An electronic subsystem for automotive vehicles for overriding the manual control of the vehicles and substituting limited automatic control in response to onboard sensors detecting external and internal conditions that are in violation of the traffic laws or adverse to the normal manually controlled operation of the vehicle. Traffic laws and regulations are digitally detected from the vehicle by wireless acquisition, and the vehicle is automatically controlled to insure compliance. The system detects adverse environmental conditions, including degraded traction and visibility, proximity of other vehicles and objects, uncontrolled vehicle movements, including skidding and fishtailing, and others, and overrides the manual control of the vehicle to minimize the effects of such conditions. The system also provides for monitoring traffic flow along roadways and wirelessly regulating such flow.
|
1. An automatic control system for a manually controlled automotive vehicle for overriding the manual control of the vehicle upon detecting that the vehicle is being driven in a reckless manner,
sensor means onboard the vehicle for detecting changes in acceleration, timing means operating for a preset time interval, counting means controlled by said timing means and responsive to said sensor means for counting the number of changes in acceleration occurring within said preset interval, said counting means generating an output signal upon counting a predetermined number of changes in acceleration occuring within said preset time interval, and control means coupleable to said vehicle and responsive to said output signal to override manual control of the vehicle and automatically limit subsequent acceleration performance of the vehicle, said timing means being repetitively operated to enable substantially continuous monitoring of the vehicle.
2. In the system of
said control means additionally reducing the speed of the vehicle responsively to said output signal.
3. In the system of
additional sensor means for detecting adverse weather conditions affecting the driving of the vehicle, and said additional sensor means energizing said control means to limit the acceleration of the vehicle.
|
This application claims the benefit of Provisional applications no. 60/222,592, filed Aug. 2, 2000 and no. 60/245,587, filed Nov. 6, 2000.
This invention generally relates to hybrid automotive control systems, and more particularly to such systems permitting driver manual control of the vehicle but providing automatic override of certain functions of control of the vehicle as is necessary to comply with traffic laws and to compensate for various external conditions of danger.
With over 220 million automobiles in use in the U.S., and more being added daily, it has become essential to provide some degree of limited override over complete manual control of the vehicles by drivers to insure compliance with the traffic laws, and to protect drivers and passengers from various dangerous conditions, such as adverse weather, driver error and fault, adverse road conditions, and improperly driven other vehicles. Adverse weather conditions such as ice, rain, sleet, snow, and fog require reduced driving speeds and reduced rates of acceleration and braking of the vehicles to proceed with safety. Similarly, drivers that are reckless and overly aggressive endanger others, as do drivers that are physically impaired, or impaired by the use of alcohol and drugs that reduce hand-eye coordination. Uncontrolled movements of the vehicles resulting from skidding, fishtailing, sliding, and rolling also require correction by slower speeds, and reduce rates of acceleration and braking. Obstacles in the roads, or oncoming vehicles in the path of a vehicle going forwardly or backwardly need to be avoided. For all of these reasons, and others, there exists a need for partially overriding the manual control of automotive vehicles with temporary and limited automatic controls in circumstances where such conditions exist
According to the present invention there is provided a hybrid control system for automotive vehicles that supplements, assists, and overrides the manually operated driver controls where required by traffic laws or by adverse circumstances that present a danger to the driver and to the other vehicle occupants. The system includes a plurality of sensors that detect the traffic laws and regulations as the vehicle proceeds from location to location, as well as detecting various movements and conditions of the vehicle in relation to the roadway, and to other vehicles, and to the surrounding environment, to automatically override the manual controls and take over the control of the vehicle on a temporary basis, and in a limited manner as is required for safety purposes. Among others, the sensors detect the tractive condition of the road with respect to the vehicle, as well as the driver's vision of the surroundings, such as at nighttime, or during periods of rain, snow, sleet, or fog. These detected conditions are employed to automatically reduce the maximum speed of the vehicle below the prevalent speed limit, and to reduce the ability of the vehicle to accelerate below that normally provided by the vehicle. This partial overriding of the driver's normally available maximum speed limit and limitation of its acceleration rate are provided to bring the vehicle operation into compliance with the traffic laws, and to better compensate for the adverse conditions detected by the various sensors.
FIG. 3 and
Referring to the drawings. There is shown in
Thus the subsystem receives commands from coded road signs 11 to stop, and in response to such commands overrides the manual control of the vehicle to apply sufficient braking and reduce fuel to the engine as is necessary to bring the vehicle to a stop at the next intersection, taking into account the type of vehicle, its braking characteristics, and its speed when receiving the stop command signal. Additionally, where the vehicle fails to fully stop, due to poor brakes, worn tires, slippery roads, etc., the subsystem responds by applying further braking and fuel control as needed. A timer 21 thereafter permits the overriding subsystem to discontinue operation after a short time interval, permitting the driver to regain manual drive control of the vehicle. As shown, the timer 21 is energized by a vehicle movement sensor 19 to function after a complete stopping of the vehicle, and then to reset the subsystem to regain manual control of the vehicle. According to the invention, the driver may manually apply additional braking to the vehicle even during the override period, since it may be necessary to stop the vehicle before reaching the intersection for other reasons.
Speed Limit Control
According to the invention, the subsystem also automatically overrides complete manual control of the vehicle to the limited extent necessary to prevent speeding of the vehicle beyond the speed limit established by the traffic laws. Referring again to
Intersection Control
At present over 64 million automobile crashes occur yearly in the U.S. and 90% of such crashes result from driver error, either intentionally or unintentionally. Half of such crashes occur at nighttime, and many of the remaining crashes occur when driver vision of the road and objects on the road are obscured.
According to the present invention, there is provided onboard sensors for detecting the proximity of other vehicles and objects located near a vehicle and, in response thereto, overriding the manual control of the vehicle to a limited extent to inhibit, or reduce the possibility of collision between the vehicle and such other vehicles or objects that have been detected.
Referring to the drawings, there is shown in
According to the invention, the possibility of such collisions is minimized by providing onboard proximity detectors that sense other vehicles and objects at the sides, front, and rear of the vehicle 30, that function in the system to prevent or limit movement of the vehicle into a roadway intersection in the path of such other vehicles, until the danger of collision is diminished. Referring to
In brief, the system prevents or minimizes intersection crashes between vehicles by employing proximity detectors to sense the presence or approach of such other vehicles, and in response, inhibiting the movement of the vehicle in the paths of such other vehicles or objects. As noted above, half of all car collisions in the U.S. occur at street and road intersections, with a greater percentage of such crashes occurring at nighttime or when the vision of the drivers is diminished or reduced by adverse weather or other condition.
Road Traction-speed Control
Where the traction provided by a vehicle's tires on the road is diminished due to adverse weather or other condition, there is a need for reducing the vehicle's speed and rate of acceleration for safety of the vehicle, such as to prevent skidding at curves and to permit stopping of the vehicle within required distances should that become necessary. Many drivers continue to drive at the same speeds and accelerate despite the fact that the road may provide reduced traction due to rain, snow, sleet, and ice. As a result, their vehicles skid in an uncontrolled manner when the road curves or when the brakes are applied to slow down or stop the vehicle. Similarly where the road surface has an oil slick, moisture or ice, or contains patches of sand or gravel deposits, or is broken in sections, or contains potholes; loss of tire traction can also result creating uncontrolled dangerous skidding, fishtailing, or other undesired movements of the vehicle resulting in full or partial loss of control. of the vehicle. According to the present invention, there is provided one or more sensors for detecting the surface condition of the road ahead of the vehicle to determine if the tire-road traction is reduced. If such condition is found to exist, then the system override the manual control of the vehicle to the extent of reduceing its maximum speed and its rate of acceleration to a level that is safer for driving under the detected conditions.
Referring to
According to the invention, the maximum speed and rate of acceleration of the vehicle are also proportionally regulated according to the existing vehicle speed, and according to the speed limit permitted by traffic regulations on that section of the road. A signal relating to the existing speed is entered into the analyzer 46 by speed sensor 17, and the speed limit requirement is obtained by onboard sensor 43 reading this information from the coded road sign 11. Still further, the override mechanism is also modified according to the manufacturers specifications for the vehicle, and a signal for this parameter is produced by adjustable generator 45, that is adjusted at the time of installation of the subsystem in the vehicle.
Briefly recapitulating the operation and functioning of this subsystem, upon detecting a condition of reduced traction in the roadway that might present a danger under the normal manually controlled operation of the vehicle, the subsystem responds to a number of variable detected conditions including the vehicles speed, the prevalent speed limit, the type and characteristics of the vehicle, and the degree of reduction of the traction of the vehicle with the roadway over "normal" conditions. All of these detected conditions are entered into the analyzer 46, and the vehicle drive controls are overridden by these entered parameters to proportionally limit the maximum speed of the vehicle and its rate of acceleration. Where the reduced traction of the vehicle is detected on a high speed highway, and the vehicle is traveling at a high speed, the reduction in maximum speed and acceleration rate is made greater by the override controls than when the vehicle is proceeding at a reduced speed and in a limited speed zone, such as a city street. The vehicle road sensor 42a (
As discussed, the degree of override regulation is also controlled according to the type of vehicle set forth in manufacturer's specifications, since four wheel drive vehicles, front wheel drive, sport suspension equipped vehicles, and other types, all have different handling and response characteristics that vary from other vehicles in response to changes in traction of the road. The traction characteristics of the road also vary considerably depending upon the road materials and its age and integrity, This information is provided by the coded road signs 11 that are read by a sensor 44 on the passing vehicles, and this signal is applied as a reference signal to the analyzer 46 as shown in
Briefly recapitulating the above, the surface condition of the road is scanned by an onboard sensor 42a of passing vehicles, and a corresponding signal is applied to analyzer 46. This roadway signal from 42a is compared with a road reference signal from bar code reader 44 obtained from reading a road sign 11, to determine any changes in the road surface that are present due to weather or other adverse conditions. The existing speed of the vehicle is also added from generator 17 to modify the degree of override control of the vehicle, as is the model and type of vehicle added by generator signal 45. All of these signals are applied to analyzer 46 that determines a loss of traction condition of the vehicle, as adjusted by the other parameters, to proportionally regulates the maximum speed of the vehicle and its rate of acceleration to compensate for the detected reduced traction of the vehicle.
Driver Vision
Many more car crashes and accidents occur during the night hours and when the vision of drivers is diminished or obscured by fog, rain, snow, sleet, or air pollution; all of which limit the vision of the drivers. According to the invention, driver visibility through the surrounding air is detected by sensor(s) onboard of the vehicle, and upon detection of a sufficiently degraded condition, the manually operated control of the vehicle is partially overridden to the extent of limiting the maximum speed of the vehicle and its rate of acceleration to compensate for this impaired vision condition.
Referring again to
Briefly recapitulating the structure and operation of the controls shown in
Skidding-Fishtailing-Tilt-Rollover
Reduction or loss of road traction can result in any of these uncontrolled movements. Skidding, for example can result from loss of traction, excess speed around curves in the road, braking on a broken highway, accelerating on a slippery road, or for a number of other vehicle movements under adverse conditions. Fishtailing of the vehicle as well as tilt or rollover often results from too sharp a turn, or abruptly braking the vehicle for sudden stops. Any of such uncontrolled movements can result in car crashes or collisions with other vehicles or objects, thereby endangering and injuring the vehicle occupants and destroying properties. According to the present invention, these uncontrolled movements are detected by onboard sensors in the vehicle, and the manual operation of the vehicle in response to such detected conditions is automatically overridden in a limited manner to reduce the maximum speed of the vehicle and reduce its rate of acceleration, both thereby lessening the conditions that can result in such uncontrolled movements of the vehicle.
Briefly recapitulating the operation of the subsystem as described above, various uncontrolled movements of the vehicle are detected by onboard sensors indicating a reduction or loss of road traction and/or stability, and the subsystem responds to such detected movements by reducing the maximum speed of the vehicle and its rate of acceleration to enable safer operation to be restored. The reduction in speed and acceleration takes into account the various characteristics of the vehicle and its changes with aging and use; the maximum speed limit imposed by the traffic laws; and the existing speed of the vehicle when such uncontrolled movements are detected When the uncontrolled movements are detected to subside for a period of time, the subsystem is reset to restore complete manual control of the vehicle except when not in compliance with the traffic laws and regulations as discussed above.
Audible Reminder
Many careful drivers are occasionally inattentive to traffic conditions, or are variously impaired due to poor vision, impaired reflexes, or for other reason. To assist such drivers, and others, the present invention provides an onboard reminder subsystem that responds to the various conditions detected by the vehicle sensors discussed above, to alert and remind the vehicle drivers of the detected conditions needing attention. This subsystem may be provided as a supplement to the automatic vehicle override subsystems discussed above, or as a separate subsystem for this purpose.
Referring to
Briefly recapitulating the functioning and operations of the alerting and reminder subsystem described above, the signals from the various onboard sensors on the vehicle, that detect the various conditions applicable to that vehicle, are directed to a message control code circuit 63 that generates a different memory address code in response to energization by each one or ones of the different sensors. The generated memory addresses are applied to a message memory 86 containing a number of prestored messages each related to a different condition detected by a different one or ones of the sensors. Each received memory address code downloads the memory 86 to generate the corresponding message, and such message is directed to one or both of an audible announcer 87 and a visual display 91 within the vehicle to alert and remind the driver and other occupants of the detected condition or conditions.
Remote Traffic Control
An excess of traffic flow at rush hours, or at other times results in delays, stop and go movements of vehicles, and grid-lock. Impatient drivers and reckless drivers exacerbate the delays by frequently accelerating, and changing lanes to go around other vehicles, often resulting in car crashes and accidents that further immobilize the flow of traffic in one or more lanes. According to the invention there is provided a subsystem for enabling the traffic control authorities to detect areas or pockets of congestion on the highways, caused by heavy traffic and related conditions, and in response, remotely control the vehicles traveling in such congested areas to slow down and reduce their rate of acceleration, thereby to relieve or minimize traffic congestion and slowdown.
Referring to
The continually generated beacon signals 97 generated by the vehicles 95 may be differently modulated for each different vehicle 95 to enable individual vehicles to be tracked by the different traffic control substations 98 as such detected vehicles travel along the highway 93. For example, each vehicle beacon signal 97 may be digitally modulated according to that vehicle's license number, thereby enabling the identification of improperly driven vehicles and the tracking of such vehicles by the authities to insure compliance with the traffic laws. However, for the purpose of only monitoring and controlling a continuing traffic flow of vehicles, as described above, the different modulation of the signals from the different vehicles is not necessary.
Automotive vehicles can be tracked (by location, speed, and direction of travel) by triangulating on the radio emissions generated by portable cell phones in use by occupants within such vehicles. This tracking can be used to assist drivers and other occupants that are involved in troubled circumstances, and that dial a universal 911 phone number for help. According to the present invention, the wireless transmissions from such cell phones can also be detected and used to monitor the flow of traffic as discussed above, enabling the traffic control substations 98 to monitor traffic flow along highways, and/or override the manual control of the vehicles to the extent of limiting their maximum speed and rate of acceleration to reduce congestion and stoppages.
Acceleration Override Subsystem
As discussed above, the manual control of the vehicle is overridden upon detection of various adverse conditions to reduce the acceleration and deceleration of the vehicle to compensate for such conditions.
Proximity Signaling
As discussed above and illustrated in
Reckless Driving
Reckless driving involves driving a vehicle in a manner that disregards the safety of others as well as the safety of the driver involved. Reckless drivers abruptly accelerate and decelerate without warning or signaling others, they tailgate other vehicles, often change lanes without warning, cut off other drivers at intersections and when changing lanes, and otherwise operate their vehicles in a manner that is dangerous to others. According to the present invention, such reckless driving is detected and monitored by onboard sensors described above, to override the manual operation of the vehicle to the extent of reducing its acceleration response to the operation of the manually controlled throttle of the vehicle, thereby changing the performance of the vehicle to inhibiting the continuation of driving in a reckless a manner.
Referring again to
As discussed above, the analyzer 116 variably regulates (increases) the time delay provided by circuit 117 and also variably reduces the amplitude of the signal component passed by amplitude limiter circuit 118. Thus any subsequent change in the throttle 113 to accelerate the vehicle is both time delayed and reduced in amplitude, rendering the vehicle operation more slow in response to manual commands, and also reducing the acceleration of the vehicle for any increased throttle.
After each fixed time period of operation of the timer 129, the subsystem is reset to permit the "normal" manually controlled operation of the vehicle to resume. However, upon detecting any subsequently detected movement of the vehicle, the timer 129 is restarted to assist in monitoring the future operation of the vehicle during this next time period. Thus the vehicle is continually monitored from period to period to determine if it is being operated recklessly. Whenever reckless driving is detected to occur, the manually controlled operation of the vehicle is overridden to inhibit continuation of such reckless driving of the vehicle.
Variations
Many changes may be made by those skilled in the fields of electronic controls for vehicles without departing from the scope of the present invention. Many different kinds and types of onboard sensors are presently available for detecting various movements of vehicles, as well as conditions of the surrounding environment, including the traction provided by the roadways. These available sensors include both active and passive types, and operate in different frequency ranges including the infra-red bands and visible laser beams. The electronic subsystems disclosed may employ hardware, software, and combinations thereof as is presently customary in many control systems in use today for various other functions. The described subsystems may be modified to use additional sensors to detect other conditions affecting the vehicles, or in a modified subsystem, use fewer sensors. For example, wind speed, external temperature, flooding and other conditions affecting the vehicles and their operations may be sensed and monitored. Since these and other changes may be made without departing from the scope of this invention, this invention should be considered as being limited only by the following claims.
Patent | Priority | Assignee | Title |
10445758, | Mar 15 2013 | Allstate Insurance Company | Providing rewards based on driving behaviors detected by a mobile computing device |
10803748, | Sep 11 2018 | Toyota Jidosha Kabushiki Kaisha | Self-driving infrastructure |
11507102, | Mar 16 2012 | Waymo LLC | Actively modifying a field of view of an autonomous vehicle in view of constraints |
11829152, | Mar 16 2012 | Waymo LLC | Actively modifying a field of view of an autonomous vehicle in view of constraints |
7729826, | Dec 02 2004 | Ford Motor Company | Computer system and method for monitoring hydrogen vehicles |
7797090, | Dec 02 2004 | Ford Motor Company | Method for monitoring hydrogen vehicles |
7860808, | Jan 05 2006 | LinkedIn Corporation | System and method for hybrid conservation of fossil fuel |
8510012, | Dec 22 2010 | Bendix Commercial Vehicle Systems LLC | Anti-tailgating system and method |
8862361, | Feb 27 2007 | Honeywell International Inc.; Honeywell International, Inc | Turbine engine training manual mode fuel flow control system and method |
9329917, | Jun 28 2012 | Arnott T&P Holding, LLC | Vehicle suspension augmentation devices, systems and methods |
9665418, | Jun 28 2012 | Arnott T&P Holding, LLC | Vehicle suspension augmentation devices, systems and methods |
Patent | Priority | Assignee | Title |
4040676, | May 11 1976 | The B. F. Goodrich Company | Anti-skid brake control system with short circuit protection |
4090741, | Feb 22 1977 | The B. F. Goodrich Company | Anti-skid brake control system with circuit for monitoring slower wheel |
4098542, | Mar 16 1977 | The B. F. Goodrich Company | Indicator energizing monitor circuit for anti-skid brake control systems and the like |
5318143, | Jun 22 1992 | The Texas A & M University System | Method and apparatus for lane sensing for automatic vehicle steering |
5555312, | Jun 25 1993 | Fujitsu Limited | Automobile apparatus for road lane and vehicle ahead detection and ranging |
5684490, | Mar 01 1995 | The Ohio State University | Highway vehicle guidance system |
5765116, | Aug 28 1993 | Lucas Industries public limited company | Driver assistance system for a vehicle |
6014595, | Dec 23 1997 | Honda Giken Kogyo Kabushiki Kaisha | Determination of vehicle assistance from vehicle vibration that results when the vehicle contacts vibration generating structures on the road |
6058340, | Dec 28 1993 | Hitachi Ltd | Suspension control apparatus |
6130928, | Dec 18 1998 | GM Global Technology Operations LLC | Acceleration processing method and apparatus |
6164665, | Nov 21 1996 | Wabco GmbH | Vehicle suspension system with continuously adaptive shock absorption |
6223125, | Feb 05 1999 | Brett O., Hall | Collision avoidance system |
6351211, | Jan 25 2000 | M&P Ventures, Inc.; M&P VENTURES, INC , A CORPORATION OF TEXAS | Brake warning method and system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
May 21 2007 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Nov 28 2011 | REM: Maintenance Fee Reminder Mailed. |
Apr 13 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 13 2007 | 4 years fee payment window open |
Oct 13 2007 | 6 months grace period start (w surcharge) |
Apr 13 2008 | patent expiry (for year 4) |
Apr 13 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 13 2011 | 8 years fee payment window open |
Oct 13 2011 | 6 months grace period start (w surcharge) |
Apr 13 2012 | patent expiry (for year 8) |
Apr 13 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 13 2015 | 12 years fee payment window open |
Oct 13 2015 | 6 months grace period start (w surcharge) |
Apr 13 2016 | patent expiry (for year 12) |
Apr 13 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |