GmbH | Method of and apparatus for testing the seal of filled containers |
5398734, | Sep 26 1992 | KHS Maschinen- und Anlagenbau Aktiengesellschaft | Apparatus for monitoring the thermal treatment or sterilization of bottles or similar containers in a container-treatment machine |
5406772, | Aug 12 1992 | Eli Lilly and Company | Transfer conveyor system for use between sterile and non-sterile environments |
5529099, | Aug 12 1992 | Gasti Verpackungsmaschinen GmbH | Apparatus for metering and filling flowable viscous or pasty products into containers |
5534222, | Jul 11 1995 | Purity Packaging A Division of Great Pacific Enterprises | Method for sterilizing internal surfaces of an edible liquid packaging machine |
5564481, | Mar 10 1993 | KHS Maschinen- und Analagenbau Aktiengesellschaft | Filling element for filling machines for dispensing a liquid filling material into containers |
5582796, | Apr 01 1994 | Siemens Healthcare Diagnostics Inc | Feed and orientation mechanism in automated analyzer |
5673535, | Mar 02 1994 | TL SYSTEMS CORPORTION | Vial filling apparatus |
5720148, | Jun 30 1995 | DEEP, Societe Civile | Method for filling bottles, especially plastic bottles, with a liquid and an associated device |
5848515, | Dec 17 1996 | Tetra Pak Plastics Limited | Continuous-cycle sterile bottling plant |
JP63048881, | |||
KR968699, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 15 1999 | STEUBEN FOODS, INC. | (assignment on the face of the patent) | / | |||
Aug 30 1999 | NEWITT, DANIEL | STEUBEN FOODS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010215 | /0704 | |
Oct 31 2000 | STEUBEN FOODS, INCORPORATED | LASALLE BUSINESS CREDIT, INC , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 011312 | /0694 | |
Dec 04 2003 | TAGGART, THOMAS D | STEUBEN FOODS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014766 | /0379 | |
Apr 15 2009 | Steuben Foods Incorporated | STORK FOOD & DAIRY SYSTEMS B V | PATENT LICENSE AGREEMENT | 022694 | /0857 | |
May 04 2009 | BANK OF AMERICA, N A , AS SUCCESSOR BY MERGER TO LASALLE BUSINESS CREDIT, INC | Steuben Foods Incorporated | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022692 | /0019 | |
Aug 16 2017 | STEUBEN FOODS, INCORPORATED | BMO HARRIS BANK N A , AS AGENT | SECURITY AGREEMENT | 043576 | /0409 |
Date | Maintenance Fee Events |
Sep 10 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 10 2007 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Mar 10 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 25 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 09 2007 | 4 years fee payment window open |
Sep 09 2007 | 6 months grace period start (w surcharge) |
Mar 09 2008 | patent expiry (for year 4) |
Mar 09 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 09 2011 | 8 years fee payment window open |
Sep 09 2011 | 6 months grace period start (w surcharge) |
Mar 09 2012 | patent expiry (for year 8) |
Mar 09 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 09 2015 | 12 years fee payment window open |
Sep 09 2015 | 6 months grace period start (w surcharge) |
Mar 09 2016 | patent expiry (for year 12) |
Mar 09 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |