An apparatus configured to provide standing water at convenient locations for the use of mosquitoes to lay eggs. After eggs are deposited in the development cycle of the egg, the larva, pupa, adult life stage are interrupted by denying the proper environment to sustain their development. Also disclosed is an apparatus to abate mosquito populations which provides a convenient and attractive reservoir of liquid situated to encourage use by mosquitoes for egg laying. At intervals the liquid in the reservoir is flushed or filtered eliminating mosquito biomass developing in the liquid. The bio-matter is substantially removed and aborts the development of the bio-matter into adult insects.
|
14. A method for interrupting the bio-cycle of mosquitoes, comprising:
automatically and periodically raising a filter through and out of a reservoir, said reservoir holding a liquid medium and being located so as to harbor mosquitoes or to lure a female mosquito to deposit eggs in said liquid medium; removing mosquito eggs, larva, and pupa from the reservoir with said filter; and terminating the development of said mosquito eggs, larva, and pupa.
1. An apparatus for interrupting the bio-cycle of mosquitoes, comprising:
a reservoir for holding a liquid medium suitable for reproductive use by mosquitoes or for harboring adult mosquitoes; a filter located in said reservoir, said filter adapted to strain the liquid medium and remove mosquito egg deposits, larva, pupa and adults; and means for automatically and periodically raising the filter out of said reservoir for a period of time to destroy the life of any stage of maturing mosquito egg deposits, larva, pupa and adults.
2. An apparatus for interrupting the bio-cycle of mosquitoes, comprising:
a reservoir for holding a liquid medium suitable for reproductive use by mosquitoes or for harboring adult mosquitoes, wherein said reservoir is located so as to harbor mosquitoes or to lure a female mosquito to deposit eggs in said liquid medium a filter located in said reservoir, said filter adapted to strain the liquid medium and remove mosquito egg deposits, larva, pupa and adults; and an automatic, periodically-activated device for raising the filter through and out of said reservoir wherein said filter remains out of said reservoir for a period of time to destroy the life of any stage of maturing mosquito egg deposits, larva, pupa and adults.
3. An apparatus for interrupting the bio-cycle of mosquitoes as claimed in
4. An apparatus for interrupting the bio-cycle of mosquitoes according to
5. An apparatus for interrupting the bio-cycle of mosquitoes according to
6. An apparatus for interrupting the bio-cycle of mosquitoes according to
7. An apparatus for interrupting the bio-cycle of mosquitoes as claimed in
8. An apparatus for interrupting the bio-cycle of mosquitoes as claimed in
9. An apparatus for interrupting the bio-cycle of mosquitoes as claimed in
10. An apparatus for interrupting the bio-cycle of mosquitoes as claimed in
11. An apparatus for interrupting the bio-cycle of mosquitoes as claimed in
12. An apparatus for interrupting the bio-cycle of mosquitoes as claimed in
13. An apparatus for interrupting the bio-cycle of mosquitoes as claimed in
|
This application claims the benefit under 35 U.S.C. 119(e) of provisional application No. 60/248,216 filed Nov. 15, 2000 in the name of Donald R. Hall, for "Mosquito Breeding Convenience with Bio-cycle Interrupt," the disclosure of which is incorporated by reference in its entirety.
Mosquitoes are responsible for a great deal of human misery, expense, and death throughout the world. They carry diseases that sicken one-eighth of the world's population and impact the health and economy of 300 million people a year. In Developing Countries, mosquito-borne diseases are the leading cause of death.
Mosquito control is accomplished mainly by spraying pesticides, when economic conditions permit. The most common methods of controlling mosquitoes involve the use of insecticide sprays and poisons. The United States has relied on pesticides and has easy access to the chemicals and the funds to deploy them. The chemicals have been effective and consequently the impact mosquitoes can have on people has been largely absent in this country. However, new threats have come to the U.S. from mosquitoes that are carrying viruses dangerous to humans. Further, for many communities, the cost of spraying is prohibitive. Still further, it is known that mosquitoes are becoming resistant to pesticides and exposed insects that survive and mate and reproduce progeny that again will experience insecticide and inevitably, there will be more survivors. Repetitions of this cycle will produce toxin resistant insects.
Some species of mosquitoes carry viruses harmful to humans and are responsible for millions of deaths around the world. These mosquito borne viruses are entering the United States along with new species of mosquitoes. Several species of mosquito have entered the United States that are aggressive and carry viruses threatening human health. Deaths have occurred in the North East and the South West United States.
In the region of the East Coast of the U.S. during the years 1999 and 2000 mosquitoes have thrived. The level of nuisance has grown but more important the mosquitoes have been transmitting the West Nile virus. The virus has occurred in the cities of New York, Baltimore and Richmond Va. and the number of sites is growing. Health services have announced a request that families and persons check for standing water breeding areas, and eliminate them, in an attempt to deny mosquitoes breeding opportunities. Since the discovery of the West Nile virus in the New York area, and the seven deaths last year, U.S. Center for Disease Control has appointed a special director to coordinate containment efforts. Congress has allocated funding to be used to control the spread and impact of the virus.
Birds bitten by infected mosquitoes can fly long distances after becoming infected and thereafter any mosquito biting an infected bird will become infected. When the newly infected mosquito bites another, animal it is infected. This results in a very effective delivery system and infected birds carrying the virus from New Jersey found as far South as Florida and North Carolina, less than two years after the virus was introduced in New Jersey.
The Federal Government has provided substantially supplemented budgets to local government entities to help them acquire the chemicals in order to be responsive to the mosquito outbreaks that are being experienced across the country. After a recent deluge in Texas, mosquito populations there ballooned, and the community was advised to stay indoors. All available spraying equipment was in use 24 hours a day and Federal Emergency Management resources were activated. Activation of the Texas National Guard for manpower assistance was under consideration and may have occurred.
These mosquitoes are carrying harmful viruses and more aggressive species are entering the country. One new mosquito species in the U.S. is the Asian tiger mosquito, which arrived in a load of old tires shipped from Japan for recapping.
When outbreaks trigger citizen complaints the only option available to local authorities is often the use of Adultacides. These chemicals are only sprayed after announcing to communities to stay indoors while it is being done. The chemicals used to attack the adults are highly toxic. Adultacide use is avoided if possible due to their negative impact on other flora and fauna.
Typically the most common spraying targets are wet areas where mosquitoes breed. Chemicals are used to poison the mosquito larva living in the water. This requires repeated application, continuing expenses and results in undesirable toxic accumulation.
The "wetlands" water treatment programs being developed in the U.S. are concerned with the complaint that the success in creating natural appearing wetland providing water treatment is also creating massive mosquito nurseries. The use of insecticides in the wetlands to control mosquitoes is expensive and runs against the environmental quality philosophy supporting such projects. Substantial effort is being made to reduce the mosquitoes in less toxic ways.
Regardless of pesticide toxicity, the U.S. economy can afford to expend the resources to carry out extensive spraying programs. Developing Nations are usually unable to afford the expense of these programs and consequently they are burdened by the consequences and continuous drain on their health care systems. Many people die each year from Yellow Fever, Malaria, Encephalitis and other vector borne diseases.
The invention discussed herein proposes a method of providing convenient standing water for the use of mosquitoes (and other interrupting mosquito breeding), as well as other low cost methods to abate mosquito populations without the use of insecticides. In another embodiment of the present invention, simple low cost methods are disclosed to abate mosquito populations with minimal expense, without insecticide, and requiring little continued expense to be effective.
The strategic placement of the devices of the present invention may encourage their use by mosquitoes. The invention comprises a method to interrupt the development cycle of newly spawned mosquito eggs and larva. Mosquitoes making use of the convenient location may choose it over the natural areas, which they always seem to find. It is anticipated that experimentation will provide information that will allow implementing ways of increasing the appeal of the facilities appeal to the target insect.
The concept is to program the device to activate often enough to destroy any water dependent biomass deposited or developing in the water. After the eggs are in the still water the apparatus will act on the water to disrupt the developmental stages of insect.
Several ways of providing such a facility are apparent. Other improvements can be discovered and added to create a successful program. The devices should be low cost, no maintenance (if possible), and not create any new insect problems. The standing water could be provided rainfall where feasible and the weather cooperative. Barring this availability of water the device could be placed in the hands of volunteers interested in reducing the mosquito population in their area. A bird-bath that is equipped with the filter assembly similar to
In another embodiment of the present invention, effective methods of diminishing mosquito populations as discussed herein can be applied to create a low cost toxin free method of interfering in the life cycle of these insects as they develop in nonnatural breeding sites made convenient to them for egg laying.
Some mosquitoes are known as container breeders, and they will seek out opportunities to lay eggs in discarded soda cans, bottle caps, dog dishes, rainwater remaining in rain gutters, or any other convenient reservoir of water. The methodology disclosed herein is contrary to most anti mosquito protocols, which are oriented to eliminating or poisoning breeding water available to mosquitoes for reproduction.
By providing a convenient and possibly attractive breeding facility for mosquito use, it is then possible to intervene and disrupt the development cycle of egg, larva, pupa, adult that naturally occurs in the reproductive of mosquitoes. Accordingly, another embodiment of the present invention comprises a method to remove a serious man-made mosquito breeding convenience. Rain gutters that have not properly drained and have stagnant water remaining in them, enable mosquitoes to invade neighborhoods using the gutters as nurseries. By using rain gutters that slowly leak one can retain the effectiveness to carry the bulk rain water away from a buildings foundation, but any water improperly drained will leak through the porous bottom of the channel. A female mosquito must have a blood meal from a host in order to develop eggs. After this meal, the mosquito will seek out a suitable body of water to lay eggs. The water is typically stagnant non-moving water preferably shaded, but the preferences vary between species. The shape and size of the embodiment can be customized to the features that the targeted mosquitoes prefer.
There are two methods to interrupt the mosquito development cycle that can be broadly addressed as Filter and Flush. The Flushing methodology has the added benefit of refreshing the water and thus avoids the issue of female mosquitoes rejecting water that may have pheromones released from dead mosquitoes building up in the water. The Filtering method lifts the filtered Bio-matter out of the water as well.
Removal of mosquito bio-matter can be done using a very wide variety of devices. Only some of them are selected for definition herein. The intelligent control and timing for purging the water in the reservoir can be derived from a person manually carrying out the procedure or it can be controlled automatically by an electronic microcontroller. Heat activated metal movement can successfully raise a filter through the water resulting from solar temperature change of a bi-metal spring supporting the filter after sunrise occurred and heated the metal. In this way, the present inventor has found a device that could be maintenance free and operate for extended periods in areas in undeveloped countries near water reservoirs.
In systems that use motors for motion a small solar panel was used to keep a battery charged. With a requirement for the filtering, pumping or lifting only once every three days the solar panel is easily able to maintain the battery. It is only necessary to spoil the development once during the development of the egg, larva, pupa, and adult cycle to abort the development of the young mosquitoes
The scale of the device can be as small as a bottle cap or it may be an unlimited run of channel placed between a housing community and a wetland. Recreational Parks that are used at night are often near water and streams. Mosquitoes receiving blood meals from park users will typically return to their hatching place to lay eggs. Long lengths of the Abatement Channels can be installed that are between the park and natural water that the mosquitoes will use conveniently. Every three days the channel will be flooded with replacement water and the bio-matter will be flushed away. The channel may be flushed at any interval but a three-day interval will act on a hatch at least twice before there is time for them to mature into adults.
These mosquito abatement techniques and methods are very inexpensive and can be implemented in the poorest of communities in the world, which is where the mosquitoes are causing the most misery.
In yet another embodiment of the present invention, a variety of additives mixed with the liquid in the reservoir may make it more attractive to the mosquito. It is assumed that some attractant could be added to the water that would make it the most attractive site for a female mosquito seeking a place to lay eggs. The best formula for this "Mosquito Tea" will develop over time with data collection and experimentation. The mixture now used is Tannin, straw, and manure.
The objects and advantages of the insect bio-cycle interrupt and insect abatement techniques of the present invention are to provide:
An apparatus comprising a reservoir for holding a liquid medium suitable for reproductive use by mosquitoes or for harboring adult mosquitoes wherein said reservoir is located so as to harbor mosquitoes or to lure a female mosquito to deposit eggs in said liquid medium, said apparatus further comprising a periodically activated means to destroy the life of any stage of maturing egg deposits, larva, pupa and adults. Further, said apparatus comprising a reservoir of water and a filter located beneath said reservoir, wherein periodically said filter is raised through reservoir of water and filters any insect material out of said water, and further wherein said filter remains out of said water for a period of time that eliminates any further life of any insect material on the filter. Still further, said apparatus wherein said reservoir of liquid is suitable for sustaining the growth of mosquito reproductive matter and said means to destroy comprises a liquid or a biomass removal means for terminating said growth. Yet still further, an apparatus comprising a reservoir of liquid containing mosquito biomass wherein said liquid is passed through a filtering means to reduce said liquid quantity of said biomass.
A reservoir and means to destroy life wherein said reservoir holds a liquid suitable for reproductive use by mosquitoes and wherein said means to destroy comprises a flushing means for flushing said liquid out of said reservoir and replacing said liquid with a clean supply of said liquid. Further, a reservoir and means to destroy life wherein energy to power said flushing means is supplied by a battery or by a utility company.
A reservoir and means to destroy life additionally comprising a collection filter wherein said mosquito eggs, larva and pupa are preserved for scientific analysis.
A reservoir and means to destroy life comprising a lawn ornament containing a liquid.
A loop of metal formed as two parabolic shapes joined at end points to close said loop and internal surface of said loop is grooved in the form of a parabolic and further comprising a microphone supported by a bracket into the center of said loop.
An apparatus comprising a birdbath and a filter that effectively filters mosquito egg, larva, and pupa material from water in a birdbath reservoir. Further, the birdbath comprising a micro controller for controlling filtering operations and, still further, can comprise a pump.
A chemical mass deposited in rain gutters to discourage mosquitoes from using said rain gutters to deposit eggs.
An apparatus containing an odorous substance, which attracts insects or encourages insects to lay eggs on it, and said apparatus also comprises a means to terminate eggs larva or pupa from developing into adults or to kill adults. Further, said apparatus containing an odorous attractant to attract flies wherein said apparatus also comprises an electrified grid to electrocute said flies when they make contact with it. Still further, said apparatus wherein said termination means is a chemical. Yet still further, said apparatus wherein said termination means is electricity.
A mosquito research apparatus comprising an entry and exit detection means and a light emitter means, buzz detection means for monitoring mosquito wing sounds, a thermal emitter means to attract and alternately repel mosquitoes and a frequency emission means to simulate mosquito wing noise and other insect sounds. Further, said research apparatus wherein water contains a low level radioactive isotope that will mark insects that make use of the facility and thereafter be recognized by other research devices in a test zone that can detect presence of said isotope on said insects. Still further, said apparatus further comprising a micro-controller to collect data and control activity of emitters and detectors.
An electronic device that emits recorded frequencies collected from bats during times when said bats are feeding on flying insects to discourage flying insects from entering an area where the frequencies can be recognized by said insects. Further, said device wherein said signal emitted is a signal recorded from natural sounds made by mosquitoes enclosed in a test chamber containing mosquitoes and dragon flies together.
A method of using an apparatus comprising a reservoir for holding for holding a liquid medium suitable for reproductive use by mosquitoes or for harboring adult mosquitoes wherein said reservoir is located so as to harbor mosquitoes or to lure a female mosquito to deposit eggs in said liquid medium, said apparatus further comprising a periodically activated means to destroy the life of any stage of maturing egg deposits, larva, pupa and adults, the method comprising providing a reservoir for holding a liquid, at intervals removing mosquito eggs, larva, and pupa from the liquid medium in which they are growing, thereby terminating their development, and providing an available reservoir for further use by other female mosquitoes. Further, a method of mosquito population abatement using said apparatus wherein said step for removing comprises straining said liquid medium at intervals to remove mosquito reproductive bio-matter and terminate the biological growth of the eggs, larva and pupa. Still further, a method of using said apparatus comprising forming said reservoir in the ground so as to attract mosquitoes for egg laying, draining said reservoir into a flowing stream at intervals to disrupt the development of mosquito, biomass and refilling said reservoir after draining.
A reservoir and means to destroy life which comprises in a car tire, a valve and a water supply.
A reservoir for holding a liquid which is suitable for harboring mosquitoes, further comprising a signaling means to generate an alert to a caretaker at an interval to flush the reservoir contents that is possibly harboring mosquito reproductive mass.
A reservoir and means to destroy life or an insect abatement means which comprises a rain gutter that comprises a leakage means to drain residual water remaining in said gutter after a rain to eliminate a possible mosquito breeding habitat that is inherent in said residual water.
A process for the production and distribution of automobile tires comprising applying a chemical on the inside surface of said tires wherein said chemical will mix with any water that may enter said tire after tire is disposed and said mix is a spoiling means to deter a mosquitoes use of said mix as an egg laying site.
An apparatus that fits in a window frame venting inside warm air and CO2 outside comprising openings for insects to enter into apparatus after which an air-stream and insects caught in said air-stream are carried along through a structure comprising baffles and said insects collide with said baffles inflicting damage on said insects that come into contact with said baffles wherein said air-stream is generated by a fan on down-stream side of said baffle structure and said fan ejects damaged insects into outside air. Said apparatus wherein said baffles are coated with abrasive. Further, said apparatus wherein said baffles are coated with insecticide or oil. Still further, said apparatus having a baffle structure comprising a reservoir above said baffle structure and at least one hole in said reservoir drains liquid onto underlying baffles comprised in said structure.
A reservoir and means to destroy life wherein said reservoir comprises a channel having a simulated earth topography of natural earth features and a live plant to entice insects to use said channel for reproductive activities. Said apparatus wherein said channel holds a liquid comprising water. Further, said apparatus wherein said reservoir comprises soil. Still further, said wherein said channel comprises a means to destroy selected from the group consisting of an insect extermination means and a flooding mechanism to release liquid and flush away insect biological material occupying said channel.
A tool that can be used to puncture holes in rain gutters that are installed on buildings to produce a feature that functions to perforate the gutter floor in order to drain any standing water left in drains resulting from obstruction or angle of drainage problems.
A filter that collects biomass as liquid is flushed from the reservoir to save it for scientific evaluation purposes and to test for the presence of and identification of viruses carried by mosquito vectors.
An apparatus that will attract female mosquito egg layers that has a flush capability to purge and refill a reservoir wherein this apparatus is equipped with valves that are managed electronically.
A birdbath fitted with a system to purge mosquito biomass by filtering or flushing.
A mechanism of the bio-cycle interrupt device to act on water may employ filters, drainage, scooping, even electric shock to the water in order to eliminate the developing egg, larva, pupa. Simplicity and low maintenance is important as well as rugged durability. One embodiment with advantages would take the form of a window box on a home window, a fence, an apartment deck railing, or be supported on a pole near natural creeks, canals, rivers, swamps etc. It is known that mosquitoes will travel up to two miles from their breeding grounds. A mosquito approaching the natural breeding ground may be enticed with an early convenience before reaching the natural areas from which they came.
There is an option to put the devices where they can be supplied with new water on demand. This would allow the water to be dumped at regular intervals and replaced with new water to eliminate biomass. This could be done with a lawn-watering timer, which turns water on to water an area and then turns the water off. A short cycle would replenish the old water in a bird bath embodiment with new water. The new water entering under pressure would eject the larva, egg rafts, and pupa out of the water reservoir. The water drain and refill may also be controlled by a micro-controller. The reservoir can be designed to rotate such that it would dump the old water and upon being upright again be filled with fresh water.
Eggs hatch into larvae in about 3 days. The larvae live in the water for 7-10 days while maturing into the pupa. In 2-3 days these pupa have developed into adults and fly away and mate. It takes about two weeks for the cycle to complete. One water filter operation every other day would impact a single egg deposit about seven times during anticipated development. Dumping the water every other day would primarily dumping eggs.
The current prevailing mosquito control method is spraying chemicals in breeding areas. The long-term impact of chemicals is always a serious concern. Minimal use of chemicals near residential areas is a continuous consideration in most spraying programs, as long term effects on humans and the environment are not known. The bio-cycle interrupt method entailed in this invention is free from these concerns.
The method does not restrict itself to one insect. It can be extended to any other species requiring control. Researchers do not support the effectiveness of bug zappers that attract insects to light and then electrocute them. They contend that the attraction to the area brings in more mosquitoes to the general area and makes the area worse for human occupants. These devices require a great deal of nearby power, which makes them expensive and localized to populated areas.
Another insect to which the bio-cycle interrupt methods can be applied are flies. The inventor has conducted an experiment that has proven effective for fly control, using the electrocution method. The placement of odorous material, like a can of cat food, inside of an electrified grid attracted flies during the day, prior to a barbecue. Throughout the day the flies were attracted and electrocuted very effectively. The barbecue was relieved from the normal pest problem. The method of attraction using light works only in at night. As shown in
The addition of the odorous attraction provides a device that works during daylight hours. Day feeding mosquitoes may be attracted to some odors more than others or possibly a thermal radiator simulating body heat of a potential blood meal. This data can be accumulated using the methods and devices explained herein.
Other methods are also useful. A battery driven pump could be employed to re-circulate water through a filter, which catches the larva and eggs. This may require a simple plastic impeller pump and an inexpensive controller, such as MicroChip PIC. If the inexpensive chip is used, it can be employed to develop and collect data, from sensors, related to the use of the facility. The micro-controller could measure insect landings on the water by mosquitoes to derive a count of the population. This does assume the water is still, and most of the time it will be except in wind and weather conditions disturbing mosquito activity. During these times, the controller would sleep to conserve power. The two most frequently proposed methods of mosquito control methods is chemical spray and active elimination of breeding places like, old tires, bases of flower pots, birdbaths, potholes clogged rain gutters, discarded cans etc. The many variations of standing water exploited by mosquitoes suggest that they would succumb to the convenience device proposed in this invention.
Deriving power to operate the device is also a consideration related to the emissions of the device. In remote areas, solar cells can charge batteries, weights can power a gear train, like grandfather clocks, household power, and others sources are available. The advantage is that the basic device has a low requirement for power since it operates once every two or three days. A system that drained and refilled every two days would be also be sufficient to reduce mosquito populations. A timer would open a drain and after draining open a water valve to refill the reservoir.
Many insects are attracted to light. By providing a light in combination with the apparatus proposed herein, we can improve its' attraction and effectiveness.
It is known that adult mosquitoes find one another by the frequency of the sound or buzzing, that their wings make while flying. Replication of these frequencies by the controller will attract the adults. The device may intermittently replicate these frequencies to divert the insects and attract them to the apparatus.
Many embodiments and types of apparatus can be developed to interrupt an insect's bio-cycle, for example, disrupting the development of eggs into adult insects.
A cylinder with a screen installed that is resting at the bottom which is provided with water to attract the mosquitoes is simple and cost affective. The screen can be lifted through the water until it emerges with the egg deposits it has filtered out of the water. It would then remain out of water long enough for the mosquito biomass recovered to dry up and die. The filter lifting cycle is triggered by temperature, daylight or just a repetitive timing cycle. Raising the contents near midday would provide fast drying, and then the filter can be lowered into the water again, in time for the evening hours when the insects become active. Various climates may employ different cycles of filtering and drying time. The drying time is the period of time that the filter is held out of the water. This would be long enough to insure that the insect biomass would become dry and die from lack of moisture.
Given that female mosquitoes are in pursuit of a blood meal a fixture may be attached to the suggested device that presents a surface that radiates a temperature similar to the body temperature of a potential blood meal.
A heat sink can be added that will absorb solar radiation during the day and radiate it into the cool evening. The speed of mosquitoes development cycle has a dependency on heat such that when the water it is warmer the development cycle is shorter. Female mosquitoes may prefer warm water. The nature of the water, being natural water and/or stagnancy may be a factor. This data will be accumulated during testing and deployment.
Preferably, the bio-cycle interrupt devices are placed near areas of feeding opportunities and natural breeding areas. Parks near water, summer camps, marinas, lowlands, zoos, etc. are all good placement scenarios. These areas are "high yield" areas. This means that the blood meal and breeding area are close together. Installation of a permanent nesting apparatus in these areas would be justified. A permanent installation could cycle power, water, infrared signature, the controller, on and off as needed. This embodiment is less restrictive than a solar, or battery powered device. Water can just be drained every two days and replaced if filtering is not employed.
A landing count measurement device can be installed to measure the tiny ripples of a mosquito landing in order to accumulate statistics of use. The electronics, transducers, and background noise filtering methods are common to micro-controller and sensing technology and readily available in the industry. The mammal temperature emulation technique will use considerable power when operating to provide radiated heat. Use of infrared light may not have the same attractive results as warm body emulation. This can be determined by applying the test and measurement devices and attachments defined herein.
Often mosquitoes find convenient water in which to deposit eggs. One location they exploit is the rain gutters affixed to buildings to collect water run-off from roofs. Leaves from trees often spoil the drainage which results in puddles of standing water remaining in the drains. Distortion of the drain slope can also result in standing water.
By mixing chemicals that are toxic to mosquitoes with a base which dissolves slowly a formula can be developed which may be tossed onto roofs that will spill into the rain gutters releasing toxins to make the standing water unattractive for egg laying mosquitoes. The form factor may be varied in such a way to prevent the chemical base from being washed away during heavy rain. This chemical bearing mass may be attached to a wire holder that affixes to the outside edge of the drain while allowing the chemical to be held down against the bottom of the drain in contact with any pooled water. Over time the mass will dissolve as it releases toxins after being wetted by the rain each time. The life of the mosquito toxic mass will be formulated to provide an effective life and to be active over the duration of the mosquito season. The material to discourage egg laying need not be toxic if it is preferred an oil base material can release enough oil base to form a film over top of the standing water which will make it unattractive to a female mosquito looking for an opportunity to lay eggs.
The appropriate design for this invention can vary with location, climate and logistical support that will be available. Solar power panels can provide recharge current to battery operated devices. Near residential areas plug in devices are feasible. As shown in
Mosquitoes often make use of puddles of water formed in rain gutters, for laying their eggs. This opportunity can be denied by contaminating the water that remains in the gutter. As shown in
When the discussed apparatus is equipped with various emitters and detectors a research facility can be created to exercise the emitters and collect data from the sensors. Having a capacity to monitor wing buzz and passage in and out of the chamber a capability is derived to discover reactions of insects to the emitters.
An ultrasonic transducer emitter may be employed and activated at frequencies that are consistent with bat feeding. A pattern of ultrasonic frequencies can be discovered that is effective in discouraging mosquitoes from entering an area. The frequency, pulse length, repetition rate and volume can be varied to discern the most effective signal profile. The micro-controller can then repeat the emissions profile and collect data from the research platforms to evaluate the effectiveness of the various emission profiles. A micro-controller will store the emission pattern for playback. This will help observe responses of mosquitoes and other flying insects. The emitted frequencies will also include the wing beat frequency of dragonflies, another enemy of the mosquito.
Much in the same manner as the bio-cycle interrupt methods and devices can be varied, the simplicity of the abatement methods disclosed yield opportunity to produce many forms and embodiments that will provide the desired functionality. The methods do not appear in the art of insect traps or insect population abatement techniques. Generically the methods are not intuitive. One method provides a site for mosquitoes to breed in. Another method puts holes in rain gutters. Both of these ideas are typically bad things to do. The novelty derives from the oversight of these for so long, and upon learning either method it occurs to one that they would be effective.
Many form factors can be devised to produce the apparatus. The methods of filtering and flushing can be achieved with pumps, actuators, and motors with a variety of reservoir shapes. One form of the flushing method is represented in FIG. 9. The reservoir is any form, which will retain or contain a liquid. A valve on one end is opened to release water in the trough along with the biomass. A water tank can be used to supply the replacement liquid if the apparatus is remotely located. Other installations near recreation areas may use a fixed architecture with plumbed in supply pipes providing liquid and local electricity to automatically control the flushing and replacement cycle of the system. For example,
After mosquitoes have used water to lay eggs the development cycle begins. After two or three days filtering the water will remove the biological material from the water destroying the insect bio-matter.
There are many ways to apply this method of mosquito population abatement. Reservoirs of water can be filtered by pumping the liquid through a filter and returning clear liquid to the reservoir. A trough of water can be tilted to pass the liquid through a filter in the trough and after an interval return the trough to a level position. This type of abatement can be applied to a birdbath embodiment.
In a preferred embodiment of the present invention, an attractive lawn ornament like a birdbath can easily be fit with the mechanism to filter the water contents at an interval that will serve to destroy the mosquito reproductive material from the water provided for the birds.
In another embodiment of the present invention, the automobile tire is a very effective nursery for mosquitoes. When they our outdoors they can catch rain and retain it inside of the dark cavity of the inside wall of the tire. The black tire absorbs sunlight and produces heat, which expedites the growth rate of the hatch. The ceiling of the internal chamber slows the loss of water through evaporation. A replica of a tire can be equipped with a rotating arm, which pulls a filter through the internal chamber to pick up all the biomatter from the water. When the tire shape is not level most of the water will accumulate on the lowest side. The filter arm will come to rest at the high side and bio-matter in the filter will desiccate,
Rain-gutters are installed on buildings to carry the water falling on a roof away from the buildings foundation. They can easily retain water that does not drain properly. The common rain-gutter can be improved by adding minute drain holes or slots in the bottom of the channel will drain remaining rainwater and deny the opportunity of the mosquito to use it.
The type of opening or hole can be made in a variety of ways, which would be obvious to anyone skilled in metal work.
New rain gutters can be produced upgraded to mosquito conscience grade with drainage holes during manufacture. The rain-gutters in place are still a problem. A device can be created to puncture the floor of gutters that are installed.
A tool that is fitted on the end of an extension means can be made to allow a user to reach the installed gutters. This tool will provide a pin to puncture the light gutter material and a counter opposed die will be pressed against the other side of the material. The opposed die will resist the downward pressure of the material surrounding the pin but allow the pin itself to make the puncture into the void on the die. Many versions of this tool could be constructed by one skilled in the art.
During manufacture of rain gutters the leakage openings can be built into the shaping roller, rolling against the bottom of the channel in a manner with pins and die holes on counter opposed rollers.
In an embodiment of the present invention,
The drawings of the present specification are described below in detail.
As shown in
Also shown in
In
As shown in
Also shown in
By collecting data on mosquitoes behavior with these facilities we can improve opportunities to develop the most effective combination of attractors, water chemistry, buzzing, heat, light, pheromones, etc. As shown in
To provide an apparatus
A permanent installation in areas where mosquitoes are a continuous problem can be supported by wind and/or solar power. The nearby water in wetlands provides a readily available supply of water and the requirement to execute the disclosed process every three of four days presents very low power requirement. These methods would include a pump, a battery and a controller.
The invention described herein will provide a tool for use in field-testing to determine what mixtures are most attractive to insects. In the use of the present invention there is a data collection capability when the flushed larva are retained in filters. This will aid in determining insect populations and the effectiveness of any new methods of mosquito control that are placed into trial situations in the area.
The generic method of providing attractive conditions for insect reproduction and thereafter spoil the development of the progeny is a viable control method for other insects as well.
The preferred egg-laying base for insects differs from species to species. The insects that prefer warm mud or dry areas near water can be accommodated by laying out a base in the bottom of the channel or reservoir that simulates various topologies. A method of laying down these topologies in the base of a channel is defined herein. To maintain any consistent control of the topologies and their effectiveness there is a need for a standard for each target insect and location. A base material of organic matter is pressed into the channel by a shaped wheel that is imprinted with the intended pattern. Seeds will be embedded in the areas of the design if they are deemed to be useful. This is a workable control to easily produce deploy and test effective insect control measures.
After mating the female deposits the fertilized eggs on rocks in swift streams, and the larvae develop aquatically, feeding on algae and debris. Adult flies first emerge in spring, and several generations may be produced each year Certain species in Mexico, Central America, and Africa transmit the disease organism that causes onchocerciasis, or river blindness, in humans.
This dangerous insect would find the topography in the bottom of the channel a matrix of running water with the building blocks included to begin and encourage the growth of algae and other potential food products. The idea is to include the most attractive site possible for the egg-laying parent. Depending on the biological cycle the control module will administer the subsequent program put into use. This may include the use of Pheromones; wing beat frequency, sound etc. The object will be to over time develop a channel with the most attractive parameters that can be discovered. It is assumed that an array of sensors available in data collection and signal processing are available for customization and data development. In the particular case of the Black Fly stopping the flow of running water at some interval may be effective in destroying the development of young Black Flies. The water may then be returned to flowing. This channel would be put down with water channels resistant to erosion. A large purging flow would overwhelm the channel topology and flush the bio-matter. Multiple methods are available to spoil the insect development. Introducing short-term poison would also be a reliable method.
Only a few embodiments are used herein to disclose the concept and required features and the embodiments disclosed herein should not be considered exhaustive of the present invention. The methods of interrupting a bio-cycle and of filtering and flushing are novel and effective. Many embodiments and changes are known to the ordinary skilled artisan to interrupt an insect's bio-cycle and to filter and flush a reservoir. Additional features can be added to entice and attract insects to reproductive locations increasing the potential for egg lying in the population reduction equipment discussed herein.
Patent | Priority | Assignee | Title |
10251380, | Mar 23 2017 | Verily Life Sciences LLC | Sieving apparatuses for pupae separation |
10258027, | Oct 15 2010 | Rutgers, The State University of New Jersey | Autodissemination of an insect-growth regulator for insect management |
10342222, | Mar 23 2017 | Verily Life Sciences LLC | Sieving devices for pupae separation |
10499620, | Mar 23 2017 | Verily Life Sciences LLC | Sieving techniques for pupae separation |
10588306, | Apr 13 2015 | UNIVERISTY OF FLORIDA RESEARCH FOUNDATION, INC | Wireless smart mosquito and insect trap device, network and method of counting a population of the mosquitoes or insects |
10757933, | Jan 28 2013 | Laurentian University of Sudbury | Compositions and methods for directing the oviposition of mosquitoes |
10772309, | Mar 23 2017 | Verily Life Sciences LLC | Sieving apparatuses for pupae separation |
10813349, | Nov 26 2019 | Apparatus and method for eradicating mosquito eggs | |
10827743, | Feb 10 2017 | Mosquito breeding prevention device and system | |
10835925, | Mar 23 2017 | Verily Life Sciences LLC | Sieving devices for pupae separation |
10842137, | Mar 23 2017 | Verily Life Sciences LLC | Sieving devices for pupae separation |
11246296, | Jul 02 2019 | Evergreen Enterprises of Virginia, LLC | Electric powered bird bath |
11284610, | Mar 17 2021 | System and method for a mosquito trap | |
11517001, | Mar 23 2017 | Verily Life Sciences LLC | Sieving apparatuses for pupae separation |
11744235, | Mar 23 2017 | Verily Life Sciences LLC | Sieving apparatuses for pupae separation |
6990768, | Apr 05 2004 | Device for eliminating mosquitos | |
7281350, | Mar 08 2005 | SHRADER, TIFFANY | Mosquito/insect larva trap magnet system |
7293388, | May 13 2005 | ARMATRON INTERNATIONAL, INC | Adaptive control system |
7434351, | Jan 11 2005 | No maintenance lethal mosquito breeding trap | |
7448160, | Oct 21 2004 | Mosquito harvest trap | |
7511624, | Jan 25 2005 | Montana State University | Optical detection of oscillating targets using modulation of scattered laser light |
7694455, | Dec 27 2005 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Apparatus and method of mosquito control |
7765734, | Jan 12 2007 | Fire ant colony killer | |
7946077, | Sep 21 2006 | Container for capturing mosquito larvae | |
8109035, | Dec 27 2005 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Apparatus and method of mosquito control |
8261695, | Jan 21 2010 | Birdbath with integrated automated maintenance | |
8359783, | Sep 24 2008 | Woodstream Corporation | Remote-controlled cage trap door-opening mechanism |
8479438, | Aug 04 2010 | Arthropod abatement device | |
8776430, | Sep 24 2008 | Woodstream Corporation | Remote-controlled cage trap door-opening mechanism |
8893428, | Feb 11 2002 | Technology S.G., L.P. | System for trapping insects |
8915013, | Nov 13 2008 | Helmholtz-Zentrum fur Umweltforschung GmbH | Method for the eradication of pathogenic microorganisms in an aqueous system |
9265247, | Oct 15 2010 | Rutgers, The State University of New Jersey | Autodissemination of an insect-growth regulator for insect management |
9775334, | Feb 11 2002 | TECHNOLOGY S.G., LP | Insect trap with reflective interior walls |
9807998, | Sep 24 2008 | Woodstream Corporation | Remote-controlled cage trap door-opening mechanism |
Patent | Priority | Assignee | Title |
1003259, | |||
1073914, | |||
1262241, | |||
129350, | |||
2767507, | |||
2860444, | |||
2908105, | |||
3048937, | |||
3078786, | |||
3105320, | |||
3372784, | |||
3501316, | |||
3995591, | Jan 28 1976 | Self-cleaning bird bath | |
3997999, | Mar 25 1976 | Mosquito trap | |
4002146, | Aug 14 1970 | Insect collection and feeding | |
4019459, | Dec 30 1971 | Amphibian culture by insect feeding | |
4328636, | Jun 30 1980 | Device for insect control and method | |
4630569, | May 02 1985 | Self-cleaning birdbath apparatus | |
5123201, | Feb 11 1991 | HEALTH AND HUMAN SERVICES, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF | Sensor-triggered suction trap for collecting gravid mosquitoes |
5301604, | Nov 04 1992 | Reduced-pressure fryer machine | |
5896697, | Jun 30 1997 | Mosquito destroyer | |
5937741, | Dec 17 1997 | Automatic pasta preparer | |
5983557, | Nov 06 1997 | UNITED STATES ARMY | Lethal mosquito breeding container |
6023884, | Jul 29 1997 | Kabushiki Kaisha Seibutu Kino Kogaku Kenyusho | Method for exterminating pests injurious to plants |
6040491, | Mar 10 1995 | Vattenfall AB | Method and apparatus handling radioactive waste material |
6079951, | Dec 09 1998 | P.H. Morton Co., Inc. | Bird bath fountain |
6199316, | Nov 26 1998 | Apparatus for providing a slow release of a compressed gas and an insect trap incorporating same | |
625677, | |||
6274047, | Mar 13 2000 | Skimmer assembly | |
6305122, | Jun 09 1998 | CHUBU ELECTRIC POWER CO , LTD | Mosquito killing apparatus and mosquito trapping apparatus |
6338220, | Mar 10 1999 | Graeme Kingston, Dicks | Eradication of mosquitoes |
6618984, | Nov 04 2002 | Mosquito attraction and killing system with operation solely based on utilization of sunlight and water | |
DE280684, | |||
FR2487167, | |||
JP10146145, | |||
JP2000232840, | |||
RU2011343, | |||
RU829075, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jul 18 2007 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Oct 11 2011 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 11 2011 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Oct 30 2015 | REM: Maintenance Fee Reminder Mailed. |
Mar 23 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 23 2007 | 4 years fee payment window open |
Sep 23 2007 | 6 months grace period start (w surcharge) |
Mar 23 2008 | patent expiry (for year 4) |
Mar 23 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 23 2011 | 8 years fee payment window open |
Sep 23 2011 | 6 months grace period start (w surcharge) |
Mar 23 2012 | patent expiry (for year 8) |
Mar 23 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 23 2015 | 12 years fee payment window open |
Sep 23 2015 | 6 months grace period start (w surcharge) |
Mar 23 2016 | patent expiry (for year 12) |
Mar 23 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |