Methods for quantifying the irradiation dose received by an item or items, such as food items and medical items, undergoing irradiation-based sterilization, includes the steps of monitoring a selected electronic parameter associated with an economic single use sensor positioned adjacent the item or items and telemetrically relaying data associated with the monitored electronic parameter to a computer. The computer includes a computer program which is configured to determine the radiation dose received by the item or items by correlating the value of the monitored electronic parameter to a corresponding amount of radiation associated with the value. Related sensors and systems are also described.
|
50. A radiation dose sensor, comprising:
a capacitor having a dielectric material and two opposing plates configured to sandwich said dielectric material; and an inductor operably associated with said capacitor, wherein, in operation, said sensor is configured to be inductively powered by a remote receiver and to wirelessly relay data associated therewith, and wherein said sensor is configured such that it alters at least one predetermined electrical property in responsive to exposure to irradiation in a desired operative range associated with the sterilization of objects.
1. A method for determining an irradiation dose delivered in situ to an object, comprising the steps of:
irradiating at least one object with a radiation dose which is sufficient to sterilize the object; positioning a passively powered sensor proximate to the object such that it is held proximate thereto during said irradiating step, wherein said sensor has associated operational parameters, and wherein one or more of the operational parameters is configured to change responsive to said irradiating step, wherein the sensor is configured as a single-use sensor; wirelessly transmitting data associated with the change in the operational parameter in the sensor; and determining the radiation dose received by the object during said irradiating step based on the change in the operational parameter.
47. A radiation dose evaluation system, comprising:
a radiation or electron beam source; at least one dosimeter sensor adapted to be positioned on an object undergoing irradiation treatment such that said sensor is exposed to an amount of radiation representative of the amount of radiation exposure of the object; at least one wireless reader operably associated with said sensor such that, in operation, it receives data associated with said sensor; a controller operably associated with said wireless reader; and a computer program operably associated with said controller, said computer program configured to analyze data transmitted from said sensor to said wireless reader to determine a radiation dose associated therewith, wherein said at least one dosimeter is a single use disposable dosimeter.
23. A radiation dose evaluation system, comprising:
a radiation or electron beam source; at least one passively powered dosimeter sensor adapted to be positioned on an object undergoing irradiation treatment such that said sensor is exposed to an amount of radiation representative of the amount of radiation exposure of the object; at least one wireless reader operably associated with said sensor such that, in operation, it powers said sensor and receives data associated with said sensor; a controller operably associated with said wireless reader; and a computer program operably associated with said controller, said computer program configured to control powering of the at least one passive dosimeter and analyze data transmitted from said sensor to said wireless reader to determine a radiation dose associated therewith.
68. A method for determining the radiation dose of an object or product, comprising the steps of:
positioning a single use dosimetry sensor on an object, wherein said sensor comprises a tank circuit with an inductor and capacitor and a selected electronic component which has an operational parameter which alters when exposed to radiation, wherein the sensor is passively powered and, in operation, is configured to wirelessly relay data to a remote processor; irradiating the object and the sensor to a level which is sufficient to sterilize the object and to induce alteration in the selected operational parameter of the sensor, wherein the alteration is representative of the amount of irradiation received by the sensor; and determining the amount of irradiation based on the value of the altered operational parameter of the sensor.
49. A radiation dose evaluation system, comprising:
a radiation or electron beam source; at least one passive dosimeter sensor adapted to be positioned on an object undergoing irradiation treatment such that said sensor is exposed to an amount of radiation representative of the amount of radiation exposure of the object; at least one wireless reader operably associated with said sensor such that, in operation, it powers said sensor and receives data associated with said sensor; a controller operably associated with said wireless reader; and a computer program operably associated with said controller, said computer program configured to analyze data transmitted from said sensor to said wireless reader to determine a radiation dose associated therewith, wherein said at least one wireless reader comprises first and second wireless readers, said first reader configured to resonate said sensor before irradiation and said second reader configured to resonate said sensor after irradiation.
4. A method according to
5. A method according to
6. A method according to
7. A method according to
8. A method according to
9. A method according to
10. A method according to
11. A method according to
12. A method according to
13. A method according to
14. A method according to
15. A method according to
16. A method according to
17. A method according to
18. A method according to
19. A method according to
20. A method according to
22. A method according to
24. A radiation dose evaluation system according to
25. A radiation dose evaluation system according to
26. A radiation dose evaluation system according to
27. A radiation dose evaluation system according to
28. A radiation dose evaluation system according to
29. A radiation dose evaluation system according to
30. A radiation dose evaluation system according to
31. A radiation dose evaluation system according to
32. A radiation dose evaluation system according to
33. A radiation dose evaluation system according to
34. A radiation dose evaluation system according to
35. A radiation dose evaluation system according to
36. A radiation dose evaluation system according to
37. A radiation dose evaluation system according to
38. A radiation dose evaluation system according to
39. A radiation dose evaluation system according to
40. A radiation dose evaluation system according to
41. A radiation dose evaluation system according to
42. A radiation dose evaluation system according to
43. A radiation dose evaluation system according to
44. A radiation dose evaluation system according to
46. A radiation dose evaluation system according to
48. A radiation dose evaluation system according to
51. A sensor according to
52. A radiation dose sensor according to
53. A radiation dose sensor according to
54. A radiation dose sensor according to
55. A radiation dose sensor according to
56. A radiation dose sensor according to
57. A radiation dose sensor according to
58. A radiation dose sensor according to
59. A radiation dose sensor according to
60. A radiation dose sensor according to
61. A radiation dose sensor according to
62. A radiation sensor according to
63. A radiation sensor according to
69. A method according to
establishing the value of the electronic parameter before radiation; and detecting the value of the electronic parameter after or during said irradiating step, wherein said determining step comprises analyzing the established and detected values of the electronic parameter.
70. A method according to
71. A method according to
72. A method according to
73. A method according to
74. A method according to
75. A method according to
76. A method according to
77. A method according to
78. A method according to
|
This application claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 60/222,502, filed Aug. 2, 2000; the contents of this application are hereby incorporated by reference as if recited in full herein.
The present invention generally relates to the assessment or quantitative evaluation of the amount of radiation delivered to an object undergoing sterilization in situ.
Providing a food supply that is safe for consumption can be problematic, particularly because suitable control measures can be hard to enforce as the producers, distribution chains, and markets become more global. In addition, visual inspections are not always reliable as a means of detecting harmful contaminants. Further, cross contamination of foods can occur during handling (including during harvesting, shipping, and packaging), that can infect food typically believed to be relatively safe from pathogens. For example, E. coli bacteria, which is typically found in certain meats, can also be found in "fresh" vegetables and fruits. The presence of atypical bacteria in foods can be attributed to the use of particular types of fertilizers or to processing conditions. Certain processing conditions may allow direct contact of various food items with contaminated products, while others may allow for indirect contamination such as via contact with contaminated containers or work surfaces, each of which can allow the undesirable spreading of contaminants.
Certain safety precautions can be taken to reduce the risk of illness associated with the consumption of foods which may carry pathogens, such as washing the fruit and vegetables before consumption and/or cooking meat or other food items to or above a certain temperature. While washing vegetables and fruits can dilute or remove the contaminant(s) from the food, and cooking the food to a temperature sufficient to kill the bacteria may reduce the exposure risk, not all foodstuffs are washed or properly cooked before they are eaten. Further, children can be especially vulnerable to harmful exposures, as many do not reliably pursue these safety measures and exposure to relatively small amounts of harmful contaminants can be more profound relative to healthy adults. A consumer has little control over what safety steps (i.e., washing and/or cooking food properly), are followed by personnel at a food service outlet.
Processing foods to reduce or even eliminate unwanted microorganisms can be an important step forward in the reduction and elimination of the risk of illness due to exposures to contaminated foods. One economic and effective way to rid food of contaminating microorganisms is to irradiate food with ionizing radiation to effectively "sterilize" the food to destroy the harmful microorganisms therein (irradiation can be used to sterilize other objects such as medical devices). This can be an effective and economic tool in improving the safety of the food supply to thereby provide safe, sterilized food items which have reduced (and potentially even undetectable) levels of harmful microorganisms.
Generally stated, there are two primary modalities used to irradiate food and other items to achieve sterilization. One modality includes the use of a radioactive element such as Cobalt-60, and the other employs electron beams produced by a linear accelerator. The radiation dose should be monitored to ensue that pathogens are destroyed effectively. For food or edible items, radiation doses in the 0.15 kGy to 10 kGy range are typically used, while for devices and objects, radiation doses are higher, typically up to 20 kGy or more.
Conventionally, in order to monitor the radiation doses provided by the irradiation process, either TLD's (thermoluminescent devices) or chromatic tags are used. TLD's can be generally described as crystals, e.g., lithium fluoride, the structure of which is changed (damaged) during exposure to radiation. More particularly, during irradiation, electrons travel to and are trapped in the crystal after being ejected by the high-energy (ionizing) photons used for sterilization. Upon exposure to heat, the electrons in the crystal fall back to their ground states and emit light as result of the change. A spectrophotometer is used to measure this light and provide a quantitative assessment of the amount of radiation to which the device was exposed. A technician typically recovers the TLD from an irradiated package and then analyzes/measures the emitted light on the spectrophotometer. Unfortunately, this process can be relatively labor-intensive and can be undesirable for use in a mass production environment.
Chromatic tags can be described as plastic tags (formed of materials such as PMMA) which undergo a color change upon exposure to radiation at some level. However, generally stated, the color change is often a subjective evaluation when done visually by an inspector. To receive a more reliable assessment, colormetric readers are used to quantify the color change to a more exact level. This can be compared to the use of radiographic film wherein the level of exposure on the film corresponds to the intensity of the dose received. Unfortunately, again, the determination of the dose measured in this manner can also be labor intensive and/or unsuitable for a mass-production environment.
It is therefore an object of the present invention to provide a cost-effective dosimeter, which can be used to evaluate the radiation dose delivered to an item undergoing sterilization.
It is yet another object of the present invention to provide improved methods to evaluate a radiation dose(s) delivered to a plurality of sterilized packaged food items without requiring direct human intervention.
It is a further object of the present invention to provide economic methods and devices which are suitable for mass-production environments and which can automatically relay and/or correlate production and/or process information to an irradiation dose.
It is an additional object of the present invention to provide an economic automated method of determining the amount of radiation delivered to an item in situ.
It is another object of the present invention to provide an economic dosimeter configuration, the sensing element of which can be embedded in a packaged and/or sealed food or medical item.
These and other objects can be satisfied by the present invention by a radiation dosimeter which is adapted to change the value of an associated electronic parameter in a detectable manner dependent upon the amount of radiation it is exposed to. The value of the electronic parameter can be relayed automatically (or semi-automatically) and used to determine and provide the radiation dose for a sterilized item, preferably a food or edible item, without requiring human intervention. The sensor can be configured as a single use, disposable, passively operated wireless or telemetrically operated sensor.
More particularly, a first aspect of the invention is a method for determining the irradiation dose delivered to an object. The method includes the steps of (a) irradiating at least one object with a radiation dose which is sufficient to sterilize the object; (b) positioning a sensor on the object such that it is held proximate the object during the irradiating step, the sensor has associated operational parameters, and one or more of the operational parameters is configured to change responsive to the irradiating step; (c) transmitting data associated with the operational change in the parameter of the sensor; and (d) determining the radiation exposure dose based on the data provided by the transmitting step. In certain embodiments, the transmitting step can be performed such that is carried out by a wireless or telemetric transmission.
A second aspect of the present invention is a radiation dose evaluation system. The system includes a radiation source and at least one dosimeter sensor adapted to be positioned on an object undergoing irradiation treatment such that the sensor is exposed to an amount of radiation representative of the amount of radiation exposure introduced to the object. The system also includes a wireless or telemetric reader operably associated with the sensor such that it receives data associated with the sensor and a controller operably associated with the reader. The system also includes a computer program operably associated with the controller. The computer program can be configured to analyze data transmitted from the sensor to the reader or receiver to determine a radiation dose associated therewith.
In certain embodiments, the system is configured to evaluate radiation levels above about 0.1 kGy, and typically for food or edible items, in a range of from about 0.15-10 kGy (with pet and animal foods, spices, melon, herbs and seasonings approved up to about 30 kGy), but more typically about 1-7 kGy, and for other sterilized items such as medical implements and devices in a range of from about 10-50 kGy.
Another aspect of the present invention is a passively operated (it does not require a power source such as its own battery) radiation dose sensor. The sensor includes a "tank" circuit which, in operation, is configured to provide an electrical output that changes in a predictable (dose-correlated) manner when exposed to radiation in the desired irradiation dose range (for many food items above about 0.1 kGy, and more preferably in the 0.1-10 kGy range). The sensor tank circuit includes a capacitor and an inductor operably associated with the capacitor. In operation, the sensor is passively configured to be inductively powered by a remote reader/receiver (without requiring a battery or voltage regular or discrete power source on the sensor itself). Thus, the sensor is configured such that it alters at least one electrical property responsive to the amount of exposure to radiation which is then used to determine the amount of radiation the sensor receives (and/or is exposed to).
In certain embodiments, the sensor is passively configured to provide a reflected signal output and has an electronic circuit comprising a MOS device such as a MOS capacitor or FET structure semiconductor device configured to withstand and provide a wireless or telemetrically detectable radiation sensitive output responsive to particular levels of irradiation exposure (for most food items, the operational range is in about the 0.1-10 kGy range, see FIG. 1B). In other embodiments, the electronic circuit comprises other components and parameters to evaluate radiation dose, such as the Hfe or β of a bipolar transistor or the leakage current of a diode or the coupling factor (K) between primary and secondary circuits.
In certain embodiments, the sensor circuit semiconductor or MOS device is a RADFET which is sensitive in the irradiation dose range being monitored (i.e., it has a suitable rad-hardness corresponding to the food item undergoing electronic sterilization). The RADFET is operably associated with a flat form coil (typically secured or bonded to a copper or foil or mylar coil). The sensor circuit has a pre-irradiation exposure threshold voltage value and a threshold voltage which varies corresponding to the irradiation level to which it is exposed. The threshold voltage can be used to determine the radiation dose delivered to the sensor (and with the sensor on or in proximity to the product, to the product itself).
The detection system can be configured to detect other electronic outputs or parameters. For example, the sensor tank circuit can have a detectable first resonant frequency prior to exposure to radiation above a threshold level, and a plurality of altered or changed resonant frequencies different from the first resonant frequency corresponding to the amount of radiation exposure it experiences above the threshold level. Alternatively, or in addition to, the sensor electronic circuit can be configured such that it alters its Q factor based on exposure to radiation and, as such, the Q factor values can then correlated to the radiation exposure level to determine the associated radiation dose.
In an alternative embodiment, the sensor tank circuit can be configured with a capacitor having a central dielectric formed of a material which changes one or more of its conductivity, capacitance value, or dielectric constant responsive to radiation exposure level.
As noted above, for edible items, the sensor is preferably configured to detect radiation doses in the range of from about 0.1-10 kGy, and more preferably about 0.5-10 kGy and for other items such as medical devices, the sensor is preferably configured to detect radiation doses in the range of from about 10-50 kGy. Of course, application specific sensors or sensors which operate in more narrow ranges within the overall range of interest (suitable for more than one product type) can also be provided to allow for a more narrow radiation sensitive sensor (i.e., one for beef and/or poultry, one for pet food, one for fruit, one for grains, etc., or a 0.1-0.5 kGy, a 0.5-2 kGy, a 2-4 kGy, a 1-4 kGy, a 2-5 kGy, and the like).
The sensor may also be configured with a low profile when viewed from the side to allow for easier processing and a reduced likelihood of handling damage which may occur in a mass production environment. Indeed, the sensor may be integrated into a package configured to hold the object undergoing irradiation. The package may be sealed with the sensor thereon or therein prior to irradiation.
Another aspect of the invention is a method for determining the radiation dose of a product. The method includes the steps of (a) positioning a sensor with a tank circuit on an object; and (b) irradiating the object and the sensor to a level which is sufficient to sterilize the object and to induce alteration in a predetermined operational parameter of the sensor, the degree of alteration representative of the amount of irradiation received by the sensor. The data may be wirelessly transmitted from the sensor to a receiver.
In certain embodiments, the object is sealed within a container prior to irradiation so as to reduce the likelihood of exposure to airborne or other contaminants after the sterilization process.
The present invention provides cost-effective irradiation dosimeter systems and dosimeter sensors that can be employed in a mass production environment. The systems and sensors can be used to quantify or evaluate radiation exposure or doses for items which have been electronically pasteurized to prepare and process uncooked and frozen commercial sized and/or bulk food items for safer consumption. The system can also be used to monitor irradiation delivered to inhibit the decay of food items conventionally introduced by microorganisms living therein, thereby reducing the amount of food which conventionally has been unable to be sold due to undesirable decay and/or spoilage. The system reduces inspection labor requirements (eliminating the requirement of visual inspection or physical intervention to determine the dose) and can improve the reliability of the production process itself by providing radiation dose information on a substantially real-time basis to allow faster adjustment of process parameters. The system can be used in cold environments (where food is refrigerated or frozen), ambient, and hot (where food is cooked) environments.
The foregoing and other objects and aspects of the present invention are explained in detail in the specification set forth below.
The present invention will now be described more fully hereinafter with reference to the accompanying figures, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout. In the figures, layers, regions, or components may be exaggerated for clarity.
Generally described, the present invention provides economical systems, computer products, and methods to estimate, determine, measure, and/or quantify radiation exposure by and/or the amount of radiation which is transmitted to an object (or a plurality of objects) in situ by detecting a change in a selected electronic parameter(s). The value of the change in the selected parameter may be wirelessly or telemetrically relayed to a remote or proximate reader/receiver. The reader can input the data associated with the parameter into a signal processor, controller or computer, which can calculate a corresponding radiation dose. The radiation dose measurement can be easily input (uploaded or downloaded automatically) into an electronic process control data record which can be searched and provide regulatory documentation associated with the food item and/or the production lot. In certain embodiments, the system is configured to measure the radiation dose on the object in situ by activating a passively operated electronic sensing circuit disposed proximate to the object or product via an inductively coupled telemetric or wireless reader and monitoring a selected electronic parameter associated with the electronic sensing circuit.
The systems of the present invention may be configured to operate without requiring labor-intensive efforts by operating personnel to measure the radiation dose as it is delivered to the irradiated product or object (such as foodstuffs). In certain embodiments, the system be configured to operate substantially automatically to quantify and record the radiation dose in an electronic database without requiring direct human manipulation of the irradiated product to determine an associated radiation dose. The system can be configured to operate in ambient and hot and cold environments (i.e., environments associated with the cooking temperatures of foods, or refrigerated or freezer temperatures used to process foods).
The methods and systems of the present invention are particularly suited for electronic pasteurization to measure radiation doses delivered to packaged, and preferably, sealed, food items undergoing radiation-based sterilization. As used herein, the term "electronic pasteurization" and/or "sterilize" means to irradiate to a level sufficient to meet or exceed minimum regulatory guidelines for identified undesirable microorganisms or food borne microbes.
The food items may be irradiated to provide an increased shelf life over non-electronic pasteurized counterparts while staying at or below the maximum irradiation level mandated by the appropriate regulatory agency. The food may be irradiated to produce a reduction in identified pathogens including one or more of Salmonella, Listera, Tosoplasma, Campylobacter, Norwalk-like viruses, and E-coli 0157:H7 over non-treated samples or foodstuffs as determined using conventional or standard techniques known in the art.
In one embodiment, "fresh" uncooked food items are electronically sterilized so as to destroy or reduce microorganisms sufficiently to provide an extended non-refrigerated shelf-life or refrigerated shelf-life (preferably providing a shelf-life which is at least one week, and preferably, 2 weeks-4 weeks, or 4 weeks or more) over corresponding non-sterilized foods as determined using conventional or standard techniques known in the art.
Examples of food items suitable for radiation-based sterilization or "electronic pasteurization" include, but are not limited to, meats including frozen and/or unfrozen uncooked or cooked meats such as poultry, fish, beef and pork, and "fresh" fruits and vegetables, particularly those which are at increased risk of decay and a limited shelf life, including strawberries, blueberries, raspberries, peaches, grapes, tomatoes, zucchini, squash, lettuce, cabbage, broccoli, cauliflower, corn, green beans, egg plant, and the like. Other perishable food items (typically limited shelf-life products) such as baked goods, mushrooms, spices (such as gingerroot, and basil), and the like or candy may also be suitable for radiation-based sterilization. In addition, other food items suitable for such treatment includes pet foods, grains, wheat and corn flour.
The system can be configured to measure a radiation dose for each product or with each package, or, alternatively, on one or more selected specimens or groups of products within a production lot or production run (one machine set-up and/or one shift), or at other desired processing intervals. If the measurement is selectively performed (as opposed to being performed on each item or product or on each packaged grouping), it is preferred that the specimen or product be selected so that it can provide a statistically relevant inspection data point(s) representative of other specimens in each production lot.
Turning now to
As shown, the system 10 also includes a remote or wireless reader 40 which is positioned in the system 10 such that it can activate the sensor 30 via a telemetric link 33. The system 10 also includes a controller 50 configured with a computer program or algorithm which is configured to process relayed data associated with the sensor 30 and then determine or calculate the radiation dose based on the input of the relayed data.
Preferably, the reader 40 is positioned to reduce its exposure to radiation (such as appropriately shielded or disposed external of a batch or conveying line). As shown, the wireless telemetric link 33 and the reader 40 can be electrically coupled to the passive sensor 30 through an "H field" coupling as shown in FIG. 4. If a reading is desired during active irradiation, a ceramic insulated coaxial wire can be used to provide the electrical connection (not shown), one end positioned proximate the sensor 30 in the radiation chamber and the other end operably associated with the external reader 40.
Alternatively, a radiation reading can be obtained by obtaining information about the sensor both before and after active irradiation (not requiring wiring in the radiation chamber 20c as shown in FIG. 4. Of course, the "before reading" can be either provided by one or more of an in situ measurement obtained prior to irradiation and/or can be a test or manufacturer provided value, which can be electronically input into the control system, as will be discussed further below.
As shown in
The information can be provided in an initial set-up of the system, or for each type or each production lot of sensors. Again, the information can be configured in a downloadable electronic format, allowing the controller 50 to correlate the radiation exposure or dose based on the actual value(s) of the data correlated to the radiation dose needed to achieve such a value. Thus, the radiation dose of the object is identified based on the comparison with either initially measured values (i.e., shift in the pre-radiation and post-radiation data) or with predictable response values for various radiation levels (Block 120). The predictable response values may be dependent on the type of radiation system employed. As shown, the measured or determined radiation dose can then optionally be automatically electronically entered into an electronic database associated with the process control record of the product or the production lot (Block 130).
Alternatively, as shown in
As shown in
In certain embodiments, an external attachment means (304) can be applied to the sensor 30 prior to the parameter characterization (301). The attachment means can be used to attach the sensor 30 itself to the food items themselves or on packages or cartons of food items 38 undergoing radiation at the irradiation facility (see, e.g.,
After the product is irradiated by a radiation source 20 in the radiation chamber 20C, it is evaluated by the electronic pasteurization or sterilization (dosimeter evaluation) monitoring system 10. As shown, the bar code data with the parametric characterization information can be read and obtained via an optical scanner or reader 60 to scan the bar code 30BC while the reader or primary circuit 40 activates the sensor 30 and the information is correlated in the controller 50 to determine dose. Alternatively, as shown by the broken line, the sensor 30 can be removed from the package (either manually or in an automated manner) and a direct (electrical) contact reading can be used to obtain a dosimeter measurement. These operations may be performed sequentially or serially.
In certain embodiments, as shown in
In certain embodiments, the sensor 30 is configured with information 35 which can be electronically relayed or scanned and input into the process record. Optionally, as shown by dotted line in
As is also shown in
In certain embodiments, a plurality of readings can be obtained during active irradiation. These readings can be used to monitor radiation delivered and/or to allow an operator the ability to control the elapsed radiation period with dynamic information received during the actual delivery of the radiation. A metal antenna can be placed with the sample which can serve as the coil for the signal pick-up. Also, the monitoring system 10 can optionally be configured to compare one or more of the readings to a desired dose value correlated to a particular product (Block 260). In addition, a plurality of sensors 30 can be positioned on a large package of foodstuffs (such as spread about a pallet or bulk package) to allow assessment of multiple locations about the product (facilitating a more thorough evaluation for thicker, bulkier, or larger items). If the detected radiation dose is less than desired for the product undergoing radiation, the process can proceed (Block 250); however, if the radiation dose exceeds or meets the desired dose, the radiation source can be interrupted, preferably automatically, and the process ended. The "reading" of the circuit is based on one or more selected parameters that are altered in relation to the amount of radiation exposure, thereby allowing radiation dose to be quantified. As above, readings can be obtained at various points during irradiation or one or more readings can be obtained after the irradiation process has ended.
As shown in
The system 10 can include a dynamic visual QC (quality control) feedback such as a red light/green light which can be activated and displayed, the green light indicating that the radiation dose is confirmed as in the desired range (not shown). Alternatively, or in addition thereto, the system 10 can be configured with an audio alert (not shown) which is generated when the radiation dose is determined to be outside a predefined range (which may vary for the type of object or food type undergoing irradiation). The audio alert may allow for timely adjustment of the process (slowing or speeding the conveyor speed to adjust the residence time, or otherwise adjust the process parameters) while potentially reducing the amount of discrepant product produced.
Turning now to the sensor 30 itself, the present invention employs an electronic circuit 31 which is influenced by irradiation. That is, the electronic circuit 31 is configured such that it predictably alters its behavior responsive to a particular radiation exposure range. The system 10 and/or the sensor 30 can be selectively configured to irradiate predefined items thereby allowing customization of the system or the system for each plant or processing facility. For example, for irradiation systems which process poultry or chicken, the system 10 and the sensor can be configured to detect doses corresponding to the FDA guidelines (the maximum is for chicken is presently set at 3 kGy, see
Alternatively, the system 10 can be configured to operate across a variety of irradiation doses and/or with sensors 30 which also operate across a wide variety of applications and corresponding doses. For food, the sensor 30 is configured to operate predictably in a radiation range of from about 0.1-10 kGy, and more preferably, for meats, from about 1-5 or 1-7 kGy. For spices, herbs, animal foods and the like the system is preferably configured to operate predictably up to at least about 31 kGy (slightly above the FDA maximum dose range). For non-edible items such as medical devices, tools, and implements, the sensor 30, is preferably configured to operate at increased radiation exposures, such as up to about 10-75 kGy, and typically at about 20-50 kGy. More preferably, the sensor 30 is configured to operate over a broad range of radiation doses to allow for use with multiple food products (i.e., from 1-10 kGy, 0.1-10 kGy, 0.5-5 kGy, 2-4 kGy, 1-5 kGy, and the like).
In operation, when exposed to radiation, one or more electrical parameters associated with the circuit 31 will alter or change depending on the amount of radiation exposure the electronic circuit 31 receives. In certain embodiments, the electronic circuit 31 is configured such that it is passively activated and cost effective, even when used in a mass production environment, i.e., low cost and disposable after a single use.
Examples of parameters suitable for correlating to radiation dose in the electronic circuit 31, include, but are not limited to, threshold voltage (shift) in MOS devices, voltage or electrical current characteristics in certain circuits, operational variants caused by defect creations introduced by irradiation-based destruction of the material layers in semiconductors, resonant frequency, frequency spectrum analysis of the signal of a circuit, conductivity of the dielectric material, the Q factor of the circuit (defined below), capacitance (or apparent capacitance) and/or resistance such as in the tank circuit, dielectric constant of the dielectric material in the tank circuit, the Hfe or β of a bipolar transistor, leakage current in a diode, the coupling factor "K" and the like, according to various embodiments of the present invention. In operation, the selected parameter will present a detectable and predictable, computatable or correlatable altered state or value from a "before" radiation value and to an "after" (or during) radiation value(s).
Generally stated, in operation, the MOSFET response in the shunt circuit 31s operationally changes based on the amount of trapped charge introduced from the ionizing radiation source, which is created in the gate oxide of the device. That is, this trapped charge, can, within a desired radiation exposure range, alter the response of the circuit 31 to an applied voltage value. Thus, the response of the shunt circuit 31s before and after exposure to radiation (to an applied voltage) within the desired radiation exposure or operational range is such that the MOSFET output or response changes, which can be detected correlated to determine the radiation dose associated with the change in response. Depending on the radiation exposure operational range of the sensor 30, "rad hard" MOSFETS can be used to ensure that the damage threshold is in the desired dose range. As MOSFETS are generally small and inexpensive, they can be economically integrated into a radiation sensor 30.
As shown, in
Thus, in this embodiment, the tank circuit 31 is excited and the reader 40 "listens" to or monitors the reflected resonant signal. If the received signal is a high purity sine wave (a wave without substantial clipping of the top of the waveform), this means that the threshold voltage of the MOS device is above the peak voltage of the parallel resonant tank. If the resonant circuit signal is truncated or clipped, the voltage threshold, which is proportional to the magnetic field ("H-field") produced by the reader coil, can incrementally be decreased to determine the value.
Stated differently, during operation, an excitation pulse with a known voltage is transmitted to drive the circuit 31. The circuit then "rings down" in a damped fashion according to a known time constant. The amplitude or signal waveform can be monitored to define the level at which there is no (or substantially no) current traveling through the shunt 31s. This same measurement or monitoring can be performed on the exit side of the irradiation chamber 20c as shown in FIG. 4. The before threshold voltage can then be compared to the after radiation threshold voltage to determine the corresponding radiation dose (the dose level which produces this variation or shift). A correlation curve, equation, or look up table can be established to provide the correlation of radiation dose to shift values (separate curves may be established for each production lot or for a plurality of dose ranges of interest).
Thus, monitoring when the clipped signal appears (or disappears), one can determine the value of the threshold voltage. As the MOS device 31M has a threshold voltage which is either known based on statistical inspection of a related production batch (such as values provided for each wafer batch) before irradiation or is quantified proximate in time to and before irradiation, a pre-irradiation threshold value can be established.
The MOS device is preferably a RADFET configured to operate predictably with sufficient sensitivity in a desired dose range (preferably a range which extends above and below the maximum FDA value) for the particular food item or medical item undergoing evaluation. For example, for poultry a dose range of between about 1-4 kGy. One MOS device which may be suitable for meat applications is the 300/50 device 4 kÅ implanted gate oxide sold state dosimeter NMRC RADFET available from National Microelectronics Research Centre in Cork, Ireland.
It is expected that, by varying the density and/or percent material composition of the oxide/nitride layers, application or range specific MOS devices such as RADFETS can be produced which will provide the sensitivity, predictability or correlatable information in desired operative radiation ranges. For example, selecting the manner in which the oxide is grown, the addition of silicon nitride and the like are known ways to adjust the "rad-hardness" of the device (or the susceptibility of the device to radiation damage). Radiation can introduce a fixed charge that is trapped near the oxide/semiconductor interface, which causes a shift in the C-V characteristics of the MOS device (producing the threshold voltage shift discussed above). That is, semiconductors can be configured to exploit a number of interesting radiation effects to quantify radiation exposure. For example, the change in the trapped charge induced in the MOSFET structures. This can be a sensitive metric, which can be measured as an actual shift in "apparent" capacitance, or as described above, a shift in threshold voltage. At increased dose levels, conductivity can be affected (attributed to "defect" formation) which may be used for radiation quantification as well. Recombination times in the bulk can be shortened due to irradiation too. See Dienes et al., Radiation Effects in Solids, Monographs in Physics and Astronomy, Vol. II, Interscience Publishers, Inc.,© 1957. The contents of which are hereby incorporated by reference as if recited in full herein.
In one embodiment, as shown in
As is known to those of skill in the art, the sensor 30 voltage signal reflected back to the receiver or reader 40 can be Fourier transformed. In this embodiment, the present invention uses a waveform analysis to determine the change in threshold voltage. If a pure sine wave is detected, a 1V peak at 1.0 kHz will be generated. However, if the shunt path 31s is activated and the waveform of the sensor tank circuit altered, various harmonic peaks will also appear, as shown in FIG. 9A. As shown, although a strong signal is shown at 1 kHz, several harmonic peaks (much smaller in amplitude) to the right of the primary or fundamental peak, also appear. The present invention recognizes that the fundamental peak is associated with the 31L-31C path of the tank circuit while the harmonics are associated with the shunt path 31s. Therefore, the harmonic evaluation or a waveform distortion analysis can be computationally undertaken by the system 10 to determine the threshold voltage level corresponding to the change in amplitude of one or more of the fundamental or a harmonic waveform peak.
Thus, the ratio or difference of the threshold voltage corresponding to the amplitude of fundamental peaks (pre and post radiation) or a ratio or difference between one or more harmonic peaks (pre and post radiation) can be used to determine the radiation dose. In the frequency domain, the system, is performing a distortion analysis of the waveform to determine the radiation dose associated with the altered waveform. Alternatively, the ratio between the fundamental and a selected harmonic can be used to provide a before and after radiation value. Using ratios can reduce the amount of processing distortion introduced into the measurement. The system 10 can be configured for signal processing within the range of about 100 kHz-100 MHz, and more preferably within about 100 kHz-15 MHz.
As shown in
In one embodiment, as illustrated by
Further, as shown in
In operation, the sensor 30' is positioned on and attached to a desired object such that the circuit 31 is facing away from the object. After irradiation, the sensor layer 330 is detached from the sensor 30' exposing the label layer 530 which then presents the radiation identifier or logo 531 such that is viewable by consumers or potential or actual purchasers.
Other tank circuit configurations can also be employed as noted above. The tank circuit is configured such that, in operation, the resonant frequency of the electronic (tank) circuit can change in a detectable manner and/or the sharpness (i.e., represented by the "Q" factor which corresponds to the resonant frequency, the inductance, and the resistance of the circuit) of the tank circuit can change in a detectable manner responsive to the level of radiation. Alternatively, the radiation dose can be calculated based on a detected change in the value of the capacitance of the capacitive element 31C of the circuit (pre and post radiation). That is, recognizing that the resonant frequency (ω) of the tank circuit can be mathematically expressed as ω=1/(LC)1/2 and the capacitance can be expressed as C=(A∈)/d, where "∈" is the dielectric constant of the insulator material, "A" is the area of the capacitor, and "d" is the thickness of the dielectric' (the capacitance is a function of dielectric permitivity, the plate area, and distance between the plates). Similarly, the Q factor can be expressed as Q=ωL/R, where "R" is the resistance in the tank circuit, and "L" is the inductance value of the inductive element 31L, one or more of these parameters can be used as a basis for determining radiation dose.
For example, as shown in
The insulator 90 may be chosen from a plastic or polymer based material, recognizing that certain plastics become cross-lined during irradiation, due, at least partly, to the formation of free radicals as a byproduct of ionizing radiation. This, in turn, can cause a change in the elastic property of the material. Taking a reading of the capacitance before and after radiation may provide a dose-correlatable value. Conductive polymers may also be employed because the source of conductivity is typically in a long-chain molecule and ionizing radiation is likely to cause cross linking that may interfere with the conduction process. Alternatively, the insulator material can be configured to comprise dielectric crystals or ferroelectric materials (such as LiNbO3) which have a net polarization at room temperature. Radiation may induce detectable point defects in the material. Indeed, the dielectric constant of some crystals (perhaps even LiF, a common TLD material) may change the dielectric capacitance in a detectable manner. The change could then be assessed to determine radiation dose.
In one embodiment, using a pre-selected insulator material to form the insulator or dielectric material of the capacitive element 31C such that it can change the capacitance of the circuit (based on exposure to radiation), and, thus, result in an altered resonant frequency of the circuit 31. The altered resonant frequency can be correlated to the amount of radiation received, thus providing an inexpensive way to quantify the radiation dose.
Alternatively, or additionally, the material of the insulator or dielectric 90 can be selected such that there is a change in conductivity of the material based on exposure to radiation. The resultant change in leakage current through the material may then alter the Q factor of the electronic (tank) circuit 31. In another embodiment, the dielectric material 90 can be selected such that it comprises a conductive or weakly conductive polymer. Changes in the conductivity resulting from irradiation can also alter (typically decrease the conductivity) which could be measured as a change in the Q factor. The altered Q factor can then be correlated to radiation level to calculate the radiation exposure dose.
Other ways to induce detectable operative changes in the sensor circuit 31, include the use of PN junction devices. The creation of radiation-based defects within the bulk of the silicon can alter recombination lifetimes in the depletion region of a diode. This change can be assessed, for example, by measuring the increase in reverse-bias leakage current of the diode. Still another way to induce detectable operative changes includes the use of radiographic or colormetric sensors. For example, the system can include an LED of a particular wavelength and a photodiode detector configured to operably engage therewith. The LED can be used to "look" at the color of a radiochromatic tag, similar to the tags conventionally used (as discussed in the background above). A photodiode detector can then produce a current proportional to the light from the LED directed into or passing through the radiochromatic material of the tag (not shown).
In other embodiments, another way to induce detectable operative changes in the sensor circuit 31 is to use a bipolar transistor.
As shown, the Hfe of the transistor varies relatively substantially over the range of 0.01 kGy to 50 kGy. This variation can be detected using either direct contact or telemetric methods to establish total dose. As for other embodiments, in this dosimeter embodiment, the transistor can be characterized prior to irradiation and the characterization data can be stored in a computer database and/or printed on a bar-code label associated with the sensor 30. In certain embodiments, which may be particularly suitable for direct contact detection or measurement methods (as opposed to wireless detection), the value of the pre-irradiation signal parameter (Hfe) can be used to normalize a desired curvefit equation. For example, if the transistor has an initial Hfe of 145 at a given Ic of 0.1 mA and the Hfe of the post-irradiated transistor is measured at 20, then the dosage can be calculated using Equation (2).
For an Hfe measured (post irradiation) of 20 and a pre-irradiation or initial Hfe of 145, this results in a computed radiation dose of 10.69 kGy. This value is consistent with the curvefit and tabular data. As is well known to those of skill in the art, mathematical corrections may be made to the calculated result to adjust for gains at various temperatures and other desired variables.
Other transistors with Hfe degradation characteristics may be evaluated and a curvefit equation defined for that component. For example, a PNP transistor, such as a 2N2907A, has a similar Hfe degradation with exposure to radiation from sources such as Cobalt-60. The mechanisms for the Hfe degradation are known. See e.g., Messenger et al., The Effects of Radiation on Electronic Systems, (Van Nostrand Reinhold, 1992) and Ma et al., in Ionizing Radiation Effects in MOS Devices and Circuits, (Wiley, 1989).
In any event, the post-irradiation gain for the transistors may be detected or evaluated in a number of wireless or telemetric (non-contact) methods as well as via direct electrical contact according to embodiments of the present invention. In certain embodiments, the Hfe of the transistor can be inferred from a time, voltage, spectral content, or "Q" measurement and a radiation dose calculated (either directly or indirectly) from a mathematical model or predetermined relationship of Hfe to dose.
As shown in
In certain embodiment, in operation when the primary circuit 131P operates without a sensor 30 or tag with the secondary circuit 131S within range, the energy drawn from the primary circuit 131P is associated with the losses to oscillate the tank. This energy loss can be measured and stored (such as in a controller or signal processor). When a sensor 30 with the secondary circuit 131S is in the range of the detector, and hence the primary circuit 131P (which may be identified by the barcode scanner), the energy drawn from the primary circuit 131P can be represented as equal to the sum of the energy in: (a) the primary tank, (b) the secondary tank, (c) the energy to charge 131C (C1) and (d) some "constant" losses associated with the zener and/or transistor circuits. The energy to charge 131C (C1) may be determined by monitoring the energy delivered from the primary circuit 131P. Because the value of 131C (C1) and the zener 131Z voltage are known (such as from the parametric characterization), the voltage discharge across 131C (C1) can be calculated based on when the primary circuit 131P begins to recharge the capacitor 131C. The amount of voltage that the capacitor has discharged and the time can be used to correlate the Hfe of the transistor 131Q.
The time where the capacitor 131C (C1) has again reached the zener voltage 131Z can also be determined. These two measurements can be used to determine the voltage discharge on the capacitor 131C (C1) and this data related to the Hfe of the transistor 131Q. The primary circuit 131P can include primary detection circuitry (not shown) such as amplifiers, integrators, multipliers, and the like which can be used to monitor the energy transfer as is known to those of skill in the art. It is also noted that in certain embodiments, the E1 (
In certain embodiments, the following mathematical relationships and equations can be used to determine dose.
Stated differently,
where ΔVc is known (it is measured at the time when power is drawn from the primary circuit 131P until the capacitor reaches the zener voltage), in the example shown in
where ic, ib are a function of dose.
In other embodiments, the Hfe value can be determined in other ways. For example, the "extra" energy delivered from the primary side 131P to the secondary side 131S during the recharge cycle can be measured to deduce the voltage change on the capacitor using the relationship represented as (E=½CV2). That is, "E" attributed to the extra energy from the primary circuit 131P is known (identify this value as E delivered), C1 is known and the Efinal is known because it is based on a known zener final voltage, and Eintial can be calculated. Thus Eintial can be calculated from Equation (6). V initial can them be calculated based on (E=½CV2). Vinitial can be used to calculate the Hfe of the transistor.
Turning now to
The present invention provides a cost effective way to monitor radiation doses in irradiated foods by configuring the sensor circuit to change in response to exposure to radiation. The dosimeters may be suitable for mass-production environments and can include means to wirelessly or telemetrically relay detected parameter values associated with changes due to radiation exposure to a computer program adapted to calculate and provide the associated radiation dose without requiring labor intensive efforts on the part of an inspector or operator. The radiation dose can also be read during exposure to provide an input into a feedback control used in a radiation control system to facilitate proper radiation exposure.
Irradiation may be carried out by suitable modalities as is known to those of skill in the art. For example, by directing radiation to the object undergoing the procedure in an amount sufficient to achieve sterilization using a radioactive source or element such as, but not limited to, Cobalt-60, Cesium-137, electron beams produced by a linear accelerator, and the like. The irradiation process can be carried out by a stationary system or by a portable system where appropriate. The present invention provides an economic, single use disposable sensor that can monitor the radiation dose to help indicate that pathogens are destroyed effectively.
As will be appreciated by one of skill in the art, the present invention may be embodied as an apparatus or system, a method, a data or signal processing system, or a computer program product. Accordingly, embodiments of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, certain embodiments of the present invention may take the form of a computer program product on a computer-usable storage medium having computer-usable program code means embodied in the medium. Any suitable computer readable medium may be utilized including hard disks, CD-ROMs, optical storage devices, or magnetic storage devices.
The computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (a nonexhaustive list) of the computer-readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disc read-only memory (CD-ROM). Note that the computer-usable or computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted or otherwise processed in a suitable manner if necessary, and then stored in a computer memory.
Computer program code for carrying out operations of the present invention may be written in an object oriented programming language such as Java®, Smalltalk or C++. However, the computer program code for carrying out operations of the present invention may also be written in conventional procedural programming languages, such as the "C" programming language or even assembly language. The program code may execute entirely on the user's (monitoring site) computer, partly on the user's computer as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer. In the latter scenario, the remote computer may be connected to the user's computer through wireless means and/or via a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
The flowcharts and block diagrams of certain of the figures herein illustrate the architecture, functionality, and operation of possible implementations of radiation dosimeters and associated systems according to the present invention. In this regard, each block in the flow charts or block diagrams represents a module, segment, operation, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. In the claims, means-plus-function clauses, where used, are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
Black, Robert D., Widener, Steven R., Mann, Gregory Glenwood
Patent | Priority | Assignee | Title |
10545248, | Apr 07 2008 | MIRION TECHNOLOGIES US , INC | Dosimetry apparatus, systems, and methods |
7239242, | Jan 26 2005 | Axcelis Technologies, Inc.; Axcelis Technologies, Inc | Parts authentication employing radio frequency identification |
7258276, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
7293705, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
7372942, | Mar 29 2004 | Siemens Medical Solutions USA, Inc | Medical imaging system with dosimetry for estimating circuit board life |
7591421, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
7652268, | Jan 31 2006 | JP LABORATORIES INC | General purpose, high accuracy dosimeter reader |
7661591, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
7681796, | Jan 05 2006 | Toshiba Global Commerce Solutions Holdings Corporation | Mobile device tracking |
7710275, | Mar 16 2007 | Promega Corporation | RFID reader enclosure and man-o-war RFID reader system |
7718963, | Aug 20 2007 | Honeywell International Inc. | Passive solid state ionizing radiation sensor |
7735732, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
7784689, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
7791479, | Feb 21 2002 | Promega Corporation | RFID point of sale and delivery method and system |
7796038, | Jun 12 2006 | ZEST LABS, INC | RFID sensor tag with manual modes and functions |
7832185, | Jul 11 2007 | Stokely-Van Camp, Inc | Active sterilization zone for container filling |
7942321, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of disturbing products |
7956752, | Jan 14 2005 | Transponder bolt seal and a housing for a transponder | |
7967199, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
8025228, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
8031072, | Mar 16 2007 | Promega Corporation | RFID reader enclosure and man-o-war RFID reader system |
8113425, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
8132598, | Jul 11 2007 | Stokely-Van Camp, Inc | Active sterilization zone for container filling |
8231053, | Oct 20 2000 | Promega Corporation | Radio frequency identification method and system of distributing products |
8258961, | Mar 16 2007 | Promega Corporation | RFID reader enclosure and man-o-war RFID reader system |
8405508, | Aug 09 2006 | EMD Millipore Corporation | Use of gamma hardened RFID tags in pharmaceutical devices |
8412544, | Oct 25 2007 | Method and apparatus of determining a radiation dose quality index in medical imaging | |
8479782, | Jul 11 2007 | Stokely-Van Camp, Inc | Active sterilization zone for container filling |
8497775, | Aug 09 2006 | EMD Millipore Corporation | Use of gamma hardened RFID tags in pharmaceutical devices |
8511045, | Jul 11 2007 | Stokely-Van Camp, Inc. | Active sterilization zone for container filling |
8519846, | Mar 16 2004 | NewAge Industries, Inc. | Tracking system for gamma radiation sterilized bags and disposable items |
8538776, | Oct 25 2006 | Method and apparatus of providing a radiation scorecard | |
8567454, | Jul 11 2007 | Stokely-Van Camp, Inc. | Active sterilization zone for container filling |
8803089, | Jun 01 2012 | LANDAUER, INC | System and method for wireless, motion and position-sensing, integrating radiation sensor for occupational and environmental dosimetry |
8830072, | Jun 12 2006 | ZEST LABS, INC | RF systems and methods for providing visual, tactile, and electronic indicators of an alarm condition |
8841622, | Apr 07 2008 | MIRION TECHNOLOGIES US , INC | Dosimetry apparatus, systems, and methods |
8957778, | Aug 02 2007 | EMD Millipore Corporation | Sampling system |
8980667, | Jul 30 2012 | GLOBALFOUNDRIES U S INC | Charge sensors using inverted lateral bipolar junction transistors |
9040929, | Jul 30 2012 | GLOBALFOUNDRIES U S INC | Charge sensors using inverted lateral bipolar junction transistors |
9119281, | Dec 03 2012 | VAREX IMAGING CORPORATION | Charged particle accelerator systems including beam dose and energy compensation and methods therefor |
9134430, | Apr 07 2008 | MIRION TECHNOLOGIES US , INC | Dosimetry apparatus, systems, and methods |
9151848, | Dec 15 2010 | MIRION TECHNOLOGIES US , INC | Dosimetry system, methods, and components |
9170338, | Jul 30 2012 | GLOBALFOUNDRIES Inc | Charge sensors using inverted lateral bipolar junction transistors |
9296600, | Jul 11 2007 | NGPC ASSET HOLDINGS, LP | Active sterilization zone for container filling |
9321620, | Jul 11 2007 | Stokely-Van Camp, Inc | Active sterilization zone for container filling |
9377543, | Jul 30 2012 | GLOBALFOUNDRIES U S INC | Charge sensors using inverted lateral bipolar junction transistors |
9429585, | Aug 02 2007 | EMD Millipore Corporation | Sampling system |
9746564, | Dec 15 2010 | MIRION TECHNOLOGIES US , INC | Dosimetry system, methods, and components |
9854661, | Dec 03 2012 | VAREX IMAGING CORPORATION | Charged particle accelerator systems including beam dose and energy compensation and methods therefor |
RE46326, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
RE47599, | Oct 20 2000 | Promega Corporation | RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags |
Patent | Priority | Assignee | Title |
4475401, | May 20 1982 | The United States of America as represented by the Department of Health | Vibration dosimeter |
4484076, | Oct 02 1981 | CAL Corporation | Direct reading dosimeter |
4554639, | Apr 06 1983 | AMETEK, INC ; AMETEK AEROSPACE PRODUCTS, INC | Audio dosimeter |
4556063, | Oct 07 1980 | Medtronic, Inc. | Telemetry system for a medical device |
4575676, | Apr 04 1983 | Advanced Research and Applications Corporation | Method and apparatus for radiation testing of electron devices |
4678916, | Sep 18 1985 | BEST THERATRONICS, LTD | Dosimeter |
4804847, | Jan 27 1987 | ONGUARD SYSTEMS, INC | Radiation detector with an ionizable gas atop an integrated circuit |
4913153, | Nov 13 1987 | Florida International University | Personal dosimeter |
4970391, | Jan 27 1987 | ONGUARD SYSTEMS, INC | Radiation detector with an ionizable gas atop an integrated circuit |
4976266, | Aug 29 1986 | Sandia Corporation | Methods of in vivo radiation measurement |
5117113, | Jul 06 1990 | BEST THERATRONICS, LTD | Direct reading dosimeter |
5400382, | Apr 19 1992 | ALPHA OMEGA TECHNOLOGIES, INC | Automated irradiator for the processing of products and a method of operation |
5444254, | Jun 12 1992 | BEST THERATRONICS, LTD | Flexible radiation probe |
5476634, | Mar 30 1990 | IIT Research Institute; Jeffrey S., Held; James W., Sharp | Method and apparatus for rendering medical materials safe |
5477050, | Jun 16 1994 | The United States of America as represented by the Secretary of the Army | Radiation sensor dosimetry circuit |
5543111, | Jul 06 1990 | ALION SCIENCE AND TECHNOLOGY CORP | Method and apparatus for rendering medical materials safe |
5609820, | Jul 06 1990 | STERICYCLE, INC | Apparatus for rendering medical materials safe |
5620472, | Jan 12 1995 | Pacesetter, Inc.; Pacesetter, Inc | Apparatus and method for dynamically interpreting and displaying a real-time telemetry link |
5656998, | Aug 31 1993 | Kubota Corporation | Detector for theft prevention |
5744094, | Apr 12 1991 | Elopak Systems AG | Treatment of material |
5787144, | Nov 14 1996 | Ethicon, Inc | Sterilization process for medical devices |
5847391, | Nov 13 1995 | SECRETARY OF STATE FOR TRADE AND INDUSTRY, THE OF HER MAJESTY S GOVERNMENT | Real time radiation resistant meter |
5855203, | Dec 19 1997 | Freya, LLC | Respiratory circuit with in vivo sterilization |
5880477, | Jun 07 1995 | Aerospatiale Societe Nationale Industrielle, Societe Anonyme | Method of real time control of ionizing radiation dose rate and device for using same |
5949075, | Aug 26 1997 | CITIZEN HOLDINGS CO , LTD | Radiation dosimeter |
6165155, | Feb 07 1997 | Sarcos LC | Multipathway electronically-controlled drug delivery system |
6177677, | Dec 17 1996 | GAMBRO HOSPAL SCHWEIZ AG | System for sterilizing medicinal products by beta-radiation processing |
6398710, | Jan 06 1999 | BALL SEMICONDUCTOR, INC | Radiation dosimetry system |
6429444, | Aug 24 1999 | STERIS INC. | Real time monitoring of electron beam radiation dose |
EP537761, | |||
JP2147882, | |||
JP63221278, | |||
JP7306269, | |||
SU1603314, | |||
SU414900, | |||
WO9858250, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 31 2001 | Sicel Technologies, Inc. | (assignment on the face of the patent) | / | |||
Oct 09 2001 | WIDENER, STEVEN R | SICEL TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012276 | /0325 | |
Oct 15 2001 | BLACK, ROBERT D | Sicel Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012338 | /0123 | |
Oct 15 2001 | MANN, GREGORY GLENWOOD | Sicel Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012338 | /0123 | |
Dec 08 2011 | Sicel Technologies, Inc | SNC HOLDINGS CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027370 | /0709 | |
Nov 30 2012 | SNC HOLDINGS CORP | VTQ IP HOLDING CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029719 | /0696 |
Date | Maintenance Fee Events |
Oct 09 2007 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Oct 15 2007 | REM: Maintenance Fee Reminder Mailed. |
Nov 21 2011 | REM: Maintenance Fee Reminder Mailed. |
Apr 06 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 06 2007 | 4 years fee payment window open |
Oct 06 2007 | 6 months grace period start (w surcharge) |
Apr 06 2008 | patent expiry (for year 4) |
Apr 06 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 06 2011 | 8 years fee payment window open |
Oct 06 2011 | 6 months grace period start (w surcharge) |
Apr 06 2012 | patent expiry (for year 8) |
Apr 06 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 06 2015 | 12 years fee payment window open |
Oct 06 2015 | 6 months grace period start (w surcharge) |
Apr 06 2016 | patent expiry (for year 12) |
Apr 06 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |