A push button structure has an outer face of a key top that extends from a top face to a seat portion. An outer face starting from the top face and terminating at a position between the top face and the seat portion is tapered in a spreading direction. An outer face that extends from the position between the top face and the seat portion toward the seat portion is formed so as not to approach the outer face of the adjacent key top. In the outer face of the key top, an inward step is disposed at the position between the top face and the seat portion. The starting end of the outer face extending toward the seat portion is shifted to the inner side from the terminating end of the outer face starting from the top face of the key top.
|
1. A push button structure comprising:
a plurality of push buttons which are disposed in an operation panel to be adjacent to each other and which are to be depressed in a thickness direction of the operation panel, wherein each of the push buttons comprises a key top having a plurality of side walls, a top face and a seat portion, and among the side walls of the key top, a portion of a side wall on a side of an adjacent push button is formed not to approach the adjacent push button, the portion extending from a position between the top face and the seat portion toward the seat portion.
2. A push button structure according to
3. A push button structure according to
4. A push button structure according to
|
The present disclosure relates to the subject matter contained in Japanese Patent Application No. 2002-161117 filed Jun. 3, 2002, which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a push button structure having a plurality of push buttons which are disposed in an operation panel to be adjacent to each other, and which are depressed in the thickness direction of the operation panel.
2. Description of the Related Art
Conventionally, as shown in
As shown in
As a result, the press portion 55 which is disposed at the rear of the key top 53 pushes a switch 56 to perform an input operation.
An electrical apparatus such as the car stereo 50, which requires a limited installation space, must be miniaturized.
In order to realize miniaturization, the operation panel 51 must be reduced in size. However, the size of the plurality of push buttons 52 which are arranged on the operation panel 51 cannot be reduced beyond a certain limit because the area of the top face 57 must be ensured from a viewpoint of operability.
Therefore, it has been necessary to reduce the lateral gap between the push buttons 52.
As shown in
It may be contemplated that the height b of each push button 52 shown in
The invention has been devised in view of the above problems. It is an object of the invention to provide a push button structure in which a gap between push buttons can be reduced without lowering the operability of the push buttons, so that the structure can be made compact.
In order to attain the object, a first aspect of the invention provides a push button structure having: a plurality of push buttons which are disposed in an operation panel to be adjacent to each other and which are to be depressed in a thickness direction of the operation panel, wherein each of the push buttons comprises a key top having a plurality of side walls, a top face and a seat portion, and among the side walls of the key top, a portion of a side wall on a side of an adjacent push button is formed not to approach the adjacent push button, the portion extending from a position between the top face and the seat portion toward the seat portion.
Push buttons to which the invention can be applied include those which are to be depressed in the thickness direction, and in each of which, for manufacturing reasons, the key top has a sectional shape that spreads as advancing from a top face functioning as a press face to a seat portion. Therefore, the gap between adjacent push buttons is usually limited by the size of the seat portion. In the specification, the term "adjacent" means adjacency in the lateral direction of the operation panel, and does not mean adjacency in the vertical direction of the operation panel.
In the thus configured push button structure, the outer face of the side wall of the key top which extends from the side of the top face to that of the seat portion is tapered in a spreading direction in a portion starting from the top face and terminating at the position between the top face and the seat portion. By contrast, the portion of the outer face starting from that position and terminating in the seat portion is not tapered in a spreading direction so as not to approach an outer face of the adjacent key top.
Consequently, the gap between adjacent push buttons is limited by the size of the key top at the position between the top face and the seat portion, so that each push button can further approach the adjacent push button as compared with the conventional case where the gap is determined by the size of the seat portion. As a result, the push button structure can be made compact.
According to a second aspect of the invention, an outer face in the portion extending from the position between the top face and the seat portion toward the seat portion is inclined to a side which is opposite to the adjacent push button, as advancing toward the seat portion.
In the outer face of the key top of the push button, the portion beyond the position between the top face and the seat portion is formed so as not to approach the outer face of the adjacent key top. From a manufacturing viewpoint, the inner face of the key top is preferably tapered so as to spread as advancing from the rear face of the top face to the seat portion.
In the thus configured push button structure, the gap between the push button and the adjacent one is increased in a portion of the outer face of the key top beyond the position between the top face and the seat portion. Therefore, the push buttons can further approach each other, and the push button structure can be made compact.
According to a third aspect of the invention, a step which is bent toward a center of the key top is disposed at the position between the top face and the seat portion of the outer face, thereby placing a starting end of the outer face extending from the position between the top face and the seat portion toward the seat portion, to be closer to the center of the key top than a terminating end of the outer face extending from the top face to the position between the top face and the seat portion.
In the thus configured push button structure, the position of the starting end of the outer face extending from the position between the top face and the seat portion toward the seat portion is shifted toward the center from the position of the terminating end of the outer face extending from the top face of the key top to the position between the top face and the seat portion. In a process of manufacturing the push button, therefore, the terminating and starting positions are not required to coincide with each other, so that the manufacturing process can be simplified.
Since the outer face portion of the key top extending from the position between the top face and the seat portion toward the seat portion is closer to the center, the adjacent push buttons can be placed closer to each other, with the result that the push button structure can be made compact.
Hereinafter, embodiments of the push button structure of the invention will be described in detail with reference to the accompanying drawings. In the following description of the embodiments, the components which have been described with reference to
As shown in
When the push buttons 11 of the two groups are fitted from the rear side into a push button opening 13 of the operation panel 51 so as to protrude to the front, therefore, the plurality of push buttons 11 are arranged with being exposed from the front face of the operation panel 51. Since the push buttons 11 are supported by the respective support members 12a and 12b so as to be immovable in the lateral direction in
Referring also to
By contrast, in the outer face 16 of the side wall 15 of the key top 53, an outer face 16b which extends from the intermediate position 17 toward the seat portion 58 is formed into a shape which does not spread at least toward the outer side, thereby preventing the side wall from approaching the adjacent push button 11.
Specifically, the starting end 20 of the outer face 16b which extends from the intermediate position 17 toward the seat portion 58 is positioned in the inner edge of the step 18. Preferably, the outer face is tapered so as to be inclined to the inner side of the key top 53 as advancing from the starting end 20 toward the seat portion 58. Alternatively, as in a push button 21 shown in
As shown in
In the above-described push button structure 10, the outer face 16a of the side wall 15 of the key top 53 which extends from the top face 57 toward the seat portion 58 is tapered in a spreading direction in the portion starting from the top face 57 and terminating at the intermediate position 17.
By contrast, the outer face 16b which extends from the intermediate position 17 to the seat portion 58 is formed so as not to approach the outer face 16b of the adjacent key top 53. Therefore, the gap between the adjacent push buttons 11 is determined by the size of the key top 53 at the intermediate position 17, so that the push button can further approach the adjacent push button 11 as compared with the conventional case where the gap is determined by the size of the seat portion 58. As a result, the push button structure 10 can be made compact.
As shown in
The push button structure 10 of the invention is not limited to the above-described embodiments, and may be adequately modified or improved.
In the above-described embodiments, the intermediate position 17 of the outer face of the side wall 15 of the key top 53 is placed in the vicinity of the middle in the height direction. Alternatively, as a push button 23 shown in
As described above, in the push button structure of the invention, the outer face of the side wall of the key top which extends from the side of the top face to that of the seat portion is tapered in a spreading direction in a portion starting from the top face and terminating at the intermediate position. By contrast, the portion of the outer face which starts from the intermediate position and terminates in the seat portion is not tapered in a spreading direction so as not to approach the outer face of the adjacent key top. Therefore, the gap between adjacent push buttons is limited by the size of the key top at the intermediate position, so that each push button can further approach the adjacent push button as compared with the conventional case where the gap is determined by the size of the seat portion. As a result, the push button structure can be made compact.
Patent | Priority | Assignee | Title |
6846999, | Jul 04 2002 | Canon Kabushiki Kaisha | Switch button and recording apparatus |
7381919, | Feb 22 2007 | Inventec Corporation | Lever button of electronic product |
Patent | Priority | Assignee | Title |
4613736, | Mar 20 1981 | Sony Corporation | Operating panel |
4997998, | Oct 26 1987 | Preh, Elektrofeinmechanische Werke Jakob Preh, Nachf. GmbH & Co. | Key cap for a keyboard |
5749457, | Dec 23 1996 | Motorola Inc. | Electronic device with switch and pivotable actuator assembly |
6027267, | Dec 16 1997 | Hosiden Corporation | Keyboard having key tops with hinges |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 06 2003 | SUNADOME, MINORU | Pioneer Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014144 | /0794 | |
Jun 03 2003 | Pioneer Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 02 2004 | ASPN: Payor Number Assigned. |
Oct 01 2007 | REM: Maintenance Fee Reminder Mailed. |
Mar 23 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Apr 21 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 23 2007 | 4 years fee payment window open |
Sep 23 2007 | 6 months grace period start (w surcharge) |
Mar 23 2008 | patent expiry (for year 4) |
Mar 23 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 23 2011 | 8 years fee payment window open |
Sep 23 2011 | 6 months grace period start (w surcharge) |
Mar 23 2012 | patent expiry (for year 8) |
Mar 23 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 23 2015 | 12 years fee payment window open |
Sep 23 2015 | 6 months grace period start (w surcharge) |
Mar 23 2016 | patent expiry (for year 12) |
Mar 23 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |